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Understanding the role of axons in neuronal information processing is a fundamental

task in neuroscience. Over the last years, sophisticated patch-clamp investigations have

provided unexpected and exciting data on axonal phenomena and functioning, but there

is still a need for methods to investigate full axonal arbors at sufficient throughput. Here,

we present a new method for the simultaneous mapping of the axonal arbors of a large

number of individual neurons, which relies on their extracellular signals that have been

recordedwith high-density microelectrode arrays (HD-MEAs). The segmentation of axons

was performed based on the local correlation of extracellular signals. Comparison of the

results with both, ground truth and receiver operator characteristics, shows that the new

segmentationmethod outperforms previously usedmethods. Using a standard HD-MEA,

we mapped the axonal arbors of 68 neurons in <6 h. The fully automated method can

be extended to new generations of HD-MEAs with larger data output and is estimated

to provide data of axonal arbors of thousands of neurons within recording sessions of a

few hours.

Keywords: axons, high-density microelectrode array, extracellular electrical field, action potential, axonal

arborizations, action potential propagation, high-throughput screening

INTRODUCTION

The classical view of axons is that of mere transmission cables (Hodgkin and Huxley, 1952),
while dendrites integrate distinct synaptic inputs (Spruston, 2008), and learning and memory are
perceived to be a consequence of synaptic plasticity (Redondo and Morris, 2011). Recent data,
however, indicate that the functional capacity of axons may be much more complex (Debanne,
2004; Ohura and Kamiya, 2016; Rama et al., 2018).

According to the classical theory describing giant squid axons (Hodgkin and Huxley, 1952),
voltage-gated sodium and potassium channels support self-sustained action potentials that
propagate along the axon. That is also true for mammalian axons, but at least two additional types
of cationic channels have been described. These channels are activated by G-protein dependent
receptors or hyperpolarization and modify the shape and propagation of the action potentials
(Elgueta et al., 2015; Ko et al., 2016).

Axons can be surrounded by a myelin sheet that leads to saltatory conduction of action
potentials (Tasaki, 1939), instead of the continuous conduction that has been observed in non-
myelinated axons, such as the giant squid axons (Hodgkin and Huxley, 1952). Mammalian axons
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also show considerable variations in their diameter (Gaussian
distribution around a peak at 200 nm diameter) and their number
of branch points and varicosities, which affect the conduction
velocity of action potentials. Differences in axon lengths have
been found to produce defined temporal delays for spike trains
for coincidence detection in the auditory system (Seidl et al.,
2010; Stange-Marten et al., 2017). Furthermore, axonal delays in
the neocortex show sub-millisecond precision (Swadlow, 1994),
which is compatible withmechanisms of spike-timing-dependent
synaptic plasticity (Dan and Poo, 2004). These characteristics
lead, according to computational studies (Izhikevich, 2006), to
the emergence of precisely timed firing patterns.

Early computational studies have suggested that some axonal
arbors can act as filters for spike patterns by the selective
failure of action potential propagation (Lüscher and Shiner,
1990). Whereas cerebellar mossy fibers in the cerebellum
can reliably transmit spike trains up to 1.6 kHz (Ritzau-
Jost et al., 2014), occasional failures have been observed in
the axons of CA3 pyramidal neuron at firing frequencies
of 30–40Hz (Meeks and Mennerick, 2007). Failure depends
on the diameter and the branching morphology as well as
on the activation of presynaptic A-type potassium channels.
The morphology and molecular composition of the individual
axonal arbors has been found to influence the timing and
shape of the action potential (Bischofberger et al., 2002; Alle
and Geiger, 2006; Cho et al., 2017) arriving at the pre-
synapse, which affects synaptic transmission and plasticity. For
example, broadening of action potentials due to slow inactivation
of voltage-gated potassium channels during high-frequency
spike trains was found to facilitate synaptic release (Geiger
and Jonas, 2000). Furthermore, axonal signaling and synaptic
connectivity have been found to constitute important parameters
in induced-pluripotent-stem-cell (iPSC) models of Parkinson’s
(Kouroupi et al., 2017) and amyotrophic lateral sclerosis
(Wainger et al., 2014).

The understanding of information processing in axons is a
fundamental question in neuroscience; however, the availability
of experimental data is severely limited due to the small axon
diameter. Most data sets have been gathered by performing patch
clamp recordings of axonal membranes, at axon terminals and
boutons, at the intact axon shaft or at the axonal bleb that is
formed upon cutting axons (Ohura and Kamiya, 2016). However,
these patch-based methods are not very well-suited to track
the propagation of action potentials at more than two sites or
even across the full axonal arbor. Moreover, the patch recording
time is limited to a few hours while axonal recording is a serial
process and has to be done axon after axon. Finally, patch-
based methods constitute endpoint measurements and following
the development of axonal arbors over extended periods is
not possible. Another possibility to study axons includes the
use of imaging tools and optogenetics (Chen et al., 2013), and
it has been shown that imaging of single axon terminals is
possible (Hoppa et al., 2014). However these methods are still
limited in signal-to-noise ratio as well as in temporal resolution
(Emmenegger et al., 2019).

A viable alternative to the methods described above includes
the use of high-density microelectrode arrays (HD-MEAs),

based on complementary-metal-oxide-semiconductor (CMOS)
technology (Eversmann et al., 2003; Berdondini et al., 2009; Frey
et al., 2010; Ballini et al., 2014; Bertotti et al., 2014; Viswam
et al., 2016; Tsai et al., 2017). HD-MEAs can be used to capture
neuronal activity at high temporal resolution across spatial scales,
including networks, dendrites and most importantly, axons
(Obien et al., 2015). CMOS-based HD-MEAs have been used
to study the action potential propagation along axonal arbors
(Bakkum et al., 2013) and the initiation of action potentials at
the axon initial segment (Bakkum et al., 2019), as well as to
track single action potentials along axons (Radivojevic et al.,
2017) and stimulate single axon initial segments (Ronchi et al.,
2019). Furthermore, HD-MEA recordings can be combined with
classical patch clamp recording to study postsynaptic currents in
response to pre-synaptic stimulation (Jäckel et al., 2017).

The objective of this work was to provide a method for high-
throughput scanning of axonal arbors and mapping their axonal
delays with minimal or no need to adjust parameters for the
detection of axonal signals. Using a standard HD-MEA (Frey
et al., 2010), we mapped the axonal arbors of more than 68
neurons in <6 h.

MATERIALS AND METHODS

Animal Use
Timed pregnant rats (Wistar) were obtained from a commercial
vendor (Nihon SLC, Japan). Animals were sacrificed on the
day of arrival to obtain embryos for primary neuron cultures.
All experimental procedures on animals were carried out in
accordance with the European Council Directive of 22 of
September 2010 (2010/63/EU) and have been approved by the
local authorities in Japan (Animal Care and Use Committee of
RIKEN; QAH24-01).

High-Density Microelectrode Array
(HD-MEA)
Sub-cellular resolution extracellular recordings were obtained
using a CMOS-based HD-MEA (Frey et al., 2010) with 11,011
electrodes, arranged in a hexagonal pattern and featuring an
electrode density of 3,150 electrodes/mm2. The culture chamber
of the HD-MEA was prepared as described before (Heer et al.,
2007) with minor modifications: after attaching the chamber
ring (polycarbonate, 19mm inner diameter, 8mm high) using
epoxy resin (EPO-TEK 301-2, Epoxy Technology Inc.), GlobTop
(G8345D-37, Namics Inc.) was used to cover the bondwires while
keeping the electrode area clean, and the remaining area was
covered by a thin film of PDMS (Sylgard 184, Dow Corning).
Platinum black was electrochemically deposited (Marrese, 1987)
[with modifications of the original procedure (Heer et al., 2007)]
on the electrodes to decrease their impedance in order to improve
signal-to-noise characteristics (Viswam et al., 2014). Before
plating, the surface of theHD-MEAswas rendered hydrophilic by
oxygen-plasma treatment (40 s, 20W), incubated for 4 h with of
50µg/ml Poly-D-Lysine (Sigma-Aldrich, P7280) in PBS, washed
twice with aqua dest and air-dried for 1 h.
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Primary Neuron Cultures
Adult rats were anesthetized with isofluorane and killed using
a guillotine. The embryos were removed from the uterus
and decapitated. Their neocortex was dissected in ice-cold
dissection medium (HBSS without Ca2+ and Mg2+; Gibco,
NO.14175) and incubated for 20min at 37◦C in Trypsin/EDTA
(Sigma-Aldrich). After washing twice with plating medium
(Neurobasal A, supplemented with 10% Fetal bovine serum,
2% B27 Supplement, 1:100 GlutaMax, all from Gibco, Japan,
and 10µg/ml Gentamicin, Sigma-Aldrich, Japan), the tissue
was mechanically dissociated, passed through a 40µm nylon
mesh, and centrifuged 6min at 200 g. The supernatant was
removed; the cells were suspended and counted. A 20 µl
drop containing 10,000 cells was placed on the electrode area
of the HD-MEA in the middle of the culture chamber. The
cultures were covered with a membrane, permeable to gas
but not to water vapor, and placed in a standard incubator
(37◦C, 5% CO2, 80% relative humidity). The neurons were
allowed to settle and attach to the surface during 30min.
Thereafter, the culture chamber was filled with 600 µl serum-
free, astrocyte-conditioned DMEM/Hams’s F12 medium (Nerve
Culture Medium, Sumitomo, Japan, #MB-X9501). Medium was
completely exchanged with 600 µl conditioned medium after 4
days and then every 7 days until day 17 in vitro.

Recordings and Spike Event Detection
For recording, HD-MEAs were placed in a bench-top incubator
(TOKAI HIT, Japan, INU-OTOR-RE) with temperature control,
and 5% CO2 was supplied by a gas-mixer and humidified by
a water bath. In order to avoid the evaporation of medium
during prolonged recording intervals, the water bath and the
lid temperature set point was set 1K and 3K above the sample
temperature set point, which was 35◦C. TheHD-MEA recordings
were performed using custom scripts, written in LabView
(National Instruments, US), Matlab (Mathworks, US), C++ and
Python running on a standard PC with a Linux operating system.
Data underwent lossless data compression and were directly
stored on a server on the local LAN.

Offline analysis of the recordings included filtering, event
detection and averaging. First, a band-pass filter (2nd order
Butterworth filter, 100–3,500Hz) was used to remove slowly
changing field potentials as well as high frequency noise. The
remaining (background) noise was characterized by the median
absolute deviation (MAD), which is resilient to outliers in
the data but represents a consistent estimator of the standard
deviation, sV = 1.4826 MAD

(

Vsig

)

. Using a voltage-threshold
method for event detection (Lewicki, 1998), negative signal peaks
below a threshold of Vthr = 5sV (Vthr > 50 µV in all cases) were
identified (Figure 1C). To avoid multiple detection of the same
spike, successive events within <0.5ms were discarded.

Mapping of Axonal Initial Segments
To initially identify the location of axonal initial segments (AISs),
the whole array was scanned using configurations in which
non-overlapping blocks of 6 × 17 electrodes (Figure 1D) were
connected to the amplifiers through the switchmatrix (Frey et al.,
2010) (schematic in Figure 1B). After recording for 30 s from

every electrode in the array, spike detection was performed for
each electrode and taking the median value summarized the
amplitude of the negative peaks. The median of the negative
peak for each electrode was plotted as a map showing some
areas with large negative peaks (Figure 2A). Such local minima
were assumed to indicate the putative (proximal) AIS locations
(Bakkum et al., 2019). We did not distinguish between inhibitory
and excitatory neurons according to the AIS waveform (Mita
et al., 2019).

Mapping of Electrical “Footprints”
To map the electrical “footprint” (spatial distribution of
extracellularly measured electrical potentials obtained with the
densely packed electrodes) of neuronal units and their axonal
arbors over the entire array, we used a series of configurations
in which so called “fixed electrodes” were always connected to
the amplifiers through the switch matrix (Frey et al., 2010),
whereas the remaining “variable electrodes” were connected
in sequential configurations (schematic in Figure 1E). After
recording the spontaneous activity for 115 s for each of these
configurations, spike sorting was performed and the electrical
“footprint” was calculated using the spike-triggered average
as previously described Bakkum et al., 2013; Müller et al.,
2015; Deligkaris et al., 2016; Radivojevic et al., 2016, 2017;
Jäckel et al., 2017.

To perform spike-triggered averaging we need to reliably
record spiking activity of the neurons. Therefore, we selected
the fixed electrodes at the putative locations of the AISs but
imposed a spatial restriction in order to not record the same
neuron twice. For selection of fixed electrodes, all electrodes
were ranked according to their median negative peak amplitude
(see previous section). The electrode with the highest rank
was selected, afterwards all electrodes in its proximity (within
100µmdistance) were discarded from the list, and the procedure
was repeated.

Spike Sorting
Even in sparse cultures some electrodes will pick up spikes from
multiple neurons in their vicinity. Therefore, spike sorting was
performed for each fixed electrode after recording. Waveforms
were extracted for a period of 1.5ms before to 1.5ms after the
negative peak of each event comprising 61 samples for each
event. In order to extract those features that best separate the
different clusters of spikes, we performed a principal component
analysis. We choose the first 10 principal components as spike
features (Abeles and Goldstein, 1977), containing more than
85% of the energy of the signal. KlustaKwik (Kadir et al., 2014)
was used to fit a mixture of Gaussians with unconstrained
covariance matrices and automatically selected the number
of mixture components. Clusters containing more than 2,500
spiking events in total were assigned to distinct neurons. This
number corresponds to an average of 14 spikes in each of the 179
recording configurations. With 14 samples the spike triggered
averaging reduces the noise by approximately a factor 1√

14
=

0.27. This procedure omits neurons with a firing rate below 14
spikes/115 s ≈ 7 spikes/min for which we could not compute
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FIGURE 1 | Outline of the main experimental methods. Neurons from embryonic-day-16 rat cortex were cultured on high-density microelectrode arrays (HD-MEAs)

(A). The HD-MEA has a high number and density of electrodes in the recording area and a limited number of low-noise on-chip amplifiers placed at the periphery. A

switch matrix allows for using different recording configurations by selecting recording electrodes and connecting them to the amplifiers (B). Extracellular recordings

enabled the detection of spiking events by a simple thresholding procedure (C). The amplitude of the negative peak of these spikes was mapped across the entire

HD-MEA by recording from all electrodes using non-overlapping block configurations (D). This map reveals the location of individual neurons, as neuronal axon initial

segments (AISs) are strong contributors to a neuron’s local extracellular field potential. Neuronal footprints (see, e.g., Figure 2B) were obtained by recording with

multiple configurations consisting of both, fixed electrodes, as well as randomly selected electrodes (E). The fixed electrodes (indicated in black) were located near the

AIS of the neuron and did not change between the configurations. The remaining electrodes of the HDMEA where sequentially recorded in batches (indicated by the

same color) consisting of electrodes at randomly selected locations. Spike sorting of the spike events on the fixed electrodes was performed to obtain the activity of

single neurons. Spike-triggered averages from all configurations were then combined into a single footprint for each neuron revealing the axonal delays (E). (B) was

adapted with permission from Obien et al. (2015).

a reliable footprint. The uniqueness of the detected neurons

was confirmed by assessing their different footprints (Figure 6).

Clusters leading to identical footprints were manually merged

to single neurons, and the footprints of the merged neurons

were re-calculated.

Optimal Recording Configurations for
High-Throughput Scanning of Electrical
Footprints
The extracellular signals originating from axons and dendrites
are very small with respect to the background electrical activity
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FIGURE 2 | Activity map and footprint of an example neuron. The marker in the activity map reveals the location of the AIS of the example neuron (A). The circle size

indicates the square-root-scaled count of spiking events per electrode. The median negative amplitude of the spikes is color-coded with a cut-off at −200 µV. Spike

triggered averaging shows the axonal footprint (B). The circle diameter indicates the square-root-scaled amplitudes of the average APs. The axonal delay is

color-coded. Close-ups of 3 regions (labeled I, II, III), showing the average AP waveforms, are presented in the lower panels. Gray axonal contours serve as guide to

the eye and are estimated by observing the spatial movement of signal peaks in consecutive movie frames (Radivojevic et al., 2017). The asterisc (*) indicates an

artifact probably from a large spike at the AIS of a presynaptic neuron.

and noise, so that spike-triggered averaging was applied. We
developed a set of recording configurations to map the electrical
footprint of several neurons in parallel by utilizing the switch

matrix of our HD-MEA. The switch matrix can be dynamically
configured to connect a large number, e, of electrodes to a smaller
number, a, of amplifiers. In a first-order approach, one could
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use one electrode as trigger and the remaining electrodes to scan
the neuronal footprint, which would result in a large number of
configurations, cw, needed to scan the whole array, cw = e/a. For
recording axonal arbors of n neurons, electrodes near the AISs of
these n neurons have to be always connected to amplifiers (n fixed
electrodes). The remaining amplifiers can then be connected
to the remaining electrodes in several successive configurations
(variable electrodes). Following this procedure, the whole array
can be scanned with

c (n) =
e− n

a− n

configurations. For n neurons we need c (n) configurations,
which means on average C (n) = c (n) /n configurations for one
neuron. An optimal strategymeans to choose n in such a way that
C (n) → min for 0 < n < a. With n < a ≪ e, the number of
neurons being much smaller than the number of electrodes, we
can approximate:

C (n) =
e− n

(a− n) n
≈

e

(a− n ) n

The right-hand side has a minimum for n = a/2. Therefore,
approximately half of the amplifiers should be connected to fixed
electrodes. The other half of the amplifiers can then be used
to scan the whole array in 2cw configurations, or on average
Ca = C (a/2) = 4e/a2 configurations per neuron. The axonal
arbors of a single neuron may extend over the whole array, but
by scanning the axonal arbors of many neurons in parallel, the
average number of configurations, Ca, per neuron is much less
than the number of configurations, cw, required for scanning the
whole array for large a :

Ca =
4e

a2
≪

e

a
= cw

This is due to the fact that increasing the number of amplifiers
quadratically decreases the average time to scan a single
neuron, which allows for high-throughput acquisition of axonal
delay maps.

Live Imaging
Live-cell visualization of whole neurons was performed by
transfection (Bakkum et al., 2013; Radivojevic et al., 2016).
Transfection was performed using a pLV-hSyn-RFP plasmid
from Edward Callaway (The Salk Institute, US; Addgene, #22909)
and Lipofectamine 2000 (Life Technologies) in accordance with
the manufacturer’s protocol. A Leica DM6000 FS microscope,
a Leica DFC 345 FX camera, and the Leica Application Suite
software were used to produce the micrographs.

RESULTS

To initially identify the location of axonal initial segments (AISs),
the whole array was scanned by using configurations in which
non-overlapping blocks (Figure 1D). The median of the negative
peak for each electrode was plotted as a map showing some

areas with large negative peaks (Figure 2A). Such local minima
were assumed to indicate the putative (proximal) AIS locations
(Bakkum et al., 2019). In low-density cultures, several AISs could
be distinguished (Figure 1A). So called “fixed electrodes” were
then selected as trigger electrodes at the putative locations of
the AISs, while the remaining “variable electrodes” were selected
in sequential configurations to map the electrical footprint of
neuronal units and their axonal arbors (Bakkum et al., 2013;
Müller et al., 2015; Deligkaris et al., 2016; Radivojevic et al., 2016,
2017; Jäckel et al., 2017) over the entire array (Figure 1E). After
spike-triggered averaging, the amplitude and delay of axonal
signals could be mapped across the whole recording area for each
individual neuron (Figure 2B).

High-Throughput Scanning of Electrical
“Footprints”
We used HD-MEA with 11,011 electrodes and 126 amplifiers
(Frey et al., 2010). We connected 62 amplifiers to fixed electrodes
and used the remaining amplifiers to scan the whole array
selecting 64 electrodes at random positions, which would yield
a total of c (n) = e−n

a−n = 11011−62
126−62 = 10949

64 = 172 configurations
(see section Spike Sorting). However, due to the design of the
switch matrix in our HD-MEA, some electrodes cannot be
selected in the same configuration, which increased the number
of recording configurations to 175 (see Table 1).

In our culture, 53 of the 62 fixed electrodes recorded single-
unit activity. However, only 28 axonal arbors could be identified,
because 25 electrodes did not record enough spikes to reliably
determine arbor structures (see Methods). The remaining 9 fixed
electrodes recorded multi-unit activity, so that spike sorting was
used to identify single-neuron activity and to obtain additional
40 axonal arbors. In total, we mapped the axonal arbors of
68 neurons. For further analysis we only used the n = 46
neurons with axonal arbors extending over more than 50
electrodes (Figure 6).

Identification of Axonal Arbors
Previously (see Figure 6 in Bakkum et al., 2013), axonal
arbors were traced according to the occurrence of negative
peaks in signal amplitudes in the spike-triggered averages
of extracellularly recorded electrical signals that exceeded 5
times the background noise (sV ). This method (hereafter
termed “method I”) evaluates the spike-triggered averages for
each electrode separately, without considering their spatial
arrangement and signal correlations between neighboring
electrodes. We used another method (hereafter termed “method
II”) to benefit from the fact that the delay of the negative
signal amplitude peak in the extracellularly measured potential
originating from a single axon is very similar at neighboring
electrodes it passes by. When we mapped the delay of these
negative signal peaks in the spike-triggered averages (Figure 3A),
the resulting map showed a distinct region of similar delays
against a background of random delays (Figure 3B). This finding
is due to the fact that signals originating from a common
source, e.g., from an axon of the same neuron, are very
similar across neighboring electrodes, whereas in the case of
random signals the negative peak could occur anywhere in the
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TABLE 1 | Comparison of high-throughput mapping of axonal delays using different types of CMOS-based HD-MEA.

This work Extrapolated performance using other HD-MEA

HD-MEA (Frey et al., 2010) (Ballini et al., 2014) (Dragas et al., 2017) (Yuan et al., 2018)

Mode SM SM SM SM APS

Electrodes 11,011 26,400 59,760 8,640 8,640

Amplifiers 126 1,024 2,048 112 9,216

Configurations 179 51 57 153 1d

Neuronsa 62 512 1,024 56 1,000e

Configurations/neuron 2.8 0.1 0.1 2.7 0.001

Circuit noise (AP band) µVRMS 2,4 2,4 2,4 2,3 12,4

Total noise (AP band)b µVRMS 5 5 5 5,0 13,2

Factorc 1 1 1 1 6,9

Time/configuration s 115 115 115 113 —d

Total time min 343 97 110 288 13

Average time/neuron s 332 11 6 309 1

AP band = 300 Hz−10 kHz. SM, switch matrix; APS, active pixel sensor. The expected number of neurons which can be mapped simultaneously in a single recording session are

highlighted in boldface.
aAssuming one neuron per fixed electrode. Note that spike sorting should be used in dense cultures to identify single-neuron activity, which would increase this number.
bTotal (RMS) noise consists of circuit noise, noise from dendritic Pt black electrodes (1.8 µV) (Viswam et al., 2019) as well as from background neuronal activity (4 µV). These noise

sources are uncorrelated and they add up to 3.1 µV in saline (Frey et al., 2010) and to about 5 µV in the neuronal cultures cultured on our HD-MEA. From these values, we can estimate

the total noise while recording from such cultures on other HD-MEA with similar electrodes.
cFactor by which the recording time per configuration increases to obtain a similar noise reduction after spike-triggered averaging. This factor is the square of the ratio between the total

noises for each HD-MEA.
dFull-frame readout does not require selection configuration with different electrodes.
eNumber of neurons was fixed at 1,000 for comparison with HD-MEAs with larger number of electrodes and switch-matrix design.

interval [1tpre,1tpost] for which the spike triggered averaging
was performed (see histogram in Figure 3C). 1tpre and 1tpost
represent the boundaries relative to the spike triggering, so that
the total spike-triggered average has the length T = 1tpost −
1tpre. To quantify the smoothness of the delaymap, the delay was
sampled in a neighborhood (compare Figure 4H) of hexagonal
shape around each electrode, and the sample standard deviation
Sτn was calculated. Note, that in the case of a uniform distribution
over the interval [0, 1], the standard deviation of a sample
is bounded by 0 ≤ s ≤ 0.5 and shows a characteristic
distribution, depending on the number of observations, N, in
each sample.

This distribution shows a sharp peak around the mean
standard deviation:

srandom =
1

√
12

.

There is no analytical expression for this distribution, but after a
coordinate transformation of the interval, it can be approximated
by a beta distribution B(α,β).

In case that axonal signals are present, the delays in the
neighborhood of an electrode with a negative peak at t are
distributed in the interval [t − r

c ; t + r
c ], depending on the

velocity, c, of the action potential and the distance, r, between the
electrodes. Therefore, the mean of the sample standard deviation
for axonal delays is:

saxon =
2r

c
√
12

=
r

c
√
3
.

For an HD-MEA with r = 18 µm and a typical conduction
velocity for short-range-projecting axons in the rat neocortex of
0.3−0.44m/s (Lohmann and Rörig, 1994; Telfeian and Connors,
2003), a standard deviation of around 30 µs can be expected
(compare with Figure 3E). At the boundary, more and more
neighboring electrodes will no more pick up the axonal signal,
so that the sample standard deviation shifts toward:

srandom =
T

√
12

.

In our case, with T = 8ms, a standard deviation of
2.3ms for background signals would be expected (compare
with Figure 3D). Empirically, the distribution of saxon can be
approximated by an (truncated) exponential distribution E(λ)
(see below). Therefore, axons have a distribution of sτn with
a peak close to zero, which is clearly distinguishable from the
distribution for the background. A threshold smin, placed at
the local minimum in the sτn distribution (Figure 3G), can
be used to separate both populations. The electrodes with
a sτn below this threshold represent negative peaks that are
consistent across neighboring electrodes (Figure 3I). If these
peaks appear after the negative peak at the AIS (Figure 3H),
they are assumed to originate from the axonal arbor of the
neuron (Figure 3J).

For a limited number of neurons, the ground truth in
the form of fluorescence images was available, so that we
could compare the performance of the new method (method
II; Figure 4B) with the old method (method I; Figure 4A)
employing a fixed threshold at 5sV (Bakkum et al., 2013).
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FIGURE 3 | Segmentation of an axonal arbor based on the spatially correlated spontaneous activity of a single neuron. Spike-triggered averages (A) of signals from

electrodes located close to the (proximal) AIS (red trace), close to axons (black) and for electrodes recording background activity and noise (gray). The negative peak

at the AIS appears slightly earlier than at the trigger electrode. Mapping (B) and histogram (C) of the delay of the negative peak, τ , showing an irregularly shaped area

with a “smooth” gray value outlining the axonal arbor, which is surrounded by a “salt-and-pepper” patterned background area. Axonal signals appear at

0 ms < τ < 2 ms. Spike-triggered averages for N = 7 neighboring electrodes, located in the “salt-and-pepper” region (D), feature a large sample standard

deviation for the delays, sτn , as compared to those located in the “smooth” region (E). Mapping (F) and histogram (G) of sτn . The small irregularly shaped area

outlining the axonal arbor is dark, whereas the surrounding area is displayed in lighter tones. Segmentation is done by placing the threshold sthr ≈ 0.5 ms in the

valley between the sharper peak (black), close to 0 ms, and the broad peak (gray) around the expected sbackground = 8/
√
12ms (open triangle) for random delays.

Mapping of electrodes, where the negative peak appears after the negative peak of the AIS (H), with sτn < smin (I), which record presumably axonal signals (J). The

crosshair symbol shows the location of the (proximal) AIS, the green and blue dots represent a patch of 7 neighboring electrodes located in the “salt-and-pepper” and

“smooth” areas, respectively. Corresponding negative peaks are indicated by triangles of the same color.

An example of a transfected neuron is shown in Figure 4C.
More electrodes were selected by method II than by method
I, which could be compensated for by lowering the threshold,

e.g., to 3sV (Figure 4D). In order to compare the electrode
selection (a set of electrode coordinates, E) with the ground-
truth axon information (a set of pixels in the image, A), we
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FIGURE 4 | Evaluation of axon segmentation based on ground truth. Mappings and Haussdorff distance, H,are shown for method I (A,D,F) and II (B,E,G). The high

threshold, employed by method I, leads to a higher false negative rate and a larger H ≈150 µm compared with H ≈100 µm for method II. Lowering the threshold

from 5sV (A) to 3sV (D) for method I leads to more false positive electrodes, far away from the axon (black outlines) and H ≈ 300 µm. In contrast, method II is robust

(G) with respect to an increased electrode distance (H): increasing the distance from r ≈ 18 µm (B) to r ≈ 36 µm (E) yields a higher true positive rate and H ≈ 200

µm. Axons were manually traced from fluorescence images (DsRed fluorescence displayed using an inverted grayscale) (C).

used the Haussdorff distance H(A,E), which is commonly used
in computer vision to measure how strongly two shapes differ
from each other. After registering the fluorescence image to the
electrode coordinate system, we calculated

H =max

{

sup
a∈A

inf
e∈E

d(a, e), sup
e∈E

inf
a∈A

d(a, e)

}

using the Euclidean distance d(a, e) between the coordinate e =
(

xe, ye
)T

of an electrode recording an axonal signal and the

coordinate a =
(

xa, ya
)T

of the pixel representing an axon
in the fluorescence image. For smaller threshold for method I
lead to a larger deviation from the ground truth than method
II. This was mainly due to the fact that, more electrodes far
away from the axonal arbors were selected. The new method
inherently relies on adjacency and rejected these “outliers” and
produced more compact maps that more closely followed the
ground truth. In other words, the distributions of the feature

used to classify the electrical activity as either axonal signals or as
background, showed a larger overlap for method I than method
II. We tested the robustness of method II against the spatial
distance of the electrodes by increasing the spatial extension of
the neighborhood while keeping the number of electrodes in
each neighborhood constant (N = 7). When hexagonal patterns
with r = 2 × 18 µm (Figure 4E) or r = 3 × 18 µm distance
between electrodes were selected, the distance to the ground
truth only slightly increased (Figure 4G). However, it seemed
that for a carefully chosen threshold (e.g., around 4.5sV , H ≈
100 µm, Figure 4F), the original method performed as well as
the new method.

Due to the limits of the Haussdorff distance in estimating the
quality of the extractedmappings, we also calculated the receiver-
operator characteristics (ROC) (Fawcett, 2006), which is possible,
as both segmentationmethods are binary classifiers.We fitted the
respective empirical distributions of their scores with a mixture
of two partially overlapping distributions representing axonal
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FIGURE 5 | Comparison of the axon segmentation methods, based on the receiver-operator characteristics (ROC). Distributions and mappings are shown for the

segmentation of an individual neuron, segmented by methods I (A,D) and II (B,E). The empirical distribution (NP) of amplitudes Vn (log normalized by signal noise, σV )

and the sample standard deviations of the delays, sτn (normalized by T/2) of the negative peaks were fitted (fit NP) to obtain the distributions of axonal signals

(positive class, P) and background activity (negative class, N). The corresponding true-positive rate (TPR) and false-positive rate (FPR) were calculated for each

possible threshold and plotted as ROC curve (C). The cross depicts the position of the (fixed) threshold of method I (FPR = 0.00009, TPR = 0.7), whereas the circle

indicates the (adaptive) threshold of method II (FPR = 0.011, TPR = 0.85). Method II (gray shading) performs better than method I (blue shading) as shown by the

larger area under the curve (AUC). This held true for all n = 46 neurons (F), and, although method I has a lower FPR (H), its TPR (G) was much lower than that of

method II, as it missed out on more than 50% of the axonal signals.

signals (“positive” class, P) and background activity (“negative”
class, N) with:

1. two normal distributionsN (Figure 5A) for the segmentation
with method I (Figure 5D)

P(x) ≈ pNN (x;µN , σ
2
N) + pPN (x;µP, σ

2
P ) with x = log Vn

sn
,

µN < µP

2. a beta distribution B and a truncated exponential distribution
E (Figure 5B) for the segmentation with method II
(Figure 5E):

P(x) ≈ pNB(x;αN ,βN)+ pPE(x; λP) with x = sτn
T/2 , E(x; λ) =

λe−λx

1−e−λx for 0 ≦ x ≦ 1

For both methods, we used the fitted distributions to estimate
the probability observing axonal signals (P+) or background
activity (P−).

1. P−(x) = pNN (x;µN , σ
2
N) and P+(x) = pPN (x;µP, σ

2
P ) for

method I,
2. P−(x) = pNB(x;αN ,βN) and P+(x) = pPE(x; λP) for

method II.

We then numerically calculated the cumulative distributions in
order to calculate the true positive rate (TPR) and false positive
rate (FPR) for each threshold, x, and plotted them as an ROC
curve (Figure 5C). The area under the curve (AUC) showed
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FIGURE 6 | High-throughput mapping of axonal arbors. The activity map reveals the locations of the AISs of several neurons (A). The circle size indicates the

square-root-scaled count of spiking events per electrode. The median negative amplitude of the spikes is color-coded with a cut-off at −200 µV. Spike-triggered

averaging shows the axonal footprint of 46 neurons (C). Only neurons with axonal arbors extending over more than 50 electrodes are shown.

(Continued)
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FIGURE 6 | The circle size indicates the square-root-scaled amplitudes of the average APs. The axonal delay is color-coded. Gray axonal contours serve as guide to

the eye and have been estimated by observing the spatial movement of signal peaks in consecutive movie frames. The axonal contours of all neurons were

color-coded and combined, showing the axonal arbors in the recorded neuronal network (B).

that the new method consistently had a better performance
than the original method for a total of n = 46 neurons
(Figure 5F). Furthermore, the automatic threshold procedure
yielded amuch betterTPR (Figure 5G) at the expense of a slightly
increased false-positive rate FPR in comparison to the original
method (Figure 5H).

DISCUSSION

HD-MEAs withmore than 3,000 electrodes per squaremillimeter
and dedicated low-noise on-chip amplifiers are suitable tools to
record the electrical activity of individual axonal arbors. We first
optimized a recording scheme for the switch matrix HD-MEA
that relied on combinations of fixed and variable recording sites
for high-throughput parallel mapping of as many neurons as
possible per total recording time. The method described here
shows a promising way to obtain axonal arbors at large scale
from potentially all neurons during a single recording session.
As an example, 68 neurons were mapped in parallel, 48 neurons
of which featured large axonal arbors (Figure 6). This yield
can be further improved using an HD-MEA design with an
increased number of simultaneously active recording channels,
decreasing the number of necessary measurement configurations
and, hence, the on average the required measurement time per
neuron to a few seconds (Table 1).

We then developed a method to distinguish axonal signals
from the background noise. Axonal arbors reveal themselves
by typical waveforms of the extracellular electric field potentials
(Bakkum et al., 2013, 2014; Petersen et al., 2015; Deligkaris et al.,
2016). Previously (Bakkum et al., 2013), axonal arbors were
traced according to the occurrence of negative peaks in signal
amplitudes in the spike-triggered averages of extracellularly
recorded electrical signals that exceeded 5 times the background
noise. With this threshold more than 50% of the smaller
axonal signals are lost (Figure 5G). Lowering the threshold can
alleviate this problem, however, the likelihood that background
signals are falsely assigned to axonal arbors also increases. Some
electrodes measuring spurious signals can easily be detected, if
they are located at comparably large distance from electrodes
that record genuine axonal signals. Typically, these false positives
are removed manually after visual inspection of the recorded
waveforms and their isolated location in the recording area.
However, this procedure is not possible for more than a few
recorded axonal arbors. Therefore, we developed a new method
that compares the axonal delays on neighboring electrodes. If
these delays are similar, the corresponding signals most likely
originated from the same axon. If there are large differences in
the delay, the corresponding signals may represent background
noise. Both methods, amplitude thresholding (Bakkum et al.,
2013) and the new method, worked well when we validated
them by comparing their results with the morphologies of

axonal arbors obtained by sparse transfection (Bakkum et al.,
2013; Radivojevic et al., 2016). Upon comparing both methods
according to their ROCs on a larger data set of 46 axonal
arbors, the newmethod based on local correlations outperformed
the classic amplitude thresholding. Furthermore, the new
method does not require manual intervention, e.g., for setting
a threshold.

The example workflow demonstrated here enables high-
throughput scanning of axonal arbors and mapping of
their axonal delays without the need to adjust parameters
for the detection of axonal signals. This method can be
extended to new generations of HD-MEAs (Ballini et al.,
2014; Viswam et al., 2016; Yuan et al., 2018) and can be used
to obtain data from axonal arbors of thousands of neurons
within a recording session of a few hours (Table 1). Our
example workflow yielded axonal arbors of 68 neurons, 46
of which featured axonal arbors extending over more than
50 electrodes (Figure 6C). These axonal arbors showed
considerable variation in total length, but also in local
branching patterns and axonal delays (Supplemental Figure 1).
Interestingly, some neurons featured footprints in the form
of disconnected patches, which could be the signature of
saltatory conduction of action potentials. This observation is
consistent with the reported formation of nodal components in
neuronal cultures (Freeman et al., 2015), but requires further
experimental validation.

Our method can be used for automated selection of neurons
with suitable axonal arbors for stimulation experiments (Jäckel
et al., 2017), single action potential tracking (Radivojevic et al.,
2017), automated patching (Obien et al., 2019), for mapping of
ion receptors by local drug application (Sasaki et al., 2011) and
even for automated single-cell phenotyping of axonal conduction
in human iPSC-derived neuronal cultures.

DATA AVAILABILITY

The Hana (high density microelectrode array recording analysis)
analysis pipeline is open source. All source code as well
as example data to replicate the figures are available at:
http://github.com/tbullmann/hdmea_axon. The example data
consists of spike triggered-averages that were extracted from the
raw recordings.
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