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The aim of this paper is to model the dynamics of the human papillomavirus (HPV) in cervical epithelial cells. We developed a
mathematical model of the epithelial cellular dynamics of the stratified epithelium of three (basale, intermedium, and corneum)
stratums that is based on three ordinary differential equations. We determine the biological condition for the existence of the
epithelial cell homeostasis equilibrium, and we obtain the necessary and sufficient conditions for its global stability using the
method of Lyapunov functions and a theorem on limiting systems. We have also developed a mathematical model based on
seven ordinary differential equations that describes the dynamics of HPV infection. We calculated the basic reproductive
number (R0) of the infection using the next-generation operator method. We determine the existence and the local stability of
the equilibrium point of the cellular homeostasis of the epithelium. We then give a sufficient condition for the global
asymptotic stability of the epithelial cell homeostasis equilibrium using the Lyapunov function method. We proved that this
equilibrium point is nonhyperbolic when R0 = 1 and that in this case, the system presents a forward bifurcation, which shows
the existence of an infected equilibrium point when R0 > 1. We also study the solutions numerically (i.e., viral kinetic in silico)
when R0 > 1. Finally, local sensitivity index was calculated to assess the influence of different parameters on basic reproductive
number. Our model reproduces the transient, acute, latent, and chronic infections that have been reported in studies of the
natural history of HPV.

1. Introduction

Human papillomavirus (HPV) is small, nonenveloped, icosa-
hedral DNA viruses that have a diameter of 52-55nm. HPV
is one of the most common sexually transmitted diseases in
the world, and it is the principal causative agent of cervical
cancer (CC), which occurs in 99.7% of cases [1]. This is a large
family of small viruses that are classified into low- and high-
risk (HR) genotypes and which can cause abnormal cell prolif-
eration, manifesting from epithelial warts to high-grade cervi-
cal intraepithelial neoplasia (CIN) [2].

At the cellular level, HPV infects keratinocytes (i.e., cells
that are the most predominant in the epidermis). Tradition-
ally, the epidermis is segmented into distinct structural and
functional compartments, which are called the cornified layer
(stratum corneum), granular layer (stratum granulosum), spi-
nous layer (stratum spinosum), and the deepest layer the basal
layer (stratum basale) (see Figure 1). Keratinocytes differenti-
ate as they move through the cell layers, starting as basal
keratinocytes. The keratinocytes produce more and more ker-
atin, and they eventually undergo natural cell death and
detachment (anoikis). The cornified keratinocytes that form
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the outermost layer of the epidermis are constantly shed off
and replaced by new cells [3]. The differentiation can be lateral
and suprabasal: in the first, other cells of the same stratum are
produced; and in the second, other cells that change stratum
are produced [4]. When a cell is infected by HPV, it retains
this capacity for cell differentiation.

The infection is produced by the exposure of the stratum
basale cells together with a HPV particle when microtrau-
mas occur in the epithelium during sexual activity [5, 6].
The virus only infects stratum basale cells because they con-
tain the receptors that allow binding with the L1 protein in
the capsid of the virus [7, 8].

During the process of infection by HR genotypes, there is
no viremic phase, replication is nonlytic, and levels of viral
gene expression are kept low in the basal epithelium. This
limits the innate immune response and adaptive is delayed,
which favors the establishment of viral infection. Furthermore,
the E6 and E7 oncoproteins interfere with the activation levels
of type I interferon in the infected cell, which prevents the ini-
tiation of intracellular antiviral responses [9, 10].

The HPV replicative cycle can last between 6 and 12
weeks, which considerably expands the viral genome. This
results in new mature viral particles that can reach 1,000,
which are released when rupture of the cell membrane
occurs [11].

As illustrated in Figure 2, the release of viral loads from
infected cells produces viral kinetics that allows us to classify
the infection as transient, acute, latent, or chronic. The first
is transient when viral genetic material is present in the host
for a short period, and there is no infection in the cells of the
stratum basale. The viral load is removed until its complete
elimination during the following days. The second is acute
when the infection is presented, replicates the viral genome,
produces viral particles, and is eventually cleared. The third
is latent when acute infections only appear to clear, but the
viral genome remains in the infected cell without detectable

activity. Finally, the fourth is chronic if genetic material is
not eliminated during the acute infection but continues to
increase the viral activity over time [12, 13].

The persistence of HR HPV infection is one of the prin-
cipal causes of CIN I, II, or III and cancer. Although it is not
clear whether the viral load has a causal effect on increasing
the risk of cervical lesions and cancer in HPV-infected
women, a high viral load is associated with the persistence
of HPV infection. Thus, viral load may be a marker of
HPV persistence [14].

A retrospective natural history study of HPV infections
through serial HPV viral load measurement in 261 untreated
women with type-specific HPV DNA detected has shown a
regression or decrease of a clonal cell population HPV-
infected when the infection was latent [13]. This indicates
that the kinetics of viral load can illustrate predictive scenar-
ios on regression or progression of the type of viral infection
presented by a HR HPV [13]. A protocol for a cohort study,
called PAPCLEAR, has recently been reported, which was
aimed at better understanding the course and natural history
of cervical HPV infections in healthy, unvaccinated, and
vaccinated young women [15]. This study will be relevant
because of its impact in the clinic thanks to the possible inte-
gration of longitudinal data to mathematical models.

A lot of literature has been published [16–20] on the
mathematical modeling of viral infections, typically in
human immunodeficiency virus, hepatitis B and C, and
influenza. Although the literature reports studies on HPV
modeling at the cellular level and viral kinetic scenarios
[21–24], they do not show a direct relationship with the
types of infection considering the different stratum of the
squamous epithelium to show progression or regression
of an infection by the HPV. Asih et al. [21] proposed a
model that considers four compartments: susceptible cells,
infected cells, precancerous cells, and cancer cells. They
analyzed the local stability of the equilibrium points of
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Figure 1: Cervical stratified squamous epithelial cell architecture.
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the model and investigated the parameters that play an
important role in the progression toward invasive cancer.
Akimenko and Adi-Kusumo [22], and Sari and Adi-
Kusumo [23] proposed two models of an age-structured
subpopulations of susceptible, infected, precancerous, and
cancer cells and unstructured subpopulation of HPV that
aimed at gaining insight into the disease characteristics
of cervical cancer. Verma et al. [24] developed a mathe-
matical model of HIV/HPV coinfection of the oral
mucosa. This model considered the cellular immune
response and the basal and suprabasal layers of epithelial
tissue but ignores viral transmission via suprabasal differ-
entiation. They obtained simulations of the kinetics of an
acute infection that tends to disappear over time and the
kinetics of a chronic infection. Finally, Murall et al. [25]
propose a viral dynamics model of the stratified epithe-
lium of four layers. They simulated a scenario of a slow
growing HR HPV infection that spontaneously regresses
and another scenario where the infection is inoculated
with few cells and the microabrasion repairs quickly. How-
ever, this mathematical model ignores the dynamics of the
healthy stratified epithelium, and although it models the
viral transmission via suprabasal differentiation, it does
so with a linear term.

Motivated by the above, we propose a deterministic
model that includes several layers of the healthy and infected
squamous epithelium without the presence of the immune
system to simulate in silico the types of infection reported
in the literature when HPV infection occurs.

The structure of this manuscript is as follows. In Section
2, we will describe a model to epithelial cellular dynamics of
healthy tissue, and we will study the stability of its equilib-
rium points. In Section 3, we will describe the dynamics of
HPV in the stratified epithelium of the cervix, and we will
calculate the basic reproductive number for the viral infec-
tion, its equilibrium points, and their corresponding local
and global stabilities. Additionally, we will show that one
of these equilibrium points, the infection-free equilibrium,
can be nonhyperbolic and that in this case, there is a bifur-
cation; this result shows the existence of an infected equilib-
rium point. Section 4 shows the typical values required in
the model that describes the dynamics of HPV-infected tis-
sue, and with them, it is estimated numerically the local
bifurcation type that this model exhibits, the regions of exis-
tence and stability of its infected equilibrium point, and the
simulation of different scenarios of interest that reproduce
the transient, acute, latent, and chronic infections of the nat-
ural history of the HPV. In Section 5, we will perform a local
sensitivity analysis of the basic reproductive number. This
will be followed by a discussion of the results obtained and
the conclusions, indicated in Sections 6 and 7, respectively.

2. Epithelial Cellular Dynamics

We assume that stratum spinosum and stratum granulosum
cells have similar cell dynamics. Therefore, these cells belong
to a stratum that we call stratum intermedium (see Figure 1).
Consequently, the cell dynamic model of the homeostatic
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Figure 2: Theoretical HPV viral load kinetics. Figure adapted from Alizon et al. [12].
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stratified epithelium is composed of the stratum basale, stra-
tum intermedium, and stratum corneum. The dynamic is
visualized in Figure 3.

The model is given by BHðtÞ, EHðtÞ, and CHðtÞ, which
denote stratum basale, stratum intermedium, and stratum
corneum formed by uninfected cells, respectively. The cells
of BHðtÞ proliferate (or lateral differentiation) at rate rB con-
sidering a logistic growth, with a carrying capacity KB; these
have suprabasal differentiation to EHðtÞ at rate δB and die at
rate μB. The dynamics of EHðtÞ is generated by suprabasal
differentiation of BHðtÞ at a rate δB. This population
increases by cell proliferation, which is governed by logistic
growth at a rate rE and a carrying capacity at rate KE. These
decrease by suprabasal differentiation at a rate δE, and we
assume that there is no natural death. Finally, the dynamics
of CHðtÞ are generated by suprabasal differentiation of EHðtÞ
at rate δE and shed from the epithelial tissue at a rate μC . We
arrive at the following mathematical model:

dBH

dt
= rBBH 1 − BH

KB

� �
− δBBH − μBBH ,

dEH

dt
= δBBH + rEEH 1 − EH

KE

� �
− δEEH ,

dCH

dt
= δEEH − μCCH :

ð1Þ

2.1. Positivity, Boundedness, Equilibria, and Their Local
Stabilities. Let set ΩP be ΩP = fðBH , EH , CHÞ ∈ℝ3

+ : BH ≥ 0,
EH ≥ 0, CH ≥ 0g ⊂ℝ3: We consider the positivity and
boundedness of the solutions of system (1).

Theorem 1. Given the initial conditions BHð0Þ > 0, EHð0Þ >
0, CHð0Þ > 0, then all solutions of system (1) are positive.

Proof. At first, we will prove the positivity of BHðtÞ. Let BH
ð0Þ be the solution that satisfies the initial condition BHðtÞ
> 0. Assume that the solution is not always positive; i.e.,
there exists a t0′ ∈ℝ+, such as BHðt0′Þ < 0. By Bolzano’s theo-
rem, there exists a t1 ∈ ð0, t0′Þ, such as BHðt1Þ = 0. Let t0 ∈ℝ+
be the initial time, such as BHðt0Þ = 0, and then dBHðtÞ/dt
= 0. Note that if some t ≥ 0, BHðtÞ = 0, then dBHðtÞ/dt = 0.
Then, any solution with BHð0Þ = 0 will satisfy BHðtÞ = 0
∀t > 0. By uniqueness of solutions, we have that if BHð0Þ >
0, then BHðtÞ will remain positive ∀t > 0. Therefore, BHðt0Þ
= 0 leads to a contradiction. Hence, BHðtÞ is nonnegative
for all t > 0. Now, we will prove the positivity of EHðtÞ. EH

ðtÞ is not always positive; i.e., there exists t0′ ∈ℝ+, such as
EHðt0′Þ < 0. By Bolzano’s theorem, there exists t1 ∈ ð0, t0′Þ,
such as EHðt1Þ = 0. Let t0 = min fti ∣ EHðtiÞ = 0g. By the sec-
ond equation (1), if EHðt0Þ = 0, then dEHðt0Þ/dt = δbBH > 0
implies that EH is increasing at t = t0. Therefore, EHðtÞ will
be negative for values t < t0 near to t0, that is, a contradic-
tion. Finally, we will prove the positivity of CH . From the
third equation (1), we obtain the following inequality dCHð
tÞ/dt ≥ −μCCHðtÞ. Integrating, we obtain the solution CH ≥
CHð0Þe−μt ; therefore, CH ≥ 0.

Theorem 2. Let ðBHðtÞ, EHðtÞ, CHðtÞÞ be the solution of
model (1) with the initial conditions BHð0Þ > 0, EHð0Þ > 0,
and CHð0Þ > 0. Then, BHðtÞ, EHðtÞ, and CHðtÞ are all
bounded for all t ≥ 0 at which the solution exists.

Proof. Let (BHðtÞ, EHðtÞ, CHðtÞ) be any solution with non-
negative initial conditions. We define a function

B tð Þ = BH tð Þ + EH tð Þ + n − 1
n

� �
CH tð Þ, n≫ 1: ð2Þ

The time derivative along a solution of (2) is

dB tð Þ
dt

= rBBH 1 − BH

KB

� �
− μBBH

+ rEEH 1 − EH

KE

� �
−
δE
n
EH − μC

n − 1
n

� �
CH

= rBKB

4 + rEKE

4 − μBBH −
δE
n
EH − μC

n − 1
n

� �
CH

−
rB
KB

BH −
KB

2

� �2
−

rE
KE

EH −
KE

2

� �2

≤
rBKB

4 + rEKE

4 − μBBH −
δE
n
EH − μC

n − 1
n

� �
CH :

ð3Þ

It follows that

dB tð Þ
dt

+ ηB tð Þ ≤ rBKB + rEKE

4 , ð4Þ

where η =min fμB, δE/n, μCg. Thus, limsupt⟶∞BðtÞ ≤ ð
rBKB + rEKEÞ/4η. Therefore, BHðtÞ, EHðtÞ, and CHðtÞ
are all bounded for all t ≥ 0.

Remark 3. The total number of cervical epithelial cells is
bounded by a weighted sum of the stratum basale and stra-
tum intermedium carrying capacities, where the weights
are the proliferation rates divided by four times of minimum
of the death and differentiation rates. The above is biologi-
cally plausible that there is an upper bound in terms of the
carrying capacities of the cells.

We can easily see that for all of the parameter values, the
trivial equilibrium E1

0 = ð0, 0, 0Þ always exists. We get the
“epithelial cell homeostasis” equilibrium E1

1 = ðB∗
H , E∗

H , C∗
HÞ,

rErB

𝜇B

𝛿B 𝛿E

𝜇C

EHBH CH

Figure 3: Diagram of the dynamics of the homeostatic stratified
epithelium.
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where

B∗
H = KB 1 − δB + μB

rB

� �
, ð5Þ

E∗
H = KE

2rE
rE − δE +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δE − rEð Þ2 + 4 δBrEKB

KE
1 − δB + μB

rB

� �s !
,

ð6Þ

C∗
H = δE

μC
E∗
H : ð7Þ

The following inequality rB > δB + μB is a biological con-
dition for the maintenance of cell homeostasis of the
epithelium.

The Jacobian matrix of (1) at E1
0 is

J E1
0

� �
=

rB − δB − μB 0 0
δB rE − δE 0
0 δE −μC

0
BB@

1
CCA: ð8Þ

The eigenvalues of JðE1
0Þ are λ1 = rB − δB − μB, λ2 = rE

− δE, and λ3 = −μC . By biological condition, rB > δB + μB,
then JðE1

0Þ has one positive eigenvalue. Thus, the trivial
equilibrium is unstable.

The Jacobian matrix for the equations of (1) at E1
1 is

J E1
1

� �
=

rB 1 − 2BH

KB

� �
− δB − μB 0 0

δB rE −
2rEEH

KE
− δE 0

0 δE −μC

0
BBBBBB@

1
CCCCCCA
:

ð9Þ

Using the following identities rB − rBB
∗
H/KB − ðδB + μBÞ

= 0 and rE − rEE
∗
H/KE − δE = −δBB∗

H/E∗
H , we have

J E1
1

� �
=

−
B∗
H

KB
0 0

δB −
δBB

∗
H

E∗
H

−
rEE

∗
H

KE
0

0 δE −μC

0
BBBBBB@

1
CCCCCCA
: ð10Þ

The characteristic polynomial of JðE1
1Þ is

P λ11
� �

= λ11 − −
B∗
H

KB

� �� �
λ11 − −

δBB
∗
H

E∗
H

−
rEE

∗
H

KE

� �� �
λ11 − −μCð Þ� �

:

ð11Þ

The eigenvalues of Pðλ11Þ are λ11,1 = −B∗
H/KB, λ

1
1,2 = −δB

B∗
H/E∗

H − rEE
∗
H/KE, and λ11,3 = −μC . Clearly, all of the eigen-

values are negative. Consequently, the epithelial cell homeo-
stasis equilibrium E1

1 is locally asymptotically stable.

We then arrive at the following theorem.

Theorem 4. Assume that the biological condition rB > δB +
μB is satisfied. The trivial equilibrium E1

0 = ð0, 0, 0Þ always
exists and is unstable. The epithelial cell homeostasis equilib-
rium E1

1 = ðB∗
H , E∗

H , C∗
HÞ always exists and is absolutely stable.

2.2. Global Stability of the Epithelial Cell Homeostasis
Equilibrium. We use the method of Lyapunov functions
and a theorem on limiting systems to analyze the global sta-
bility of the epithelial cell homeostasis equilibrium of the
system (1).

Consider the BH − EH subsystem of model (1), which is
independent of the CH variables. We construct the following
Volterra-type Lyapunov function [26] for the BH − EH sub-
system

U tð Þ = 2
ðBH

B∗
H

1 − B∗
H

η

� �
dη + rB

δBKB

ðEH

E∗
H

1 − E∗
H

η

� �
dη: ð12Þ

The function UðtÞ is defined, continuous, and positive
definite for all BH , EH > 0. Also, the global minimum UðBH
, EHÞ = 0 occurs at ðB∗

H , E∗
HÞ, and therefore, U is a Lyapunov

function. First, we calculate the time derivative of UðtÞ com-
puted along solutions of the first two equations of the system
(1), given by the expression

dU tð Þ
dt

= 2 1 − B∗
H

BH

� �
dBH

dt
+ rB
δBKB

1 − E∗
H

EH

� �
dEH

dt
: ð13Þ

Note that

1 = B∗
H

KB
+ δB + μB

rB
, ð14Þ

1 = δE
rE

−
δB
rE

B∗
H

E∗
H
+ E∗

H

KE
: ð15Þ

Using (14) and (15), we have

dU tð Þ
dt

= 1 − B∗
H

BH

� �
rB

B∗
H

KB
BH 1 − BH

B∗
H

� �� �

+ 1 − B∗
H

BH

� �
rB

B∗
H

KB
BH 1 − BH

B∗
H

� �� �

+ rB
δBKB

1 − E∗
E

EH

� �
δBB

∗
H

BH

B∗
H
−
EH

E∗
H

� �
+ rEEH

E∗
H

KE
1 − EH

E∗
H

� �� �

= rBBH
B∗
H

KB
2 − BH

B∗
H
−
B∗
H

BH

� �
+ rB
δBKB

rEEH
E∗
H

KE
2 − EH

E∗
H
−
E∗
H

EH

� �

+ rB
B∗
H

KB
3 − B∗

H

BH
−
EH

E∗
H
−

BHE
∗
E

B∗
HEH

� �
< −

rB
KB

BH − B∗
Hð Þ2

−
rB

δBKB

rE
KE

EH − E∗
Hð Þ2:

ð16Þ

Because dUðtÞ/dt ≤ 0, the Lyapunov stability theorem
[27] implies that the ðB∗

H , E∗
HÞ equilibrium is globally asymp-

totically stable in ℝ2
+ and limt⟶∞EHðtÞ = E∗

H .
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From the third equation in (1), we can formally solve to
obtain

CH tð Þ = CH 0ð Þ +
ðt
t0

δEEH τð ÞeμC τ−t0ð Þdτ

" #
/eμC t−t0ð Þ: ð17Þ

By L’Hospital’s rule, we obtain limt⟶∞CHðtÞ = δEEH/
μC = δEE

∗
H/μC = C∗

H . An application of Lemma 1 [28] shows
that the epithelial cell homeostasis equilibrium E1

1 = ðB∗
H ,

E∗
H , C∗

HÞ of model (1) is globally asymptotically stable in
the interior of ΩP. We then have the following theorem.

Theorem 5. If rB > δB + μB, then the epithelial cell homeosta-
sis equilibrium E1

1 = ðB∗
H , E∗

H , C∗
HÞ of system (1) is globally

asymptotically stable in the interior of ΩP.

3. Epithelial Viral Dynamics of HPV

The viral dynamics model includes that of uninfected cells,
infected cells, and viral load. The viral dynamics are given
by BIðtÞ, EIðtÞ, CIðtÞ, and VðtÞ, which denote the cells of
the stratum basale, stratum intermedium, stratum corneum
infected, and the viral load, respectively. BHðtÞ, EHðtÞ, and
CHðtÞ are denoted in the same way as in the previous
section.

Figure 4 shows that the dynamics of BIðtÞ results from
contact between uninfected basal cells and HPV particle at
rate β. This population increases by cell proliferation (or lat-
eral differentiation), governed by full logistic growth at a rate
r∗B, and a carrying capacity at rate KB. These decrease by
suprabasal differentiation at rate δ∗B and death cellular at rate
μ∗B. The dynamics of EIðtÞ are generated by suprabasal dif-
ferentiation of BIðtÞ at a rate δ∗B. This population increases
by cell proliferation, governed by full logistic growth at a rate
r∗E , and a carrying capacity at rate KE . These decrease by
suprabasal differentiation at a rate δ∗E , and we assume that
there is no natural death. The dynamics of CIðtÞ are gener-

ated by suprabasal differentiation of EIðtÞ at rate δ∗E . There
is no proliferation of CIðtÞ. This population decreases by
desquamation at rate μ∗C . Finally, VðtÞ increases by rupture
of cell membrane of CIðtÞ at rate σ, and they decline at rate
γ. This is summarized in the following nonlinear ODE
system:

dBH

dt
= rBBH 1 − BH + BI

KB

� �
− δBBH − μBBH − βBHV ,

dBI

dt
= βBHV + r∗BBI 1 − BH + BI

KB

� �
− δ∗BBI − μ∗BBI ,

dEH

dt
= δBBH + rEEH 1 − EH + EI

KE

� �
− δEEH ,

dEI

dt
= δ∗BBI + r∗EEI 1 − EH + EI

KE

� �
− δ∗EEI ,

dCH

dt
= δEEH − μCCH ,

dCI

dt
= δ∗EEI − μ∗CCI ,

dV
dt

= σCI − γV :

ð18Þ

3.1. Positivity, Boundedness, Equilibria, Basic Reproductive
Number, and Local Stability. Let set ΩG be ΩG = fðBH , BI ,
EH , EI , CH , CI ,VÞ ∈ℝ7

+ : BH ≥ 0, BI ≥ 0, EH ≥ 0,
EI ≥ 0, CH ≥ 0, CI ≥ 0, V ≥ 0g ⊂ℝ7: We consider the positiv-
ity and boundedness of the solutions of system (18).

Theorem 6. Given the initial conditions BHð0Þ > 0, BIð0Þ ≥ 0,
EHð0Þ > 0, EIð0Þ ≥ 0, CHð0Þ > 0, CHð0Þ ≥ 0 and Vð0Þ > 0,
then all solutions of system (18) are positive.

𝜇
⁎
B

𝛿⁎B

r⁎B r⁎E

rErB

𝛾

𝛿
⁎
E

𝜇B

𝛿B 𝛿E

𝜇C

𝜇
⁎
C

EI

EHBH

CIBI

CH

V

𝛽

𝜎

Figure 4: Diagram of viral dynamics when a HPV infection occurs.
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The proof of Theorem 1 is very similar to the proof of
Theorem 6. For this reason, we omit the proof.

Theorem 7. Let ðBHðtÞ, BIðtÞ, EHðtÞ, EIðtÞ, CHðtÞ, CIðtÞ, Vðt
ÞÞ be the solution of model (18) with the initial conditions BHð
0Þ > 0, BIð0Þ ≥ 0, EHð0Þ > 0, EIð0Þ ≥ 0, CHð0Þ > 0, CHð0Þ ≥ 0
and Vð0Þ > 0. Then, BHðtÞ, BIðtÞ, EHðtÞ, EIðtÞ, CHðtÞ, CIðtÞ,
andVðtÞ are all bounded for all t ≥ 0 at which the solution exists.

Proof. Let ðBHðtÞ, BIðtÞ, EHðtÞ, EIðtÞ, CHðtÞ, CIðtÞ, VðtÞÞ be
any solution with nonnegative initial conditions. We define
a function

B tð Þ = BH tð Þ + BI tð Þ + EH tð Þ + EI tð Þ +
n

n + 1
	 


CH tð Þ

+ n
n + 1
	 


CI tð Þ +
μ∗C n − 1ð Þ
σ n + 1ð Þ

� �
V tð Þ, n≫ 1:

ð19Þ

The time derivative along a solution of (19) is

dB tð Þ
dt

= rBBH 1 − BH

KB

� �
+ r∗BBI 1 − BI

KB

� �
+ rEEH 1 − EH

KE

� �

+ r∗EEI 1 − EI

KE

� �
−
rB + r∗B
KB

BHBI −
rE + r∗E
KE

EHEI

− μBBH − μ∗BBI −
δE

n + 1 EH −
δ∗E

n + 1 EI

− μC
n

n + 1
	 


CH −
μ∗C
n

n
n + 1
	 


CI − γ
μ∗C n − 1ð Þ
σ n + 1ð Þ

� �
V tð Þ

= rB + r∗Bð ÞKB

4 + rE + r∗Eð ÞKE

4 −
rB
KB

BH −
KB

2

� �2

−
r∗B
KB

BI −
KB

2

� �2
−

rE
KE

EH −
KE

2

� �2

−
r∗E
KE

EI −
KE

2

� �2
−
rB + r∗B
KB

BHBI −
rE + r∗E
KE

EHEI

− μBBH − μ∗BBI −
δE

n + 1 EH −
δ∗E

n + 1 EI

− μC
n

n + 1
	 


CH −
μ∗C
n

n
n + 1
	 


CI − γ
μ∗C n − 1ð Þ
σ n + 1ð Þ

� �
V tð Þ

≤
rB + r∗Bð ÞKB + rE + r∗Eð ÞKE

4 − μBBH − μ∗BBI −
δE

n + 1EH

−
δ∗E

n + 1 EI − μC
n

n + 1
	 


CH −
μ∗C
n

n
n + 1
	 


CI

− γ
μ∗C n − 1ð Þ
σ n + 1ð Þ

� �
V tð Þ:

ð20Þ

It follows that

dB tð Þ
dt

+ ηB tð Þ ≤ rB + r∗Bð ÞKB + rE + r∗Eð ÞKE

4 , ð21Þ

where η =min fμB, μ∗B, δE/ðn + 1Þ, δ∗E/ðn + 1Þ, μC , μ∗C/n, γg.
Thus, limsupt⟶∞BðtÞ ≤ ððrB + r∗BÞKB + ðrE + r∗EÞKEÞ/4η.

Therefore, BHðtÞ, BIðtÞ, EHðtÞ, EIðtÞ, CHðtÞ, CIðtÞ, and VðtÞ
are all bounded for all t ≥ 0.

Remark 8. The total number of cervical epithelial cells, both
uninfected and infected, and viral load is bounded by a
weighted sum of the stratum basale and stratum interme-
dium carrying capacities, where the weights are the prolifer-
ation rates of healthy and infected cells divided by four times
of minimum of the death, differentiation, and viral clearance
rates.

The model (18) always have a trivial equilibrium E2
0 = ð

0, 0, 0, 0, 0, 0, 0Þ, and a “epithelial cell homeostasis” equilib-
rium E2

1 = ðB∗
H , 0, E∗

H , 0, C∗
H , 0, 0Þ with the same coordinates

B∗
H , E

∗
H , and C∗

H given in (5), (6) and (7), respectively. We
recall the “epithelial cell homeostasis” equilibrium as the
infection-free equilibrium.

The Jacobian matrix of system (18) is

J =

J11 −
rBBH

KB
0 0 0 0 −βBH

βV −
r∗BBI

KB
J22 0 0 0 0 βBH

δB 0 J33 −
rEEH

KE
0 0 0

0 δ∗B −
r∗EEI

KE
J44 0 0 0

0 0 δE 0 −μC 0 0
0 0 0 δ∗E 0 −μ∗C 0
0 0 0 0 0 σ −γ

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

,

ð22Þ

where

J11 = rB −
2rB
KB

BH −
rB
KB

BI − δB − μB − βV ,

J22 = r∗B −
r∗B
KB

BH −
2r∗B
KB

BI − δ∗B − μ∗B,

J33 = rE −
2rE
KE

EH −
rE
KE

EI − δE,

J44 = r∗E −
r∗E
KE

EH −
2r∗E
KE

EI − δ∗E:

ð23Þ

3.1.1. Basic Reproductive Number R0. To compute the basic
reproductive number R0, we use the next-generation opera-
tor introduced by van den Driessche and Watmough [29].
The Jacobian matrix J of this subsystem at the infection-
free equilibrium is decomposed as J = F − V , where F is
the viral transmission part and V describe the transition
terms associated with the model (18). These quantities are
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given, respectively, by

F ≔

r∗B 1 − B∗
H

KB

� �
0 0 βB∗

H

0 0 0 0
0 0 0 0
0 0 0 0

0
BBBBBBB@

1
CCCCCCCA
,

V ≔

δ∗B + μ∗B 0 0 0

−δ∗B δ∗E − r∗E 1 − E∗
H

KE

� �
0 0

0 −δ∗E μ∗C 0
0 0 −σ γ

0
BBBBBBB@

1
CCCCCCCA
:

ð24Þ

It follows that the basic reproductive number R0 = ρðF
V−1Þ, where ρ is the spectral radius, is given by

R0 =
1

δ∗B + μ∗B

βσδ∗Bδ
∗
EB

∗
H

γμ∗C δ∗E − r∗E 1 − E∗
H/KEð Þð Þ + r∗B 1 − B∗

H

KB

� �� �
:

ð25Þ

The parameter R0 has an interesting biological meaning:
it is the sum of average numbers of secondary infected cells
produced by a single infected cell in a population of epithe-
lial basal cells, by direct basal cell-to-HPV contact and
infected basal cell division, respectively.

Remark 9. If r∗Eð1 − E∗
H/KEÞ is taken as a new infection, we

can get another basic reproductive number as follows:

�R0 =
1
2 a + b + cð Þ + 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 + b − cð Þ2 + 2a b + cð Þ

q
, ð26Þ

where

a = βσδ∗BB
∗
H

γμ∗C δ∗B + μ∗Bð Þ ,

b = r∗B
δ∗B + μ∗B

1 − B∗
H

KB

� �
,

c = r∗E
δ∗E

1 − E∗
H

KE

� �
:

ð27Þ

When r∗E = 0, it is easy to check that R0 is equivalent
to �R0.

3.1.2. Local Stability of E2
0. The Jacobian matrix (22) evalu-

ated at the equilibrium point E2
0 becomes

J E2
0

� �
=

rB − δB − μB 0 0 0 0 0 0
0 r∗B − δ∗B − μ∗B 0 0 0 0 0
δB 0 rE − δE 0 0 0 0
0 δ∗B 0 r∗E − δ∗E 0 0 0
0 0 δB 0 −μC 0 0
0 0 0 δ∗B 0 −μ∗C 0
0 0 0 0 0 σ −γ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð28Þ

By the biological condition, one of its eigenvalues is
positive:

λ20,1 = rB − δB − μB > 0, ð29Þ

while the other six are

λ20,2 = rE − δE,

λ20,3 = r∗B − δ∗B − μ∗B,

λ20,4 = r∗E − δ∗E ,

λ20,5 = −μC ,

λ20,6 = −μ∗C ,

λ20,7 = −γ:

ð30Þ

Thus, E2
0 is unstable. This result can be summarized as

follows.

Theorem 10. Assume that the biological condition rB > δB
+ μB is satisfied. The trivial equilibrium E2

0 = ð0, 0, 0, 0, 0, 0,
0Þ always exists and is unstable.

3.1.3. Local Stability of E2
1. The Jacobian matrix of system

(18), evaluated in the infection-free equilibrium point E2
1,

takes the form

J E2
1

� �
=

J11 −
rB
KB

B∗
H 0 0 0 0 −βB∗

H

0 J22 0 0 0 0 βB∗
H

δB 0 J33 −
rE
KE

E∗
H 0 0 0

0 δ∗B 0 J44 0 0 0
0 0 δE 0 −μC 0 0
0 0 0 δ∗E 0 −μ∗C 0
0 0 0 0 0 σ −γ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA
ð31Þ
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where

J11 = rB − δB − μBð Þ − 2rB
KB

B∗
H ,

J22 = r∗B − δ∗B − μ∗Bð Þ − r∗B
KB

B∗
H ,

J33 = rE − δEð Þ − 2rE
KE

E∗
H ,

J44 = r∗E − δ∗Eð Þ − r∗E
KE

E∗
H :

ð32Þ

Using the following identities rB − rBB
∗
H/KB − ðδB + μBÞ

= 0 and rE − rEE
∗
H/KE − δE = −δBB∗

H/E∗
H , we have

J11 = − rB − δB − μBð Þ, ð33Þ

J22 = r∗B − δ∗B − μ∗Bð Þ − r∗B
rB

rB − δB − μBð Þ, ð34Þ

J33 = −
δBB

∗
H

E∗
H

−
rE
KE

E∗
H , ð35Þ

J44 = r∗E − δ∗Eð Þ − r∗E
rE

rE − δEð Þ − r∗E
rE

δBB
∗
H

E∗
H

: ð36Þ

By biological condition, rB > δB + μB, then J11 < 0 and
J33 < 0. Furthermore, if

r∗B
δ∗B + μ∗B

≤
rB

δB + μB
, ð37Þ

r∗E
δ∗E

< rE
δE

, ð38Þ

then J22 ≤ 0 and J44 < 0, respectively.
On the other hand, the characteristic polynomial of (31)

is given by

P λ21
� �

= μC + λ21
� �

J33 − λ21
� �

J11 − λ21
� �

� λ21
� �4 + a1 λ21

� �3 + a2 λ21
� �2 + a3 λ21

� �
+ a4

	 

,

ð39Þ

where

a1 ≡ μ∗C + γ − J22 + J44ð Þ, ð40Þ

a2 ≡ J22 J44 + γμ∗C − γ + μ∗Cð Þ J22 + J44ð Þ, ð41Þ
a3 ≡ μ∗C + γð ÞJ22 J44 − γμ∗C J22 + J44ð Þ, ð42Þ

a4 ≡ γJ22 J44μ
∗
C − σβB∗

Hδ
∗
Bδ

∗
E = γμ∗C δ∗B + μ∗Bð ÞJ44 R0 − 1ð Þ:

ð43Þ
Note that in (43), a4 = 0 when J44 ≠ 0 and R0 = 1; conse-

quently, one of the roots of (39) is zero. Therefore, in this

case the equilibrium point E2
1 has a zero eigenvalue, that is,

it is no-hyperbolic.
Three eigenvalues of characteristic polynomial (39) are

λ21,1 = −μC < 0, λ21,2 = J33 < 0 and λ21,3 = J11 < 0. To determine
the sign of the other four, which are the roots of the qua-
dratic equation in (39), we will use the Ruth-Hurwitz crite-
rion. According to this, such polynomial has roots with
negative real part if and only if all its coefficients a1, a2, a3,
and a4 are positive and the relations

a1a2 > a3, ð44Þ

a1a2a3 > a4a
2
1 + a23, ð45Þ

hold. In order to show these relations, we will adopt the fol-
lowing notation:

A ≡ γ + μ∗C , ð46Þ

B ≡ − J22 + J44ð Þ, ð47Þ

C ≡ γμ∗C , ð48Þ

D ≡ J22 J44, ð49Þ

E ≡ σβB∗
Hδ

∗
Bδ

∗
E: ð50Þ

Note that quantities A > 0 and C > 0, since γ and μ∗C are
positive parameters, and E is also positive. By the inequal-
ities (37) and (38), we have that B is positive and D is non-
negative. Thus, in terms of this new notation, the
quantities (40)–(43) can be rewritten as

a1 = A + B,
a2 = C +D + AB,
a3 = AD + BC,
a4 = CD − E:

ð51Þ

We note that the coefficients a1, a2, and a3 are positive,
while if J44 < 0 (or equivalently r∗E/δ∗E < rE/δE) and R0 < 1
also, a4 is positive.

Thus, the condition of Ruth-Hurwitz (44) can be written
as

A + Bð Þ C +D + ABð Þ > AD + BC: ð52Þ

First of all notice that from (46), A2 = γ2 + 2C + ðμ∗CÞ2
> 2C > C and B2 = J222 + 2D + J244 > 2D >D: In this way, tak-
ing into account that A > 0 and B > 0, from the above
inequalities, we get BA2 > BC and AB2 > AD: This result
allows us to establish that

AB2 + BA2 > AD + BC: ð53Þ

Expanding the left hand side of (52), this can be
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rewritten as

AB2 + A2B + AD + BD + AC + BC > 2AD + 2BC + BD + AC:

ð54Þ

In (54), AC > 0 since A and C are positive definite, BC
> 0 since that B > 0, and AD ≥ 0 and BD ≥ 0 since that D
≥ 0. We would have on the right hand side of (54) that 2A
D + 2BC + BD + AC > 2AD + 2BC > AD + BC: Therefore,
(52) is satisfied; that is, the inequality (44) holds.

On the other hand, the last condition of Ruth-Hurwitz
(45) can be written as

A + Bð Þ C +D + ABð Þ AD + BCð Þ
> CD − Eð Þ A + Bð Þ2 + AD + BCð Þ2:

ð55Þ

The left side of (55) can be rewritten as

A + Bð Þ C +D + ABð Þ AD + BCð Þ
= AB2 + A2B + C +Dð Þ A + Bð Þ� �

AD + BCð Þ: ð56Þ

Note that the first factor on the right hand side of (56),
taking (53) into account, takes the form

AB2 + A2B + C +Dð Þ A + Bð Þ > AD + BCð Þ + C +Dð Þ A + Bð Þ:
ð57Þ

Thus, the right hand side of (56) becomes

AB2 + A2B + C +Dð Þ A + Bð Þ� �
AD + BCð Þ > AD + BCð Þ2

+ C +Dð Þ A + Bð Þ AD + BCð Þ:
ð58Þ

Besides, the second term on the right hand side of (58)
can be written as

C +Dð Þ A + Bð Þ AD + BCð Þ = A2CD + A2D2 + ABC2

+ 2ABCD + ABD2 + B2C2 + B2CD = A + Bð Þ2CD
+ BC2 + AD2� �

A + Bð Þ > A + Bð Þ2CD > A + Bð Þ2 CD − Eð Þ,
ð59Þ

since E > 0, that is,

C +Dð Þ A + Bð Þ AD + BCð Þ > A + Bð Þ2 CD − Eð Þ: ð60Þ

Thus, from equations (56), (58), and (60), we have

A + Bð Þ C +D + ABð Þ AD + BCð Þ
= AB2 + A2B + C +Dð Þ A + Bð Þ� �

AD + BCð Þ
> AD + BCð Þ2 + C +Dð Þ A + Bð Þ AD + BCð Þ
> AD + BCð Þ2 + A + Bð Þ2 CD − Eð Þ:

ð61Þ

In this way, (55) is satisfied; that is, the inequality (45)
holds.

In summary, by the biological condition rB > δB + μB, we
find that in polynomial (39), its eigenvalues λ21,2 = J33, λ

2
1,3

= J11, and λ21,1 = −μC are negative. Additionally, it has also
been shown that the four coefficients a1,a2, a3, and a4 are
positive and the two conditions a1a2 > a3 and a1a2a3 > a4
a21 + a23 are satisfied when r∗B/ðδ∗B + μ∗BÞ ≤ rB/ðδB + μBÞ and
r∗E/δ∗E < rE/δE are fulfilled; in particular, a4 is positive if it also
holds that R0 < 1. Thus, if these three conditions are met:
r∗B/ðδ∗B + μ∗BÞ ≤ rB/ðδB + μBÞ, r∗E/δ∗E < rE/δE , and R0 < 1, then
the eigenvalues of the fourth order polynomial in (39) will
have a negative real part, and consequently, the point E2

1 will
be asymptotically stable. On the other hand, by Descartes’
rule of signs, if R0 > 1, then a4 < 0, and the full polynomial
(39) will have a positive eigenvalue, in which case E2

1 will
be unstable. These results can also be summarized in the fol-
lowing theorem.

Theorem 11. Assume that the following conditions rB > δB
+ μB,r∗B/ðδ∗B + μ∗BÞ ≤ rB/ðδB + μBÞ, and r∗E/δ∗E < rE/δE are sat-
isfied. The infection-free equilibrium E2

1 of system (18) is
locally asymptotically stable for R0 < 1 and unstable for R0
> 1.

As already mentioned, E2
1 is nonhyperbolic when R0 = 1.

It will be shown later that when this happens, a bifurcation
occurs.

3.2. Global Stability of the Infection-Free Equilibrium. We
obtained some conditions on global stability of the
infection-free equilibrium of the system (18).

Theorem 12. Assume that rB > δB + μB, rB = r∗B, rE = r∗E , δB
= δ∗B, μB = μ∗B, and δ∗E ≥ δE. If R0 ≤ 1, then the infection-free
equilibrium E2

1 = ðB∗
H , 0, E∗

H , 0, C∗
H , 0, 0Þ of system (18) is

globally asymptotically stable in ΩG.

Proof.We construct the following Lyapunov function for the
system (18):

W tð Þ =W1 tð Þ +W2 tð Þ +W3 tð Þ, ð62Þ

where the following functions have been defined as

W1 tð Þ =
ðBH
B∗H

1 − B∗
H

η

� �
dη + BI +

βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð ÞEI

+ βσB∗
H

γμ∗C
CI +

βB∗
H

γ
V ,

W2 tð Þ = βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

ðEH
E∗H

1 − E∗
H

η

� �
dη,

W3 tð Þ = βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

ðCH

C∗
H

1 − C∗
H

η

� �
dη:

ð63Þ

The function WðtÞ is defined, continuous, and positive
definite for all BH , BI , EH , EI , CH , CI , V ≥ 0. Also, the global
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minimum WðBH , BI , EH , EI , CH , CI , VÞ = 0 occurs at E2
1 = ð

B∗
H , 0, E∗

H , 0, C∗
H , 0, 0Þ, and therefore, W is a Lyapunov func-

tion. First, we calculate the time derivative of W1ðtÞ.

dW1 tð Þ
dt

= 1 − B∗
H

BH

� �
dBH

dt
+ dBI

dt
+ βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

dEI

dt

+ βσB∗
H

γμ∗C

dCI

dt
+ βB∗

H

γ

dV
dt

= 1 − B∗
H

BH

� �
rBBH 1 − BH + BI

KB

� �
− δB + μBð ÞBH − βBHV

� �

+ rBBI 1 − BH + BI

KB

� �
− δB + μBð ÞBI + βBHV

+ βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δBBI + rEEI 1 − EH + EI

KE

� �
− δ∗EEI

� �

+ βσB∗
H

γμ∗C
δ∗EEI − μ∗CCIð Þ + βB∗

H

γ
σCI − γVð Þ:

ð64Þ

Using rB − ðδB + μBÞ = ðrB/KBÞB∗
H , we have

dW1 tð Þ
dt

= −
rB
KB

BH − B∗
Hð Þ BH − B∗

Hð Þ + BI½ � − βBHV + βB∗
HV

+ βBHV + rBBI 1 − B∗
H

KB

� �
− δB + μBð ÞBI

−
rB
KB

BI BH − B∗
Hð Þ + BI½ �

+ βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

� δBBI + rEEI 1 − E∗
H

KE

� �
− δEEH −

rE
KE

EI EH − E∗
Hð Þ + EI½ �

� �

+ βσB∗
H

γμ∗C
δ∗EEI − μ∗CCI½ � + βB∗

H

γ
σCI − γV½ �:

ð65Þ

After several calculations, we have

dW1 tð Þ
dt

= −
rB
KB

BH − B∗
Hð Þ + BI½ �2

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EI EH − E∗
Hð Þ + EI½ �

+ BI
βσδBδ

∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ + rB 1 − B∗

H

KB

� �
− δB + μBð Þ

� �

= −
rB
KB

BH − B∗
Hð Þ + BI½ �2 − βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

� rE
KE

EI EH − E∗
Hð Þ + EI½ � − δB + μBð Þ 1 − R0ð ÞBI :

ð66Þ

Second, we calculate the time derivative of W2ðtÞ.

dW2 tð Þ
dt

= 1 − E∗
H

EH

� �
dEH

dt
= 1 − E∗

H

EH

� �

� δBBH + rEEH 1 − EH + EI

KE

� �
− δEEH

� �
:

ð67Þ

Considering rE = ðrE/KEÞE∗
H + δE − δBðB∗

H/E∗
HÞ, we

obtain

dW2 tð Þ
dt

= βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
1 + B∗

H

BH
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EH − E∗
Hð Þ EH − E∗

Hð Þ + EI½ �

= βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
3 − BH

B∗
H
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

+ βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE

B∗
H

BH
+ BH

B∗
H
− 2

� �

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EH − E∗
Hð Þ EH − E∗

Hð Þ + EI½ �:

ð68Þ

Writing βσδBδ
∗
EB

∗
H/ðγμ∗Cðδ∗E − rEð1 − E∗

H/KEÞÞÞ in terms
of R0 and considering that βσδBδ

∗
EB

∗
H/ðγμ∗Cðδ∗E − rEð1 − E∗

H/
KEÞÞÞ = ðδB + μBÞðR0 − ðrB/ðδB + μBÞÞð1 − B∗

H/KBÞÞ, we find

dW2 tð Þ
dt

= βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
3 − BH

B∗
H
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

+ R0 −
rB

δB + μB
1 − B∗

H

KB

� �� �
δB + μBð ÞrEB∗

H

KE

B∗
H

BH
+ BH

B∗
H
− 2

� �

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EH − E∗
Hð Þ EH − E∗

Hð Þ + EI½ �

= βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
3 − BH

B∗
H
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

+ 1 − R0ð Þ δB + μBð ÞrEB∗
H

KE
2 − B∗

H

BH
−
BH

B∗
H

� �

+ 1 − rB
δB + μB

1 − B∗
H

KB

� �� �
δB + μBð ÞrEB∗

H

KE

B∗
H

BH
+ BH

B∗
H
− 2

� �

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EH − E∗
Hð Þ EH − E∗

Hð Þ + EI½ �:

ð69Þ

Taking into account that rBð1 − B∗
H/KBÞ = δB + μB, we

obtain

dW2 tð Þ
dt

= βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
3 − BH

B∗
H
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

+ 1 − R0ð Þ δB + μBð ÞrEB∗
H

KE
2 − B∗

H

BH
−
BH

B∗
H

� �

−
βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rE
KE

EH − E∗
Hð Þ EH − E∗

Hð Þ + EI½ �:

ð70Þ

Third, we calculate the time derivative of W3ðtÞ.

dW3 tð Þ
dt

= 1 − C∗
H

CH

� �
dCH

dt
= 1 − C∗

H

CH

� �
δEEH − μCCHð Þ:

ð71Þ
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Using δEE
∗
H = μCC

∗
H , we have

dW3 tð Þ
dt

= βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H

EH

E∗
H
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

+ 1
� �

= βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H 3 − E∗

H

EH
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

� �

+ βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H

EH

E∗
H
+ E∗

H

EH
− 2

� �
,

= βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H 3 − E∗

H

EH
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

� �

+ R0 −
rB

δB + μB
1 − B∗

H

KB

� �� �
δE δB + μBð ÞE∗

H

δB

EH

E∗
H
+ E∗

H

EH
− 2

� �

= βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H 3 − E∗

H

EH
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

� �

+ 1 − R0ð Þ δE δB + μBð ÞE∗
H

δB
2 − EH

E∗
H
−
E∗
H

EH

� �

+ rB
δB + μB

1 − B∗
H

KB

� �
− 1

� �
δE δB + μBð ÞE∗

H

δB
2 − EH

E∗
H
−
E∗
H

EH

� �
:

ð72Þ

Considering rBð1 − B∗
H/KBÞ = δB + μB, we find

dW3 tð Þ
dt

= βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H 3 − E∗

H

EH
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

� �

+ 1 − R0ð Þ δE δB + μBð ÞE∗
H

δB
2 − EH

E∗
H
−
E∗
H

EH

� �
:

ð73Þ

Finally, considering expressions (66), (70), and (73), we
obtain

dW tð Þ
dt

= dW1 tð Þ
dt

+ dW2 tð Þ
dt

+ dW3 tð Þ
dt

= −
rB
KB

BH − B∗
Hð Þ + BI½ �2 − βσδ∗EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

� rE
KE

EH − E∗
Hð Þ + EI½ �2 − δB + μBð Þ 1 − R0ð ÞBI

+ βσδBδ
∗
EB

∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ

rEB
∗
H

KE
3 − BH

B∗
H
−
EH

E∗
H
−
B∗
HEH

BHE
∗
H

� �

+ 1 − R0ð Þ δB + μBð ÞrEB∗
H

KE
2 − B∗

H

BH
−
BH

B∗
H

� �

+ βσδ∗EB
∗
H

γμ∗C δ∗E − rE 1 − E∗
H/KEð Þð Þ δEE

∗
H 3 − E∗

H

EH
−
CH

C∗
H
−
EHC

∗
H

E∗
HCH

� �

+ 1 − R0ð Þ δE δB + μBð ÞE∗
H

δB
2 − EH

E∗
H
−
E∗
H

EH

� �
:

ð74Þ

If R0 ≤ 1, then dW/dt ≤ 0. Note that dW/dt = 0 if and
only if BH = B∗

H , BI = 0, EH = E∗
H , and EI = 0 or R0 = 1, BH

= B∗
H , BI = 0, EH = E∗

H , and EI = 0. Therefore, the largest
compact invariant set in fðBHðtÞ, BIðtÞ, EHðtÞ, EIðtÞ, CHðtÞ,
CIðtÞ,VðtÞÞ: dW/dt = 0g is the singleton fE2

1g. By the classi-
cal LaSalle invariance principle (Theorem 5.3 of [30]), E2

1 is
globally asymptotically stable in ΩG if R0 ≤ 1.

3.3. Existence of a Forward or Backward Bifurcation. It has
already been mentioned that when R0 = 1, in the charac-
teristic equation (39), a4 vanishes given rise to a zero
eigenvalue and the infection-free equilibrium point E2

1 is
nonhyperbolic. This suggests that in this case, a bifurca-
tion occurs at that point. Indeed, this happens, as we will
show below. For this purpose, we will use the Theorem 4.1
of [31]. According to this result, it is required to rewrite
system (18) as

dx1
dt

= a0x1 − b0x1x2 − βx1x7 − b0x
2
1 ≡ f1,

dx2
dt

= a1x2 − b1x1x2 + βx1x7 − b1x
2
2 ≡ f2,

dx3
dt

= δBx1 + c0x3 − d0x3x4 − d0x
2
3 ≡ f3,

dx4
dt

= x2δ
∗
B + c1x4 − d1x3x4 − d1x

2
4 ≡ f4,

dx5
dt

= δEx3 − μCx5 ≡ f5,

dx6
dt

= δ∗Ex4 − μ∗Cx6 ≡ f6,

dx7
dt

= σx6 − γx7 ≡ f7,

ð75Þ

which is in terms of the new variables

x1 ≡ BH , x2 ≡ BI , x3 ≡ EH , x4 ≡ EI , x5 ≡ CH , x6 ≡ CI , x7 ≡V ,
ð76Þ

and the new parameters

a0 ≡ rB − δB − μB, a1 ≡ r∗B − δ∗B − μ∗B, b0 ≡
rB
KB

, b1 ≡
r∗B
KB

,

c0 ≡ rE − δE , c1 ≡ r∗E − δ∗E , d0 ≡
rE
KE

, d1 ≡
r∗E
KE

:

ð77Þ

We will consider that β is the bifurcation parameter
and that when R0 = 1, according to definition of R0, this
parameter takes the value

β∗ = γμ∗C J22 J44
σδ∗Bδ

∗
Ex

∗
1
: ð78Þ

The Jacobian matrix of system (75) evaluated at the
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equilibrium point E2
1, when β = β∗, is

J E2
1

� �
=

J11 −b0x
∗
1 0 0 0 0 −β∗x∗1

0 J22 0 0 0 0 β∗x∗1

δB 0 J33 −d0x
∗
3 0 0 0

0 δ∗B 0 J44 0 0 0
0 0 δE 0 −μC 0 0
0 0 0 δ∗E 0 −μ∗C 0
0 0 0 0 0 σ −γ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

ð79Þ

where the quantities J11, J22, J33, and J44, given by
(33)–(36), are written as

J11 = a0 − 2b0x∗1 , J22 = a1 − b1x
∗
1 , J33

= c0 − 2d0x∗3 , J44 = c1 − d1x
∗
3 :

ð80Þ

In this case, we know that zero is a simple eigenvalue
of (79). A right eigenvector associated with zero eigen-
value is

and the left eigenvector v, satisfying v ·w = 1, is

vT = σδ∗Bδ
∗
E

0
1
0

−
J22
δ∗B

0
β∗σx∗1
γμ∗C

β∗x∗1
γ

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

: ð82Þ

By algebraic calculations, it can be shown that the
required nonzero second-order partial derivatives evaluated
at E2

1, which are contained in the quantities a and b given

in Theorem 4.1 of [31], are

∂2 f2 E2
1

� �
∂x1∂x2

= ∂2 f2 E2
1

� �
∂x2∂x1

= −b1,
∂2 f2 E2

1
� �

∂x1∂x7
= ∂2 f2 E2

1
� �

∂x7∂x1

= β∗, ∂
2 f2 E2

1
� �

∂x2∂x2
= −2b1,

∂2 f4 E2
1

� �
∂x3∂x4

= ∂2 f4 E2
1

� �
∂x4∂x3

= −d1,
∂2 f4 E2

1
� �

∂x4∂x4
= −2d1,

∂2 f2 E2
1

� �
∂β∂x7

= ∂2 f2 E2
1

� �
∂x7∂β

= x∗1 :

ð83Þ

Thus, the quantities a and b take the form

a = 2β∗v2w1w7 − 2b1v2w2 w1 +w2ð Þ − 2d1v4w4 w3 +w4ð Þ,
ð84Þ

b = v2w7x
∗
1 , ð85Þ

w = 1
μ∗C + γð ÞJ44 J22 − γμ∗C J22 + J44ð Þ

γμ∗C J44
σδ∗Bδ

∗
E J11

J22 − b0x
∗
1ð Þ

−
J44
δ∗B

μ∗C
δ∗E

γ

σ

γμ∗C
σδ∗Bδ

∗
E

−
δBJ44
J11 J33

J22 − b0x
∗
1ð Þ + δ∗Bd0x

∗
3

J33

� �
μ∗C
δ∗E

γ

σ

δE
μC

γμ∗C
σδ∗Bδ

∗
E

−
δBJ44
J11 J33

J22 − b0x
∗
1ð Þ + δ∗Bd0x

∗
3

J33

� �
γ

σ

1

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

, ð81Þ
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where w1, w2, w3, w4, and w7 are the first, second, third,
fourth, and seventh components of eigenvector (81), while
v2 is the second component of left eigenvector (82). Given
that in (84) the first term on the right hand side of equality
depends on β∗, the relationship that it has with the other
terms will determine whether a > 0 or a < 0. On the other
hand, b > 0 since v2 > 0,w7 > 0, and x∗1 > 0. Therefore, taking
into account the above and Theorem 4.1 of [31], the follow-
ing theorem can be established.

Theorem 13. The infection-free equilibrium point E2
1, when

R0 = 1, presents a backward bifurcation if β∗ < βR, while it
has a forward bifurcation if β∗ > βR, where

βR ≡ b1
v2w2 w1 +w2ð Þ

v2w1w7
+ d1

v4w4 w3 +w4ð Þ
v2w1w7

: ð86Þ

It is important to note that, as a consequence of the pre-
vious result, when R0 > 1, there is a family of asymptotically
stable infected equilibrium points, which we will denote as
E2
2 = ð�BH , �BI , �EH , �EI , �CH , �CI , �VÞ, constituting the upper

branch of these types of bifurcations.

4. Viral Kinetic In Silico

In this section, the typical values of all the parameters
involved in the HPV viral dynamics model given by the sys-

tem (18) are indicated. With these values, three relevant fea-
tures of this model are determined numerically. The first one
is the type of local bifurcation that this system exhibits when
R0 = 1 at the infection-free equilibrium point E2

1. The second
is the determination, when R0 > 1, of the regions of existence
and stability of the infected equilibrium point E2

2. The third
consists of the simulation of different scenarios of interest,
such as the transient, acute, latent, and chronic infections
visualized in Figure 2.

4.1. Typical Parameters of the HPV Viral Dynamics Model.
Most of the parameter values were obtained from the liter-
ature (see Table 1). The initial conditions of the number
of cells in each stratum were calculated from the cell count
in the micrographs of Figure 2 in Walker et al. [32]. We
present simulations on a rectangular area of 2585288 μm2

of epithelial tissue, where the length is 7282:5 μm and
the height is 355 μm. We estimate KB and KE assuming
that the tissue is divided into four equal parts, all having
the same area, and each is divided by the area that a cell
occupies according to its stratum. Consequently, the initial
conditions of the viral kinetic in silico are the following:
BHð0Þ = 1000, BIð0Þ = EIð0Þ = CIð0Þ = 0, EHð0Þ = 617, CHð
0Þ = 226, and Vð0Þ = 100. For parameters r∗B and r∗E , they
were proposed with values close to the proliferation rates
of uninfected stratum basale and stratum intermedium
cells, respectively.

Table 1: Parameters of epithelial cellular dynamics of healthy tissue and dynamics of HPV infection.

Parameter Description Value Unit Ranges Ref

rB Uninfected stratum basale cell proliferation rate 0:07 day−1 0:03 ; 0:07½ � [25]

r∗B Infected stratum basale cell proliferation rate 0:048 day−1 −; −½ � Fixed

rE Uninfected stratum intermedium cell proliferation rate 0:039 day−1 0:02 ; 1½ � [25]

r∗E Infected stratum intermedium cell proliferation rate 0:04 day−1 −; −½ � Fixed

δB
Uninfected cell differentiation rate from stratum basale cell to stratum

intermedium
0:044 day−1 −; −½ � [33]

δ∗B
Infected cell differentiation rate from stratum basale cell to stratum

intermedium
0:05 day−1 −; −½ � Fixed

δE
Uninfected cell differentiation rate from stratum intermedium cell to

stratum corneum
0:099 day−1 0:02 ; 1½ � [25]

δ∗E
Infected cell differentiation rate from stratum intermedium cell to stratum

corneum
0:118 day−1 0 ; 5½ � [25]

μB Uninfected basal cell natural death rate 0 −; −½ � [34]

μ∗B Infected basal cell death rate 0 −; −½ � [34]

μC Desquamation rate of uninfected stratum corneum cells 0:27 day−1 0:2 ; 1½ � [25]

μ∗C Desquamation rate of infected stratum corneum cells 0:27 day−1 −; −½ � Fixed

KB Stratum basale cell carrying capacity 2693 cells 1443 ; 13465½ � [32]

KE Stratum intermedium cell carrying capacity 2114 cells 553 ; 5010½ � [32]

β Viral transmission rate Varies virion−1 · day−1 10−15 ; 10−5
� �

[25]

σ Production rate of free virions Varies cell−1 · virion · day−1 10 ; 103
� �

[11]

γ Viral clearance rate 1:18 day−1 0:2 ; 3½ � [25]

½−; − � denotes ranges of values not evidenced in the literature.
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4.2. Existence of a Forward Bifurcation at Infection-Free
Equilibrium Point. To determine the type of bifurcation that
occurs, when R0 = 1, at the equilibrium point E2

1, were con-
sidered β = 10−6, σ = 103 and all other required quantities
from Table 1. With these values it is found, by (85), that b
= 152,994, which is positive. Furthermore, it is found,
according to (78) and (86), respectively, that β∗ = 9:941 × 1
0−8 and βR = 4:351 × 10−8. Since for the typical values of
the parameters considered, we find that β∗ > βR; conse-
quently, according to Theorem 13, at the infection-free equi-
librium point E2

1, when R0 = 1, there is a forward bifurcation.

4.3. Regions of Existence and Stability of the Infected
Equilibrium Point. A numerical scheme was implemented
to show the regions of existence and local stability of the
infected equilibrium point E2

2 of the model (18) when R0 is
greater to unity. All of the parameters were set, except the
rate of viral transmission β and the production rate of free
virions σ. Because an infected cell produces up to 1000 viral
particles [11], we take this restriction for the choice of the
parameter space σ. For each ordered pair ðσ, βÞ, we deter-
mine numerically the basic reproductive number value and
the coordinate �V of the infected equilibrium point E2

2 using
the bisection method. We calculate the eigenvalues of the
Jacobian matrix (22) evaluated at E2

2 using the eig function
in MATLAB [35], and the signs of the real part of the eigen-

values were identified for the stability classification of the
hyperbolic equilibrium point.

The regions of existence and stability of the infected
equilibrium point are shown in Figure 5, given the
parameters σ and β. The green, blue, and red regions
represent the values of both parameters that make E2

2
not exist, or be locally asymptotically stable or unstable,
respectively.

4.4. Simulation of Different Scenarios of Interest. When some
HPV genotype is in a host, there is no infection in the cells of
the stratum basale and the viral load is removed until its
complete elimination during the following days, without
altering the homeostasis of the epithelium. Similar dynamics
are consistent with transient type infections. σ = 1000 and
β = 9:447 × 10−8 such that R0 < 1 in this scenario is shown
in Figure 6. In this case, the infection-free equilibrium point
is locally asymptotically stable.

Some infections successfully establish, replicate the viral
genome, produce viral particles, and are eventually cleared.
This kinetics is known as acute infection. Figure 7 with σ
= 1000 and β = 8:390 × 10−4 such that R0 > 1 shows that a
ðσ, βÞ belongs to the instability region of E2

1 and to the
asymptotically stable region of E2

2, as shown in Figure 5. In
this scenario, the homeostasis of the epithelial cells is altered,
and the viral load describes a unimodal curve for 1500 days,
and finally, the infection is resolved.
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Figure 5: Stability regions of infected equilibrium associated with the parameters ðσ, βÞ.
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Latent infections are another form of kinetics, where the
acute infections only appear to clear, but the viral genome
remains in the infected cell without detectable activity. This
is illustrated in Figure 8 with σ = 1000 and β = 7:247 × 10−7
and Figure 9 with σ = 1000 and β = 2:155 × 10−6 such that
R0 > 1. The ordered pair ðσ, βÞ for Figure 8 belongs to the
region of asymptotic stability of E2

2 of Figure 5 and ðσ, βÞ
for Figure 9 belongs to the region of instability of E2

2 of
Figure 5. According to Figure 8, a rapid growth of viral load
is shown but without completely infecting the epithelium
during the first 250 days after infection. After this period,
the viral load tends to decrease up to 1000 days postinfec-
tion. From this time on, the dynamics show a similar pat-
tern, which is comparable with damped dynamics until the
infection is stabilized throughout the epithelium. This
behavior shows the dynamics of a latent infection that can
turn into a chronic infection. Likewise, Figure 9 shows the

rapid growth of viral load during the first 100 days and
decreases until about 2000 days after infection. Although a
similar pattern holds over time, the solution does not show
damped dynamics as in Figure 8. In this scenario, the resolu-
tion of the infection does not occur because the model (18)
does not consider mechanisms of prevention or elimination
of the virus, the epithelium in its entirety is infected rapidly,
and there can be no proliferation of healthy basal cells.

Chronic infections are acute infections that not cleared
and maintain viral activity over time. This is shown in
Figure 10 with σ = 1000 and β = 1:447 × 10−7 such that R0
> 1. The ordered pair ðσ, βÞ belongs to the region of asymp-
totic stability of E2

2 of Figure 5. After infection of the epithe-
lium, viral load production increases monotonically during
the first 1500 days until equilibrium is reached, but the infec-
tion of the cells does not occur in all stratified epithelial
tissue.
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Figure 6: Dynamics of the model (18) when there is an infection generated by 100 virions with σ = 1000 and β = 9:447 × 10−8, such as R0 < 1.
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5. Local Sensitivity Analysis

In the context of viral infections, sensitivity analysis can pro-
vide valuable information on how HPV viral kinetics are
with respect to changes in model parameters. Local sensitiv-
ity analysis is a classic method that studies the impact of
small perturbations on the model outputs. The normalized
forward sensitivity index of a variable, u, that depends differ-
entiable on a parameter, p, is defined as

Ψu
p =

p
u
∂u
∂p

: ð87Þ

Local sensitivity analysis is carried out in order to iden-
tify which parameters have the greatest influence on changes
in the values of R0. As we have an explicit formula for R0, we

derive an analytical expression for the sensitivity of R0,

ΨR0
p = p

R0

∂R0
∂p

, ð88Þ

to each of the parameters described in R0.
Figure 11 shows that all the parameters have either pos-

itive or negative effects on the R0. According to the sensitiv-
ity indices illustrated in Figure 11, we observe that the
parameters, namely, r∗E , β, σ, and δ∗E , are the most positively
sensitive parameters, respectively. This implies that decreas-
ing the values of these parameters will decrease R0. Parame-
ters μ∗C , δB, δ

∗
B, and γ are the most negatively sensitive

parameters. This implies that increasing the values of these
parameters will decrease R0.
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6. Discussion

Several approaches have been reported in the literature for
the mathematical modeling of the process of viral infection
by HPV. For example, Verma et al. [24] proposed a model
of HIV/HPV coinfection in oral mucosal epithelial cells with
anti-HPV immune response. They consider the basal and
suprabasal layers of oral mucosal but ignore viral transmis-
sion via suprabasal differentiation, which is very relevant in
the persistence of the virus. In their simulations, the authors
reproduce acute and chronic infections. Murall et al. [25]
developed a viral dynamics model of the cervical stratified
epithelium of cornified, granular, spinous, and basal layers.
In their simulations, they reproduce a scenario where the
infection is inoculated with a few cells and the microabra-
sion repairs quickly, and another scenario of slow growing
HR HPV infection that spontaneously regresses. However,
this model ignores the epithelial cellular dynamics of healthy
tissue, and it models the viral transmission via suprabasal
differentiation with a linear term. Motivated by this review,

we proposed a mathematical model that includes several
layers of the healthy and infected squamous epithelium
without the presence of the immune response. We modeled
the viral transmission via suprabasal differentiation with a
full logistic term.

We start by proposing a model of the epithelial cellular
dynamics of the cervix stratified epithelium of three (basale,
intermedium, and corneum) stratums, given by the system
(1), where the stratum intermedium is formed by granular
and spinous layers. This assumption considers that the
dynamics of basal and suprabasal differentiation are homo-
geneous between the two stratums. In addition, we have a
simpler mathematical model that is easier to deal with from
qualitative analysis. We determine biological condition rB
> δB + μB for the existence of the epithelial cell homeostasis
equilibrium E1

1 = ðB∗
H , E∗

H , C∗
HÞ, and consequently, we

include cellular dynamics of the cervical epithelium. We
have proven that trivial equilibrium E1

0 = ð0, 0, 0Þ always
exists and is unstable. Using the method of Lyapunov func-
tions and a theorem on limiting systems, we have proven
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Figure 8: Dynamics of the model (18) when there is an infection generated by 100 virions with σ = 1000 and β = 7:247 × 10−7, such as R0 > 1.
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that the epithelial cell homeostasis equilibrium is globally
asymptotically stable when the biological condition is
satisfied.

Later, we formulated an extended model, given by sys-
tem (18), in which the infection by the HPV virus was taken
into account. For this system, the basic reproductive number
R0 of the infection was calculated. This allowed us to design
the different scenarios of the theoretical viral loads. The
model also has a trivial equilibrium point E2

0 and an epithe-
lial cell homeostasis one E2

1. It was proved that E2
0 always

exists and is unstable, whereas if the biological condition
rB > δB + μB is satisfied, then E2

1 exists. If the following con-
ditions r∗B/ðδ∗B + μ∗BÞ ≤ rB/ðδB + μBÞ and r∗E/δ∗E < rE/δE are sat-
isfied, the E2

1 is locally asymptotically stable if R0 < 1 and
unstable when R0 > 1. We note that the stability conditions
have the following biological interpretation: r∗E/δ∗E < rE/δE,
the ratio of proliferation rate and differentiation rate of the
infected stratum intermedium cell is less than ratio of prolif-
eration rate and differentiation rate of the uninfected stra-

tum intermedium cells. A similar interpretation can be
made of the condition r∗B/ðδ∗B + μ∗BÞ ≤ rB/ðδB + μBÞ. Using
an elegant construction of a Lyapunov function, we obtained
conditions on parameters (rB = r∗B, rE = r∗E , δB = δ∗B, μB = μ∗B,
and δ∗E ≥ δE) to prove the global asymptotic stability of the
epithelial cell homeostasis equilibrium. We observe that
under the following conditions on the parameters rB = r∗B,
rE = r∗E , δB = δ∗B, μB = μ∗B, and δ∗E > δE, the conditions of the
Theorem 11 continue to be satisfied. Furthermore, it was
shown that when R0 = 1, E2

1 is nonhyperbolic and that in this
case, it experiences a forward bifurcation. This last result
shows the existence of a family of asymptotically stable
infected equilibrium points, denoted as E2

2, which bifurcate
from the nonhyperbolic equilibrium point and are located
in the upper branch of the forward bifurcation.

We numerically study the local stability of the infected
equilibrium E2

2 varying the virus-to-cell transmission rate
and the viral production rate, and we obtained the regions
of stability that are shown in Figure 5. We have reproduced
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Figure 9: Dynamics of the model (18) when there is an infection generated by 100 virions with σ = 1000 and β = 2:155 × 10−6, such as R0 > 1.
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the viral kinetics in silico that have been proposed by Alizon
et al. [12] as the transient, acute, latent, and chronic infec-
tions. In the transient infection (Figure 6), the viral load is
removed until its complete elimination during the following
days, without altering the homeostasis of the epithelium. In
acute infection, the viral load describes a unimodal curve
for fifteen hundred days, and the homeostasis of the epithe-
lial cells is altered; finally, the infection is resolved (Figure 7).
In latent infection, the viral load shows behavior of damped
and self-sustaining oscillations (Figures 8 and 9), and the
resolution of the infection does not occur, and the epithe-
lium in its entirety is infected rapidly. In the chronic infec-
tion, the viral load production increases monotonically
during the first thousand days until equilibrium is reached,
but the infection of the cells does not occur in all stratified
epithelial tissue (Figure 10). All of the simulations were per-
formed with the initial condition of viral inoculation of Vð
0Þ = 100. We also performed simulations with different ini-

tial values in Vð0Þ, specifically with Vð0Þ = 10 and Vð0Þ =
1000, and we obtained the same scenarios for each case.

As described by Alizon et al. [12], transient, acute, latent,
and chronic infections differ in terms of viral activity, such
as viral and cellular gene expression patterns, effects on cell
replication dynamics, or induced local immunosuppression.
Currently, protocols are being developed, such as the PAP-
CLEAR study [15], that allow adequate monitoring to char-
acterize the stages of infection in healthy young women,
particularly in the detection of viral genetic material associ-
ated with latent or chronic infections. The PAPCLEAR study
will be relevant because of its impact in understanding the
natural history of cervical HPV infections as the possible
integration of longitudinal data to mathematical models.

Sensitivity analysis provides insights on possible strategies
for the control of a viral infection. The results of the local sen-
sitivity analysis (Figure 11) should be considered together with
simulated outputs of virus dynamics models and the possible
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Figure 10: Dynamics of the model (18) when there is an infection generated by 100 virions with σ = 1000 and β = 1:447 × 10−7, such as
R0 > 1.
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interventions to be carried out. In our model of the dynamics
of HPV infection, the viral transmission rate (β) and viral pro-
duction rate (σ) could be reduced by developing antiviral ther-
apies targeting inhibition of new infections and viral
replication, respectively, which is still under investigation
[36, 37]. The viral clearance rate (γ) is traditionally increased
by the antibody immune response induced by vaccines.
Vaccine-induced antibody levels have been reported to be sta-
ble over time, which is associated with high long-term protec-
tion [38]. Differentiation rate of infected basal cell (δ∗B) could
be decreased by cytotoxic T cell immune response, but there
is no direct evidence that viral antigen-specific immune effec-
tor mechanisms are responsible for virus elimination [39].

Our model (18) suffers from a limitation because it does
not consider the four strata of the stratified epithelium, but
the model illustrates all the theoretical viral kinetic scenarios
proposed by Alizon et al. [12]. Therefore, the innate and cel-
lular immune response can be studied in the future work
where it is possible to reproduce the kinetics obtained in
the retrospective study [13] as the kinetics of latency with
regression or progression of the infection.

7. Conclusions

In summary, in this research work, the dynamics of an HPV
model were studied through the use of qualitative and numer-
ical analyses. Regarding the first, the positivity and boundary
conditions of their solutions were determined, and their main
equilibrium points were found, as well as their local and global
stabilities. In addition, it was shown that, when R0 = 1, the
model has a nonhyperbolic equilibrium point which, for typi-
cal values of the parameters involved, gives rise to a forward
bifurcation; consequently, there is a family of asymptotically
stable infected equilibrium points E2

2 that branch off from
the nonhyperbolic point. It is worth mentioning that this last
result is merely local and only valid in the neighborhood of
R0 = 1, so the qualitative analysis of the local and global stabil-

ities of these points for values of R0 much greater than one is
still an open problem.

Through numerical analysis of the model solutions, we
study some features of the intricate behavior that they
exhibit around the infected equilibrium point E2

2. Specifi-
cally, our simulated results (i.e., viral kinetic in silico) sug-
gested that the dynamics of HPV model reproduce the
transient, acute, latent, and chronic infections that have been
reported in studies of the natural history of HPV.

Finally, using local sensitivity analysis, we found some
parameters that could be controlled to remove HPV infec-
tion in epithelial tissue, as the viral transmission rate (β),
viral production rate (σ), and viral clearance rate (γ).
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