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One Sentence Summary:  
We make theoretical and practical improvements to the Boltzmann generator framework, 
enabling rapid and accurate sampling of macromolecule rotameric states and replacing 
molecular dynamics with neural network training. 
 
Abstract: 
Molecular dynamics is the primary computational method by which modern structural 
biology explores macromolecule structure and function. Boltzmann generators have been 
proposed as an alternative to molecular dynamics, by replacing the integration of 
molecular systems over time with the training of generative neural networks. This neural 
network approach to MD samples rare events at a higher rate than traditional MD, 
however critical gaps in the theory and computational feasibility of Boltzmann generators 
significantly reduce their usability. Here, we develop a mathematical foundation to 
overcome these barriers; we demonstrate that the Boltzmann generator approach is 
sufficiently rapid to replace traditional MD for complex macromolecules, such as proteins 
in specific applications, and we provide a comprehensive toolkit for the exploration of 
molecular energy landscapes with neural networks. 
 
Main Text: 
 
Introduction 
Statistical mechanics describes the behavior of large numbers of physically identical 
systems (1). Molecular dynamics (MD) is the computational application of statistical 
mechanics to molecular systems such as proteins, nucleic acids, and lipid membranes 
(2–5). The fundamental postulate of statistical mechanics is that every energetically 
accessible microstate of the physical system is equally probable; a microstate is a 
partition of the total energy of the physical system to each coordinate of its Hamiltonian 
(1). When many identical copies of the physical system are present such as in molecular 
systems at equilibrium, experimental observations reflect the overall probability 
distribution of microstates. 
 The goal of MD is to computationally sample enough microstates of a system of 
molecules to approximate the distribution of microstates in a biological system at 
equilibrium, in which there may be on the order of Avogadro’s number (𝑁! ∼ 10"# ) 
molecules. For MD, statistical equilibrium is defined as the NPT ensemble (6), in which 
the number of particles, pressure, and temperature are fixed, and the underlying 
microstate probability distribution is the Boltzmann distribution for the enthalpy. 

Traditional MD attempts to sample microstates by integrating Newton’s second law 
according to empirically determined molecular force fields (2, 3). The underlying major 
assumption is that the MD trajectory is ergodic (6), that is given enough time steps the 
trajectory will visit all microstates with a frequency given by the Boltzmann distribution. 
However, there is no guarantee that a given MD trajectory will be ergodic. Transitioning 
between states which are separated by large energy barriers presents a significant 
challenge for MD simulations (7). Numerous approaches have been proposed to address 
this shortcoming of MD, such as Monte Carlo methods (8–11), metadynamics (12), and 
umbrella sampling (13). Recently, Boltzmann generators have emerged as a promising 
candidate for rare-event sampling in MD (14, 15). 



In 2019, foundational methods were proposed by Noé et al. to use generative 
neural networks for the sampling of microstates (14). The central idea is that instead of 
predicting a single trajectory as in MD, one may instead train a neural network to predict 
Boltzmann-distributed states. This approach seeks to address the issue of rare-event 
sampling by allowing the neural network to learn multiple energy minima simultaneously. 
While Noé et al. successfully demonstrated their method for simple physical systems and 
small proteins, there were critical theoretical and practical deficiencies limiting the 
application of their methods that we address in this work. 

The theoretical deficiencies in the original Boltzmann generator approach we 
address are various biases in angle generation due to (i) the use of a Gaussian prior, and 
(ii) the regularization of a discontinuous output. The practical deficiencies we address are 
(iii) tight coupling between energy and entropy estimation, necessitating hundreds of 
thousands of evaluations of an external molecular force field, (iv) potential numerical 
instabilities due to reliance on eigendecomposition, and (v) other inefficiencies in the 
generation of rotamers. 

Here, we demonstrate that decoupling the energy and entropy training losses and 
propagating forces directly from the molecular force field reduces the needed evaluations 
of the force field by a factor of a thousand; we achieve rare-event sampling with only 102-
103 evaluations of the force field for chicken villin headpiece (PDB ID 1VII), a 35-residue 
protein domain. We demonstrate a simple method of gradient propagation for an arbitrary 
external force field, and we implement the AMBER 14 force field (2) in pure PyTorch (16), 
as is done in the TorchMD framework (17). We include the Generalized Born implicit 
solvent (18–22), which is not present in TorchMD (17). We suggest strategies to avoid 
numerical instabilities and intrinsic biases in the neural network, and we propose a code-
efficient method of rotamer sampling that can handle arbitrary molecules while remaining 
end-to-end differentiable for neural network training. We also present a highly parallel and 
memory-efficient version of the rotamer sampling algorithm. The result of these 
improvements is a numerically robust and fast architecture for Boltzmann generators. 
 
Results 
With our methods, we were able to train neural networks which produced rotameric states 
with near-native energies, requiring only hundreds to thousands of evaluations of the 
energy function, rather than the hundreds of thousands to millions in Boltzmann 
generators, and millions to billions for traditional MD. 
 
Our novel contributions are differentiable rotamer sampling, parallelized differentiable 
rotamer sampling (Fig. 1, Fig. 2), a thorough guide to adapting OpenMM force fields for 
PyTorch or TensorFlow use (particularly outlining the calculations necessary for the 
generalized Born implicit solvent, which is not a feature of the similar framework TorchMD 
(17)), and an ad hoc method of using arbitrary force fields for gradients without 
modification to existing force field code, and without code for custom gradients. We also 
propose the use of unbiased angle generation methods suitable for neural network 
training. 

 



Training a convergent model 
We observed that due to occasional large force gradients, typically due to Lennard-Jones 
internuclear repulsions, certain training steps would cause rapid divergence of model 
parameters. Even with regularization techniques including layer normalization, weight 
decay, force regularization, gradient clipping, and the use of the Adam training algorithm, 
it was still necessary to adjust the learning rate from the default 𝛾 = 10$# to 𝛾 = 10$% or 
10$&. We describe how we performed this tuning in the Methods. 
 
Initializing Boltzmann generators at the native (or input) state 
We tested the effect of pretraining the neural networks to output 𝜃 = 0, or in other words 
to produce the identity function on the structure. For these experiments (Fig. 3a-b), we 
trained the neural network for 𝑛'() epochs with the loss 

 
𝐿'() =*𝜃*"

*

+ 𝐿()+ 

( 1 ) 

 
where 𝐿()+  includes fixed terms such as the angle modulus loss in Eq ( 50 ) in the 
Methods and weight decay regularization. 
 
We observed that initial pre-training was crucial to allow neural networks to converge. 
With no pre-training epochs, we were unable to train neural networks within 5,000 epochs, 
and all structures produced appeared highly unphysical, with numerically infinite energies 
(not shown). However, any number of pre-training epochs above 100 appeared suitable 
for initialization of the neural networks (Fig. 3a). 

 
Sampling without entropy 
When we trained neural networks solely on the energy and not the entropy (Fig. 3a-b) 

 
𝐿),)(+-(𝜃) = 𝑈(𝜃) + 𝐿()+ 

( 2 ) 
 
we observed that while the intrinsic noise in the Adam optimizer allowed for sampling of 
states which were not global energy minima (Fig. 3a), the resulting neural networks did 
not reproduce the results of traditional MD at non-zero temperature (Fig. 3b). 

 
Temperature and entropy, and effect of training length on structure generation 
We observed that by estimating the multivariate circular distribution entropy and training 
to maximize the entropy and minimize the energy, we were able to reproduce traditional 
MD protein backbone root mean square fluctuations (Fig. 3c-h), as well as prevent mode 



collapse (Fig. 4a-c) and sample Boltzmann-distributed states (Fig. 4d-i). For this set of 
experiments, we used the training loss 

 
 

𝐿.(/*,(𝜃; 𝑇00) = 1
𝑈(𝜃)
𝑇00

− 𝑆(𝜃) + 𝐿()+, 𝑇00 ≥ 1

𝑈(𝜃) − 𝑇00 ⋅ 𝑆(𝜃) + 𝐿()+, 𝑇00 < 1
 

( 3 ) 

 
where 𝑇00 is the temperature of the system. We chose this form of the loss to maintain 
the relative contributions and dynamic range of the energy function 𝑈 and entropy 𝑆, while 
preventing exploding gradient contributions from dividing 𝑈 by a small 𝑇00 or multiplying 
𝑆 by a large 𝑇00. In the units of our implementation, 
 

𝑇00 = 𝑅 ⋅ 𝑇 
( 4 ) 

 
with the ideal gas constant 𝑅 = 8.314 × 10$#	kJ	mol$1	K$1  and physical temperature 
measured in Kelvins 𝑇. A human body temperature of 310	K yields a numerical value of 
𝑇00 = 2.58. However, since our estimate of the entropy is only correct asymptotically, the 
actual numerical values for the temperature may differ in practice. Interestingly, it appears 
that reproducing the results from traditional MD is a matter of fine-tuning both the length 
of neural network training and temperature (Fig. 3c, Fig. 4d-i). 

Benchmarking 
We performed basic benchmarking of the rotamer sampler, the parallelized version of the 
rotamer sampler, and the force field, on the CPU-only of an M1 Max Macbook Pro with 
64 GB RAM, and on a NVIDIA Tesla T4 GPU with 16 GB RAM (Fig. 5). These 
benchmarks were performed on the combined forward and backward passes through the 
computational graph, to imitate real-world usage. We observed an advantage of up to 10x 
on the GPU in terms of total throughput of rotamer sampling (Fig. 5a-b). We also 
compared the original non-parallel dihedral sampler (Algorithm 3) to the parallel dihedral 
sampling, running on the NVIDIA GPU (Fig. 5c-d), which showed a performance 
advantage of 4x on the protein we used for these experiments. Finally, we demonstrated 
that the energy function also demonstrated a performance benefit running on the NVIDIA 
GPU compared to CPU, with 10x greater performance (Fig. 5e-f). 
 
Discussion 
By decoupling energy minimization from entropy maximization, we were able to perform 
Boltzmann sampling with three orders of magnitude fewer calls to the energy function 
than in the original Boltzmann generators. We were able to reproduce traditional MD 
results in the form of RMSF from the initial state. Additionally, we provide benchmarks for 
our algorithms which demonstrate automatic parallelization through PyTorch allowing for 
significant computational throughput on an NVIDIA GPU. 



 Unlike in the original Boltzmann generator work, we were able to directly sample 
internal degrees of freedom (i.e. the dihedral angles), explicitly freezing out all other 
modes in the molecule. A side effect of our approach was that we did not need to manually 
remove modes such as overall molecular rotation/translation through eigendecomposition 
(14). Despite removing a large fraction of the degrees of freedom from the molecule, we 
were still able to reproduce the RMSF profile of the protein computed by traditional MD 
(Fig. 3c). The methods we present may be useful in examining, for example, protein 
allostery with far less computation than required by traditional MD. 
 In terms of performance, it is not surprising that the GPU outperformed the CPU 
significantly, given a large enough batch size (Fig. 5). We also observed the expected 
plateau in performance increase due to the saturation of the CUDA driver with 
simultaneously executing kernels. We discuss the theoretical advantage of the 
parallelized rotamer sampler in the Methods. Our energy function was not completely 
optimized, since many of the pairwise computations were computed for both the upper 
and lower triangles of the distance matrix, resulting in a two-fold redundancy in certain 
calculations which are symmetric in the particle order. We encountered difficulty with the 
limited memory on the GPU (the NVIDIA Tesla T4 only has 16 GB of video RAM), 
particularly with the energy function, whereas the CPU had access to 64 GB of RAM at 
the cost of compute speed. We did not perform benchmarks on the M1 Max GPU because 
the PyTorch backend for Apple’ Metal Performance Shaders is not complete. 
 In the original Boltzmann generators proposed by Noé et al., angles were 
generated as a real number, and invertibility of the networks was ensured through a 
penalty on angles outside the range [−𝜋, 𝜋) through a squared loss for angles generated 
outside that range (14). This method of angle generation makes it difficult for the network 
to explore angles near the extremes −𝜋  and 𝜋 , and forces the neural network (a 
continuous model) to approximate a discontinuous transformation from the angle 𝜃 to the 
circle 𝑆1. In this work, we used the differentiable atan2 function to generate angles, which 
does not suffer from these difficulties (Methods). Additionally, the form of the loss biases 
generation of angles to 𝜃 = 0, as we illustrate in a simplified Markov chain model of 
training (Methods). 

One major theoretical limitation of traditional MD which carries over to Boltzmann 
generators is difficulty in sampling disconnected local energy minima (i.e. metastable 
states). Fundamentally, the neural networks used in Boltzmann generators are 
differentiable models which generate 𝑛  molecular internal coordinates from 𝑚  latent 
variables, and are therefore continuous functions from ℝ2 to ℝ,	(23). Furthermore, the 
Boltzmann generators originally proposed by Noé et al. (14) and in this work generate 
internal coordinates from the sampling of a single multidimensional Gaussian distribution  

 
𝑧 ∈ ℝ2	~	𝑁(𝜇 = 0, Σ = 𝐼) 

( 5 ) 

centered at 𝜇 = 0 with unit standard deviation in each coordinate. In Noé et al., 𝑚 and 𝑛 
were both set to three times the number of atoms in the protein (i.e. the 3D coordinates). 
This distribution is spherically symmetric; however in high dimensions, the volume of the 
unit 𝑚-ball tends to 0 even for modest values of 𝑚, implying that the density of the 
multidimensional Gaussian distribution is highly concentrated near the origin. Meanwhile, 



the probability density of the molecule’s Boltzmann distribution is highly concentrated in 
disjoint regions of ℝ, , since the energy minima of a molecule are separated by high 
energy barriers (low Boltzmann probability). Since 𝑧 tends to the origin in the latent space, 
we are asking the neural network to approximate a one-to-many relation, which is not a 
function, let alone a continuous one. Instead, it may be beneficial to sample 𝑧 from a sum 
of Gaussians 
 

𝑧	~	*𝑁(𝜇 = 𝑥* , Σ = 𝐼)
*

 

( 6 ) 

and to require that the result of sampling from distinct regions 𝑥* ≠ 𝑥3 results in internal 
coordinates 𝑝* and 𝑝3 which are also disjoint, such as through a repulsive loss on those 
pairs of 𝑝* , 𝑝3. This method would be analogous to metadynamics sampling (12), in which 
previously generated molecular states are avoided, formulated in the distributional sense. 
This method is also analogous to k-means clustering, in which each centroid is 
responsible for representing a single cluster in the data. Alternatively, one could use an 
ensemble of neural networks, with each neural network responsible for generating 
Boltzmann-distributed states for a single energy minimum and its neighborhood of 
conformations. 
 Another theoretical issue with practical considerations is the size of the neural 
network necessary to represent the molecule. In the original Boltzmann generator 
proposed by Noé et al., all 3𝑁 atomic coordinates are predicted, with principal component 
analysis to remove the 6 components corresponding to rotations and translations of the 
entire structure as well as to learn correlations among the degrees of freedom (14). Noé 
et al. also required that the entire neural network be invertible so that exact gradients for 
their KL divergence between Gaussian priors and Gaussian posteriors may be 
backpropagated. Thus, the input dimension of their neural networks has the same 3𝑁 
dimensions. Even for small proteins like the chicken villin headpiece we studied, 𝑁 = 596. 
The neural networks quickly grow in number of trainable parameters. If we restrict the 
number of hidden units in any layer to a value less than 3𝑁 , then the Jacobian 
determinant of the neural network transformation will immediately become 0. Therefore, 
the number of parameters in an invertible network is at least 9𝑁" (3,196,944 for chicken 
villin headpiece, not including bias parameters). In practice, we require multiple hidden 
layers with just as many parameters to gain sufficient approximation power for the neural 
network. Though in principle, the number of trainable may be reduced by choosing fixed 
values for some of the parameters, such a choice requires further assumptions on the 
symmetries of the protein. 

In this work, we did not assume a Gaussian posterior distribution for the degrees 
of freedom, and we postulated that many of the degrees of freedom are unimportant to 
protein dynamics near the energy minima. Though we no longer have a closed form 
expression for the entropy, we gain an enormous computational advantage in the neural 
network. Since we used a Gaussian input of dimension 32  (Methods), our networks 
reproduce a maximum of 32 normal modes in the output. For backbone dihedral sampling, 
we required only a prediction of the 𝜙,𝜓,𝜔 angles for each of the 36 residues, leading to 



a final dimension of 105. Our networks for chicken villin headpiece had 196,692 trainable 
parameters. It appeared that 32 normal modes were enough to describe the near native 
structures to high accuracy (Fig. 3c), and we simultaneously accommodated for non-
Gaussian posterior distributions for the dihedral angles. In comparison to the original 
approach proposed by Noé et al., the methods we propose can handle larger proteins in 
less memory and with fewer trainable parameters. The major caveat is that each protein 
may require tuning of neural network hyperparameters, especially the minimum 
dimension of normal modes to predict. 

In the case of classical molecular force fields, the high energy barriers tend to be 
a result of physical singularities in Lennard-Jones and Coulomb potentials at low distance 
due to internuclear forces, with Lennard-Jones repulsion (∝ 1/𝑟1")  dominating any 
electrostatic force (∝ 1/𝑟") at low distance. One might hope that the high internuclear 
forces are UV divergences in the classical theory which disappear upon quantization. 
However, even in the full quantum field theory of the strong nuclear force, while the 
repulsion we observe is finite, it is still far larger than any of the forces due to 
electromagnetism, and we must avoid generating states in which the nuclei are too close. 
In traditional MD and in Monte Carlo methods, umbrella sampling is used to regularize 
the singularities; we implemented umbrella sampling in this work by directly regularizing 
the Lennard-Jones forces for nuclear repulsion to a finite, constant repulsive force. In Noé 
et al., a logarithmic regularization is performed on the total energy. There is additional 
regularization of the force field when training the neural network, accomplished through 
gradient clipping (24), dropout (25), and weight penalties (16). Such methods of 
regularization are forced upon the user in the process of training stable neural networks. 
In this sense, Boltzmann generators as originally presented are umbrella-sampled. 

Despite their shortcomings, Boltzmann generators maintain at least one significant 
advantage over traditional MD with umbrella sampling. Boltzmann generators implicitly 
retain some memory of the entire training trajectory, and therefore they may reuse 
knowledge of the structure between different energy states. For example, an ideal 
Boltzmann generator learns the correlations among the internal coordinates, correlations 
which may hold between distinct energy minima. As a result, we may directly estimate 
the entropy of the internal coordinates, i.e., the elusive conformational entropy. 
 Training of quantum circuits has recently emerged as a promising technique in 
molecular biophysics (26–30). Example applications of quantum computers include 
generation of small molecule structures (27, 30), molecular docking (26, 28), and 
optimization of molecular energies (29). Current state-of-the-art quantum computers 
suffer from noise and low memory capacity. By representing the energy landscape of a 
molecule in terms of its rotameric degrees of freedom, the differentiable rotamer sampling 
algorithm significantly reduces the number of parameters necessary to represent the 
molecule, from the naïve 3𝑁  coordinates to a much smaller set. Since quantum 
computers can hold a superposition of states in memory, it may be advantageous to 
create and train a quantum Boltzmann generator for small molecules such as alanine 
dipeptide. However, numerous theoretical and practical challenges remain in quantum 
circuit training, such as the barren plateau problem and the noisiness of current quantum 
computers (31). 
 Significant challenges remain in the practical use of Boltzmann generators. Even 
though we were able to reproduce RMSFs with high correlation (>0.7, Fig. 3c), the 



resulting structures still resemble the native state. We found that the energy landscape of 
the protein was a highly sensitive function of both the temperature and learning rate; fine-
tuning of both appears to be required to produce useful results. However, the methods 
we present in this work make the fine-tuning process more easily accessible to 
researchers. Future work may also examine the effect of neural network architecture and 
other hyperparameters on angle generation since we did not study that effect here. Finally, 
it may be possible to further accelerate certain computations with a field-programmable 
gate array, which can be configured on a per-protein basis to perform rotamer sampling 
and energy computation. 

In conclusion, we present a comprehensive toolkit of differentiable methods for 
molecular science. Our contributions include: ad hoc propagation of forces from an 
arbitrary force field for cases in which rewriting the force field is infeasible, differentiable 
and parallel rotamer sampling/protein fragment assembly, a guide to writing molecular 
force fields in a differentiable programming framework, decoupling of energy and entropic 
estimation, and mathematical results on 3D point cloud alignment and 3D rotation 
representation which can be applied to problems in molecular geometry. We additionally 
address potential sources of bias in molecular structure generation and outline the 
approach to remaining sources of bias which we did not implement. We demonstrate that 
our methods are efficiently implementable on CPU and GPU, and mathematically sound. 
We hope that other researchers will find these methods and the accompanying reference 
code useful in investigating molecular energy landscapes. 
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Figures 
 

 
Fig. 1: Differentiable rotamer sampling for Boltzmann generators. Given an arbitrary 
macromolecule, we identify all the rotameric degrees of freedom; in the case of a protein 
these degrees of freedom are the dihedral angles of backbones and side chains). We use 
a neural network to generate changes to the dihedral angles, and perform the rotations 
on the protein structure. Finally, we evaluate the energy and forces of the resulting 
structure with respect to a molecular force field, and backpropagate the gradients through 
the sampling process to the neural network. In this way, we can train the neural network 
to produce states with low energy, allowing for the study of potential stable conformations 
of the macromolecule. 

  



 



Fig. 2: Differentiable rotamer sampling workflow. (a) The protein (chicken villin 
headpiece, PDB ID 1VII) is split into fragments, whose rotamers can be sampled in 
parallel. (b) For each rotameric degree of freedom, we split the macromolecule into two 
connected components at the associated bond, using a depth-first search on the graph 
of bonds. We then rotate (red) the smaller connected component (blue) about the bond 
axis by the neural network output 𝜃, using Rodrigues’ formula. (c) To combine fragments 
after dihedrals have been sampled for each fragment, we use an alignment algorithm 
(Kabsch or quaternionic) on specific atoms in the backbone. Through this method, we 
can therefore explore the energy landscape of the macromolecule solely as a function of 
its internal, rotameric degrees of freedom. Because each step of this method is 
differentiable, we can backpropagate gradients through the rotamer sampling process to 
provide derivatives for 𝜃. (d) Intuition for exponential acceleration of power iteration. We 
used repeated matrix squaring to achieve high matrix powers, leading to exponential 
acceleration of the traditional power iteration algorithm for finding the largest magnitude 
eigenvalue and associated eigenvector. With higher powers of 𝑀 multiplying an arbitrary 
vector 𝑣, the 𝑒" component is gradually suppressed. 

  



 

Fig. 3: Evaluating the consequences of neural network pre-training and entropy 
(chicken villin headpiece, PDB ID 1VII). We only sampled the protein backbone 
dihedrals. (a)-(b) Examining the effect of pre-training to produce the native structure, as 
well as the role of entropy in neural network training. (a) The minimum energy structure 
produced from ~600 structures across 3 trained networks; not trained on the entropy. (b)-
(c) Correlation coefficients between traditional MD alpha-carbon root mean square 
fluctuations (RMSF) and neural network RMSF. (b) neural networks trained without 
entropic estimation; (c) neural networks trained on the full loss described in Results. 
Entropy training is necessary to reproduce traditional RMSFs. (d) Distribution of all 
correlation coefficients from (b), with median of 0.23 (dashed line). (e) Distribution of all 
correlation coefficients from (c), with median of 0.63 (dashed line). We performed a Fisher 
r-to-z transform on the data for (d) and (e) and performed a t-test for unequal variances, 
(𝑡 = −39.78, 𝑝	 < 	0.001). Training with entropy (e) better reproduces relative RMSFs 
than without (d). (f)-(h) Traditional MD RMSF versus the neural network RMSF for the 
four networks with the highest correlation. (f) RT=0.62, 1200 epochs, r=0.73; (g) RT=0.62, 
1000 epochs, r=0.75; (h) RT=9.06, 200 epochs, r=0.75.   



 

Fig. 4: Training characteristics across a range of temperatures. In these plots, we 
examine the effect of training on the energies of output structures; for rotamer sampling, 
we only sampled the protein backbone dihedrals.  (a)-(c), for each value of the 
temperature, we trained three neural networks, first on a loss to reproduce the native 
structure for 1,000 epochs, and then by the Boltzmann loss of the full energy and entropy 
for up to 2,400 epochs. Colorbars indicate the numerical value for each square. (a) Each 
square represents the median energy of ~600 generated structures across all three 
networks. (b) Minimum energy of the structures. (c) The median RMSD from the native 
structure. (d) and (e) Initial energy distribution at 𝑅𝑇 = 0.62	kJ/mol  and 10	kJ/mol 
respectively. (g) and (h) Final energy distribution at the same temperatures. (f) Energy 
distributions as a function of training epochs for one of the networks we trained at 𝑅𝑇 =
0.62	kJ/mol. (i) Energy distributions as a function of training epochs for one of the 
networks we trained at 𝑅𝑇 = 10	kJ/mol. Higher temperatures homogenize the sampled 
structures in terms of energy, in (a)-(b). In (d)-(i), we observe that training the neural 
networks equilibrated within a few hundred epochs of training. 



 

Fig. 5: Benchmarking of rotamer sampler and the energy function written in 
PyTorch. (a) and (b) Comparing performance of the parallel dihedral sampler on chicken 



villin headpiece (PDB ID 1VII), split into four fragments. We compared CPU-only 
computation on an M1 Max MacBook Pro (blue) to a NVIDIA Tesla T4 GPU with 16 GB 
RAM (orange). We observed a plateau above a batch size of 4096 in performance 
increase, indicating saturation of the GPU with CUDA kernels. (c) and (d) Comparing the 
performance of the non-parallel (blue) and parallel (orange) versions of the dihedral 
sampler. (e) and (f) Comparing the M1 Max (blue) versus the NVIDIA GPU (orange) on 
the energy function. For a batch size of 256 and higher, the 16 GB GPU ran out of memory. 

  



Materials and methods 
Ad hoc propagation of forces 
Since MD force fields are optimized and parallelized to calculate forces in addition to 
energies, we propose using the forces directly as gradients for neural network training. 
Assume that a neural network 𝑁 produces atomic positions 𝒙 from Gaussian random 
variables 𝒛 and neural network parameters 𝒑: 
 

𝒙 = 𝑁(𝒛; 𝒑) 
( 7 ) 

We sought to optimize 𝒑 with respect to the energy function 
 

𝑈45(𝒙) = 𝑈(𝑁(𝒛; 𝒑)) 
( 8 ) 

In other words, we sought to calculate the gradients 
 

𝜕𝑈
𝜕𝑝*

=*
𝜕𝑈
𝜕𝑥3

⋅
𝜕𝑥3
𝜕𝑝*3

=*
𝜕𝑈
𝜕𝑥3

⋅
𝜕i𝑁(𝒛; 𝒑)j

3

𝜕𝑝*3

 

( 9 ) 

However, by definition, the forces are the gradients of the energy with respect to the 
position 
 

𝐹3 = −
𝜕𝑈45
𝜕𝑥3

 

( 10 ) 

Therefore, we do not need to backpropagate gradients through the external molecular 
force field to provide gradients with respect to 𝒑. Instead of differentiating 𝑈45 to train the 
network, we propose to use the loss 
 

𝑈,)6 = −*𝐹3 ⋅ 𝑥3
3

= −*𝐹3 ⋅ i𝑁(𝒛; 𝒑)j3
3

 

( 11 ) 

Notice that 𝐹3 is no longer a function of 𝒙 (and therefore not of 𝒛 or 𝒑 either), since we are 
using it as a constant input from the molecular force field. Taking a derivative, 
 

𝜕𝑈,)6
𝜕𝑥*

= −*𝐹3 ⋅
𝜕𝑥3
𝜕𝑥*3

= −𝐹* =
𝜕𝑈45
𝜕𝑥*

 

( 12 ) 

Since the gradients for 𝑈,)6 are the same as for 𝑈45, there is no theoretical difference 
between training on 𝑈,)6 instead of on 𝑈45. There is no need for a statistical estimate 



(i.e. KL divergence) of the gradients with respect to the force field energy, as was done 
in the original work by Noé et al (14). 
 
This method is shown in Algorithm 1: FFDiff. 
 
Physical interpretation of 𝑈,)6 
We can show that 𝑈,)6 has a physical meaning beyond being a convenient loss function.  
 
First, we note that 𝑈,)6 is manifestly rotation-invariant. It is the sum of the inner products 
of vectors in Euclidean space; rotation of the coordinate system rotates both the position 
and force contravariantly, leaving the inner product unchanged. 
 
Second, 𝑈,)6 is translation invariant. Say that we translate a system of particles by a 
vector 𝒑. Then in the new primed coordinates, 𝑈,)67  is 
 

𝑈,)67 = −*𝐹37 ⋅ 𝑥37

3

= −*𝐹3 ⋅ (𝑥3 − 𝒑)
3

 

( 13 ) 

assuming the intramolecular forces are unchanged (𝐹7 = 𝐹) with translation (𝑥7 = 𝑥 − 𝒑). 
 
Splitting up the net forces 𝐹3 into all pairwise forces 𝐹3* (the force exerted on particle 𝑗 by 
particle 𝑖), and then splitting up the sum, we may write 
 

𝑈,)67 = −*𝐹3* ⋅ i𝑥3 − 𝒑j
*83

−*𝐹3* ⋅ i𝑥3 − 𝒑j
38*

−*𝐹3*
*93

⋅ i𝑥3 − 𝒑j 

( 14 ) 

By Newton’s third law (assuming the molecular force field is conservative), every force 
must be paired with an equal and opposite force, so 𝐹3* = −𝐹*3, and therefore the third 
sum is 0 (𝑖 = 𝑗). The remaining sums are over the upper and lower triangles of 𝐹3*. 
 

𝑈,)67 = −*𝐹3* ⋅ i𝑥3 − 𝒑j
*83

−*𝐹3* ⋅ i𝑥3 − 𝒑j
38*

 

( 15 ) 

By linearity, 
 



𝑈,)67 = −*n𝐹3* ⋅ 𝑥3 − 𝐹3*	 ⋅ 𝒑o
*83

−*n𝐹3* ⋅ 𝑥3 − 𝐹3*	 ⋅ 𝒑o
38*

= −*𝐹3* ⋅ 𝑥3
*83

−*𝐹3* ⋅ 𝑥3
38*

− 𝒑 ⋅*𝐹3*
*83

− 𝒑 ⋅*𝐹3*
38*

= −*𝐹3* ⋅ 𝑥3
*83

−*𝐹3* ⋅ 𝑥3
38*

− 𝒑 ⋅ p*i𝐹3* + 𝐹*3j
*83

q 

( 16 ) 

Finally, we apply Newton’s third law again so that the third term cancels, and therefore 
𝑈,)67  has no dependence on 𝒑 and therefore it is translation-invariant. 
 
To interpret the physical meaning of 𝑈,)6, it suffices to examine a simple system. Say 
there is a pair of particles connected by a spring, with particle 1 at the origin (𝑥1 = [0, 0, 0]) 
and particle 2 at 𝑥" = [1, 0, 0]	. Assume that the spring is compressed, so that the force 
pushes the particles away from each other: 𝐹1 = [−𝑘, 0, 0] and 𝐹" = [𝑘, 0, 0]. In this case, 
we can directly calculate 
 

𝑈,)6 = −𝐹1 ⋅ 𝑥1 − 𝐹" ⋅ 𝑥" = −[−𝑘, 0, 0] ⋅ [0, 0, 0] − [𝑘, 0, 0] ⋅ [1, 0, 0] = −𝑘 
( 17 ) 

Hence, if the spring is instead stretched beyond its equilibrium length, then 𝑈,)6  is 
positive. Since 𝑈,)6 is invariant under rotation and translation of the system, our choice 
of coordinate system was irrelevant. Generalizing to many pairs of particles and many 
springs, the interpretation for 𝑈,)6 is that it measures the total compressive energy of the 
system, with negative values indicating the system is compressed with respect to 
equilibrium and positive values indicating the system is stretched with respect to 
equilibrium. 
 
Differentiable force fields 
Using OpenMM 7.7 (32) as our reference, we rewrote force field terms from OpenMM in 
terms of pure PyTorch operations, allowing for automatic differentiation of the molecular 
energy without the memory overhead of repeatedly transferring positional data between 
PyTorch (16) and OpenMM. Our implementation creates a custom PyTorch function for 
a provided molecule which stores the computational graph necessary to reproduce its 
energy. After it is prepared, the PyTorch energy function requires the user only to supply 
the coordinates (in nanometers) of each atom, in the same order as presented in the input 
molecular file. From the user-supplied atomic positions 𝑥* , we calculate all pairwise 
displacements 
 

𝑠*3 = 𝑥* − 𝑥3 
( 18 ) 

and Euclidean distances 
 



𝑑*3 = v𝑠*3v = v𝑥* − 𝑥3v = w*x(𝑥*); − i𝑥3j;y
"

;

 

( 19 ) 

For the all-atom AMBER 14 force field (2), we implemented: (1) harmonic bond lengths, 
(2) harmonic bond angles, (3) pairwise atomic Coulomb interactions, (4) pairwise atomic 
Lennard-Jones potentials, (5) periodic backbone dihedral (torsional) angle energies, and 
(6) generalized Born implicit solvent energies. 
 
First, we imported the molecular topology into OpenMM, which assigns parameter values 
for each atom or tuple of atoms. Second, we referenced the OpenMM documentation to 
implement each of the forces. 
 
Harmonic bond lengths: the AMBER force field provides particle indices representing a 
covalent bond 𝑏 = (𝑖, 𝑗), the bond length 𝑙<, and the bond strength 𝑘<. For each bond, we 
calculate an energy term with these parameters and the pairwise atomic distances: 
 

𝐸=/(2>,*?	<>,@A =*
1
2𝑘<i𝑑*3 − 𝑙<j

"

<

	 

( 20 ) 

In OpenMM, the parameters are contained in a HarmonicAngleForce object. 
 
Harmonic bond angles: for every triple of atoms which are covalently connected in a linear 
chain, the AMBER force field provides particles indices 𝑡 = (𝑖, 𝑗, 𝑘) ∈ 𝑇 in which 𝑗 is the 
middle atom, a bond angle 𝜙., and a bond angle strength 𝑘.. We calculate the angle 𝜃*3; 
formed between 𝑠3* and 𝑠3; (the order of the indices is important) through the dot product 
identity 
 

cos 𝜃*3; =
𝑠3* ⋅ 𝑠3;
v𝑠3*vv𝑠3;v

=
𝑠3* ⋅ 𝑠3;
𝑑3*𝑑3;

 

( 21 ) 

The corresponding energy term is then: 
 

𝐸=/(2>,*?	/,+B)A =*
1
2𝑘.i𝜃*3; − 𝜙.j

"

.

 

( 22 ) 

In OpenMM, the parameters are contained in a HarmonicBondForce object. 
 
Pairwise atomic Coulomb and Lennard-Jones interactions: for every pair of atoms, there 
is an electrostatic force as a function of the interatom distance 𝑑*3 due to estimated partial 
charges 𝑞* from AMBER. 
 



𝐸)B)?.(>A./.*? =*
𝑞*𝑞3

4𝜋𝜖C𝑑*3*D3

 

( 23 ) 

For every pair of atoms, there is a Lennard-Jones potential which approximates long-
range dipole-dipole attractions and short-range nuclear repulsions. AMBER provides an 
energy scale 𝜖*3 and interaction distance 𝜎*3 for each pair of particles. 
 

𝐸EF =*
𝜖*3
4 ��

𝜎*3
𝑑*3
�
1"

− �
𝜎*3
𝑑*3
�
&

�
*D3

 

( 24 ) 

Certain Lennard-Jones and Coulomb interactions are often ignored or modified for atoms 
which are within a certain number of bonds of each other. These modifications can be 
thought of as setting elements of the matrices 𝜖*3, 𝜎*3, and 𝑑*3 to specific values and are 
included in the OpenMM implementation of AMBER. 
 
During regularization of the force field, we adjusted the Lennard-Jones potential so that 
for all particles below a certain distance, the force was a constant repulsive one. Given a 
maximum force magnitude for internuclear repulsion 𝐹2 , and for each Lennard-Jones 
interaction, we first computed the magnitude of the force for that interaction 
 

𝐹EF,*3(𝑑*3) =
𝜖*3
4𝑑*3

�6 �
𝜎*3
𝑑*3
�
&

− 12�
𝜎*3
𝑑*3
�
1"

� 

( 25 ) 

For numerical stability, we computed �H!"
@!"
�
&
/𝑑*3 	 and �H!"

@!"
�
1"
/𝑑*3  in the given order of 

operations rather than taking the ratio of the powers 
H!"
#

@!"
$  and 

H!"
%&

@!"
%'. At 𝑟2*,,*3 = √2# 𝜎, the 

Lennard-Jones interaction achieves its minimum value, and thus 𝐹EF,*3i𝑟2*,,*3j = 0. This 
is the only minimum of the Lennard-Jones potential, and it can be seen that 𝐹EF,*3 is a 
monotonically increasing function of the distance, with an asymptote at 𝑑*3 = 0 which 
tends to negative infinity. Therefore to find the value 𝑟2/I	+(/@,*3 at which the magnitude 
of the repulsive force is equal to 𝐹2, we used the bisection method for root finding (33). 
We did not use the Newton-Raphson method or other methods which require the second 
derivative of the Lennard-Jones potential due to numerical stability. 
 
For a given value of 0 ≤ 𝐹2 < ∞, we know that the solution of the equation 
 

v𝐹EF,*3i𝑑*3jv − 𝐹2 = 0 
 
lies in the interval (0, 𝑟2*,,*3]. Therefore by starting with the initial guess 𝑑*3C = 𝑟2*,,*3/2, we 
may bisect the interval repeatedly to determine the approximate value of the zero , 



depending on if v𝐹EF,*3i𝑑*3jv > 𝐹2  or v𝐹EF,*3i𝑑*3jv < 𝐹2.  We performed this bisection 
𝑛<*A)?. = 100 times, which should ensure a negligibly small error for  𝑟2/I	+(/@,*3. Since 𝜎*3 
was measured on the nanometer scale and numerical values for 𝜎*3, the bisection method 
should be accurate to roughly 1 part in 2,(!)*+,, or 10$#C nanometers. 
 
We defined the regularized energy as 
 

𝐸EF,()+ =*�
𝜖*3
4
��
𝜎*3
𝑑*3
�
1"

− �
𝜎*3
𝑑*3
�
&

� , if	𝑑*3 > 𝑟2/I	+(/@,*3

𝐸C,*3 − 𝐹2𝑑*3 , otherwise*D3

 

( 26 ) 

 
Where 𝐸C,*3  was chosen so that the 𝐸EF,()+  is continuous at 𝑑*3 = 𝑟2/I	+(/@,*3 . By 
inspection, the derivative of the regularized potential at close internuclear distances is 
−𝐹2, as desired. 
 
In OpenMM, parameters for Coulomb and Lennard-Jones interactions, as well as any 
modifications, are contained in a NonbondedForce object. 
 
Periodic backbone dihedral (torsional) angle energies: for every linear chain of four atoms 
𝑐 = (𝑖, 𝑗, 𝑘, 𝑙), AMBER provides a periodic force for the dihedral angle, which is defined as 
the angle that 𝑠3* makes with respect to 𝑠;B when viewed in the plane whose normal is 𝑠3;, 
defined by a periodicity 𝑛?, energy scale 𝜖?, and phase shift 𝜙?. 
 
The dihedral angle 𝜃? is calculated by first normalizing 𝑠3;: 
 

�̂�3; =
𝑠3;
𝑑3;

 

( 27 ) 

and projecting 𝑠3* and 𝑠;B onto the plane of interest: 
 

�̃�3* = i1 − 𝑠3* ⋅ �̂�3;j𝑠3* 
�̃�;B = i1 − 𝑠;B ⋅ �̂�3;j𝑠;B 

( 28 ) 

Then the dot product identity states that 
 

�̃�3* ⋅ �̃�;B = |�̃�3*||�̃�;B| cos 𝜃? 
( 29 ) 

To avoid numerical instabilities and to recover the dihedral angle from the full range 
[−𝜋, 𝜋) (34), we compute 
 



i�̂�3; × �̃�3*j ⋅ �̃�;B = |�̃�3*||�̃�;B| sin 𝜃? 
( 30 ) 

which is a special case of the polar sine, and finally 
 

𝜃? = atan2
�̃�3* ⋅ �̃�;B

i�̂�3; × �̃�3*j ⋅ �̃�;B
 

( 31 ) 

The torsional energy is then: 
𝐸.>(A*>, =*𝜖?[1 + cos(𝑛?𝜃? − 𝜙?)]

?

 

( 32 ) 

In OpenMM, the parameters are contained in a PeriodicTorsionForce object. 
 
Generalized Born implicit solvent: we used the generalized Born implicit solvent with 
improved parameters (22, 35), labeled GBn2 in OpenMM or igb=8 in AMBER. The 
functional form for this energy is complicated, so we only present the calculations 
necessary to reproduce the energy. Global parameters for the implicit solvent are 
cutoff,)?; = 0.68 , scale,)?; = 0.826836 , offset = 0.0195141 , 𝜖A>BJ.) = 1 , 𝜖A>BK),. = 78.5 , 
and integral corrections 𝜂 = 28.3919551  and 𝜃 = 0.14 ; per particle and per pair 
parameters are Born radii radius* , Born/van der Waals cutoff adjustments or*  and sr* , 
partial charges 𝑞*, effective radii scaling parameters (𝛼* , 𝛽* , 𝛾*), and pairwise neck integral 
parameters 𝑑C,*3 and 𝑚C,*3. Given pairwise particle distances 𝑑*3 , we calculate 
 

𝐷*3 = 𝑑*3 − 𝑠𝑟3 
( 33 ) 

𝐿*3 = max(or* , 𝐷*3) 
( 34 ) 

𝑈*3 = 𝑑*3 + 𝑠𝑟3 
( 35 ) 

𝐼K@6,*3 = 1
1
2 �

1
𝐿*3

−
1
𝑈*3

+
1
4�𝑑*3 −

sr3"

𝑑*3
��

1
𝑈*3"

−
1
𝐿*3"
� +

1
2𝑑*3

log
𝐿*3
𝑈*3
  , 𝑑*3 > sr* − or*

0, otherwise
 

( 36 ) 

𝐼,)?;,*3

= 1

𝑚C,*3

1 + 100i𝑑*3 − 𝑑C,*3j
"
+ 300,000i𝑑*3 − 𝑑C,*3j

& , 𝑑*3 < radius* + radius3 + cutoff,)?;

0, otherwise
 

( 37 ) 



𝐼*3 = 𝐼K@6,*3 + scale,)?;𝐼,)?;,*3 
( 38 ) 

For each particle, note that 𝐼** = 0. We then compute 
 

𝐼* =*𝐼*3
3

 

( 39 ) 

𝜓* = 𝐼*or* 
( 40 ) 

𝐵* = �
1
or*

−
tanh(𝛼*𝜓* − 𝛽*𝜓*" + 𝛾*𝜓*#)

radius*
 
$1

 

( 41 ) 

oroffset,* = 𝑜𝑟* + offset 
( 42 ) 

𝑓QR,*3 = w𝑑*3" + 𝐵*𝐵3 exp �−
𝑑*3"

4𝐵*𝐵3
� 

( 43 ) 

The implicit solvent energy is then 
 

𝐸QR = −
1
2*

𝑞*"

4𝜋𝜖C𝐵*
¥

1
𝜖A>BJ.)

−
1

𝜖A>BK),.
¦

*

+*𝜂ioroffset,* + 𝜃j
" x
oroffset,*
𝐵 y

&

*

−*
𝑞1𝑞"

4𝜋𝜖C𝑓QR,*3
¥

1
𝜖A>BJ.)

−
1

𝜖A>BK),.
¦

*D3

 

( 44 ) 

In OpenMM, the parameters are contained in a CustomGBForce object. The implicit 
solvent modifies the Coulomb energies computed earlier. 
 
We computed all non-indexed sums on pairs of particles using the full matrix format, which 
duplicated some of the necessary computations. We verified that energies and gradients 
from our PyTorch implementation matched that of OpenMM to within 5% (see Code). 
 
Avoiding singularities in the energy function during backpropagation 
Numerical singularities in gradients arose due to true singularities in the energy function 
and artificial singularities due to the computational graph. 
 
True singularities in the gradient arose during both the forward and backward passes due 
to square roots, logarithms, and negative powers. In all cases in our energy function, we 



are guaranteed that the argument of the function is nonnegative. Therefore, we avoided 
true singularities by adding a small positive offset 𝜖 to all affected computations. 
 
For computations which were performed but later discarded, such as those involving the 
diagonal of the distance matrix, we manually set specific terms to fixed constant values 
using PyTorch’s masked fill function so that during backpropagation, the gradient for 
those terms would be fixed to 0 instead of NaN. 
 
Preparation of macromolecule graph metadata for rotameric sampling 
Given an arbitrary macromolecule whose atoms are covalently bonded into a single 
connected structure, we sought to modify only the dihedral angles. 
 
First, we created an undirected graph (36) 𝐺 = (𝑉, 𝐸) of the macromolecule, with atoms 
as the nodes 𝑉 and covalent bonds as the edges 𝐸 ⊆ 𝑉 × 𝑉.  
 
Second, many macromolecules contain cycles which reduce the number of degrees of 
freedom by one, so we performed a depth-first search (which generates a tree) to break 
cycles at a single bond and retaining all other bonds as dihedral degrees of freedom: 𝑇 =
(𝑉, 𝐸S). 
 
Third, we removed all leaf nodes and edges terminating on leaves, since the bonds 
corresponding to such edges do not represent a dihedral angle: 𝑇@*= = (𝑉@*= , 𝐸@*=). For 
each remaining edge 𝑒 ∈ 𝐸@*=, we assigned an output of the neural network to control the 
dihedral angle for that bond. 
 
Finally, for each dihedral edge 𝑒 ∈ 𝐸@*=, we used depth-first search to calculate the two 
connected components of 𝑇@*= that result with the removal of 𝑒. We recorded the smaller 
of the two connected components, 𝐶𝐶(𝑒) ⊆ 𝑉, as the atoms which we would rotate about 
the dihedral axis represented by the 𝑒. 
 
This method is shown in Algorithm 2: PrepRot. 
 
Differentiable rotamer sampling 
We started with the 𝑁 × 3 matrix of positions 𝑥*3

(C) (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 3) of all the atoms in 
the macromolecule. For each of the angles 𝜃2  predicted by the neural network, we 
selected the corresponding edge 𝑒2 = (𝑢2, 𝑣2) , where 𝑢2  and 𝑣2  represent the two 
atoms forming the covalent bond. We calculated the axis of rotation with components 
 

𝑘2 = 𝑝J- − 𝑝K- 
( 45 ) 

using the positions of atoms 𝑢2  and𝑣2 , which have components i𝑝J-j3 = 𝑥J-3
(2)  and 

i𝑝K-j3 = 𝑥K-3
(2). We did not prefer a specific orientation for each rotation axis, since we 



predicted the full 2𝜋 range for each 𝜃2. We also computed the centroid of the bond as 
the origin for rotation: 
 

𝑐2 =
1
2 i𝑝J- + 𝑝K-j 

( 46 ) 

We normalized 𝑘2  to a unit vector, 𝑘¬2 . We used Rodrigues’ rotation formula(37) for 
rotation around an axis by an angle to calculate a rotation matrix 𝑅(𝜃2, 𝑘¬2): 
 

𝑅i𝜃2, 𝑘¬2j = 𝐼 + (sin 𝜃2)𝐾2 + (1 − cos 𝜃2)𝐾2"  
( 47 ) 

𝐾2 = ®
0 −𝑘V 𝑘-
𝑘V 0 −𝑘I
−𝑘- 𝑘I 0

¯ 

( 48 ) 

We then took the previously calculated connected component 𝐶𝐶(𝑒2), translated all the 
particles in that connected component by −𝑐2 , applied the rotation matrix 𝑅2 , and 
translated the selected particles back by 𝑐2: 
 

𝑥*3
(2W1) = °

([𝑅2 ⋅ (𝑝* − 𝑐2)] + 𝑐2)3 , if	𝑖 ∈ 𝐶𝐶(𝑒2)
𝑥*32, otherwise  

( 49 ) 

After performing this transformation for the 𝑀 dihedrals we wish to sample, we return our 
final position matrix as the output, 𝑥*3

(4W1). 
 
This method of differentiable rotamer sampling is shown in Algorithm 3: DiffRot. 
 
Bias-free, continuous representation of dihedral angles 
We used simple feedforward neural networks, with a continuous representation of angles 
for the output (23). To avoid biasing predicted angles, we did not predict angles directly. 
For each dihedral angle 𝜃2 , we used our neural network to predict two parameters, 
(𝑥2, 𝑦2), and calculated 𝜃2 = atan2(𝑦2, 𝑥2). atan2 and its derivative are well-defined for 
all (𝑥2, 𝑦2) in all four quadrants and produces an angle in the range [−𝜋, 𝜋). To regularize 
our neural networks and prevent (𝑥2, 𝑦2) from drifting to the origin or infinity, we added 
a loss to our training cost, with weight 𝜖I-: 
 

𝐿I- = 𝜖I-*(𝑥2" + 𝑦2" − 1)
2

 

( 50 ) 

This training cost has the advantage of being rotationally symmetric so that there is no 
preferred angle. For comparison, the regularization loss 



 

𝐿X = 𝜖X p * 𝜃2"
X-8	X-./

+ * 𝜃2"
X-D	X-!0

q 

( 51 ) 

will bias every angle 𝜃2  toward 1
"
(𝜃2/I + 𝜃2*,) , since the network is penalized for 

exploring the space near 𝜃2/I and 𝜃2*, (14). 
 
To show mathematically that the neural network training is biased in the latter case, even 
for values of 𝜃 within the range [𝜃2/I , 𝜃2*,], we model the training process as a Markov 
chain (38), and we also assume that 𝜃 can only take on a discrete set of values in the 
range [𝜃2/I , 𝜃2*,] of size 𝑁 , or the values 𝜃2*, − 𝜖  or 𝜃2/I + 𝜖 . As a toy model, we 
assume that the training algorithm makes a transition 𝜃 → 𝜃 − 𝜖 or 𝜃 → 𝜃 + 𝜖 with equal 
probability while 𝜃 is within the range, and by the probability 1 transitions  
 

𝜃2*, − 𝜖 → 𝜃2*, + 𝑛𝜖 
𝜃2/I + 𝜖 → 𝜃2/I − 𝑛𝜖 

( 52 ) 

where 𝑛 represents the learning rate and 𝑛 < 𝑁/2. This Markov chain is aperiodic and 
irreducible. 
 
At equilibrium, the Markov chain converges to a stationary or invariant probability 
distribution on the angles, 𝜋(𝜃*) , which satisfies the global balance equations. The 
invariant distribution can be calculated as the largest left eigenvalue/eigenvector of the 
probability transition matrix 𝑞, in which the (𝑖, 𝑗) entry is the probability of transitioning 
from state 𝑖 to state 𝑗. 
 
For concreteness, we illustrate within an example. For the states 
 

𝜃* = {𝜃2*, − 𝜖, 𝜃2*,, 𝜃2*, + 𝜖, 𝜃2*, + 2𝜖 = 	𝜃2/I − 2𝜖, 𝜃2/I − 𝜖, 𝜃2/I , 𝜃2/I + 𝜖} 

( 53 ) 

and transition matrix 
 



𝑞 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 0 0 0
1
2 0

1
2 0 0 0 0

0
1
2 0

1
2 0 0 0

0 0
1
2 0

1
2 0 0

0 0 0
1
2 0

1
2 0

0 0 0 0
1
2 0

1
2

0 0 0 0 1 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

( 54 ) 

the invariant distribution is 
 

𝜋 = ¥ 1
18

1
9

2
9

2
9

2
9

1
9

1
18
¦ 

( 55 ) 

We see explicitly that values of 𝜃 outside the range [𝜃2/I , 𝜃2*,] are discouraged (𝜋1 =
𝜋Y =

1
1Z

) and that 𝜃2*, and 𝜃2/I  are less likely than other values of 𝜃 which lie strictly 
within the range (1

[
 vs "

[
). In practice, there may be other transitions from 𝜃 outside the 

range to 𝜃  within the range, which is controlled by the learning rate. For example, 
replacing 𝑞1" = 𝑞1# = 𝑞Y& = 𝑞Y% =

1
"
 and 𝑞1* = 𝑞Y* = 0 for all other 𝑖 in Eq. ( 54 ) leads to 

 
𝜋 ≈ [0.053 0.105 0.210 0.263 0.210 0.105 0.053] 

( 56 ) 

 
in which there is even more asymmetry among the states within the range. 
 
Parallelization of differentiable rotamer sampling with improved memory usage 
To take advantage of the parallel computing potential of GPU and TPU backends, we 
followed an approach like that of AlQuraishi’s parallelized natural extension reference 
frame (pNeRF) algorithm (39, 40); however, our method generalizes to all rotational 
degrees of freedom. 
 
We split protein chain into 𝑁\ fragments, splitting at the peptide bond between the C1 
carbon of residue 𝑖 and the N2 nitrogen of residue 𝑖 + 1. We recorded the positions of 
atoms in each segment, 𝑥;

\, where 𝑓 labels the fragment and 𝑘 labels the number of the 
atom. For the N-terminal of fragment 𝑓, we appended the positions of four atoms near the 
peptide bond (C1=O from the C-terminal residue of fragment 𝑓 − 1 and N2-C𝛼 from the 
N-terminal residue of fragment 𝑓 ) and appended those four positions to the 𝑥;

\ ; we 
selected the same four atoms from the C-terminal of fragment 𝑓 (C1=O from the C-



terminal residue of fragment 𝑓 and N2-C𝛼 from the N-terminal residue of fragment 𝑓 + 1). 
Next, we applied our original rotamer sampling method on each fragment independently. 
We then aligned the C-terminal of 𝑓 to the N-terminal of 𝑓 + 1, thus joining the fragments 
together. Finally, we applied dihedral rotations using the Rodrigues’ formula as discussed 
previously to the peptide bonds at which we initially split the protein chain, thus recovering 
the 𝑁\ − 1 degrees of freedom lost upon splitting the chain into 𝑁\ pieces. 
 
In addition to allowing for parallelization, this approach reduced memory usage. In our 
original dihedral sampling method, instead of transforming each position separately for 
each dihedral angle, we transformed all positions in the protein simultaneously, and then 
masked those positions which were not part of the associated connected component 
𝐶𝐶(𝑒2).  
 
Assuming that PyTorch’s JIT compiler was not able to optimize the resulting 
computational graph, this approach could be memory-intensive and computationally 
inefficient, with roughly 𝑁@*= × 𝑁/.>2A  3D matrix-vector multiplications and 2 × 𝑁@*= ×
𝑁/.>2A 3D vector additions. In backpropagation, each of the intermediate matrices must 
be used, resulting in 𝑁@*= × 𝑁/.>2A × 3 floating point numbers being stored (a copy of the 
position matrix for each dihedral angle). In the parallel approach, ignoring the extra 
positions appended to each fragment, the number of dihedrals per fragment is roughly 
01!2
03

, and the number of positions per fragment is similarly 0.,4-)
03

. The total number of 

floating point operations is therefore 𝑁\ × �
01!2
03

× 0.,4-)
03

� = 01!20.,4-)
03

, so we have reduced 

the raw number of operations by a factor of 𝑁\. The analogous calculation for memory 
usage shows a reduction by a factor of 𝑁\. Assuming PyTorch launches and runs all 𝑁\ 
kernels simultaneously on a GPU, we can achieve a speed-up over the original dihedral 
sampler approach of 𝑁\" for large proteins, while using 1

03
 times as much memory. 

 
Our parallelized version of differentiable rotamer sampling is summarized in Algorithm 6: 
DiffRotParallel. For practical purposes, lines 1-21 in Algorithm 6 only need to be executed 
once, and the rotamer sampling from lines 22 to the end may be placed in a separate 
function. 
 
Alignment of point clouds 
We used two methods to align point clouds. The first was the well-known Kabsch 
algorithm (41), and the second was through an alternative approach due to a quaternionic 
derivation by Coutsias et al. (42). We chose to employ the second method, since it 
reduced to a largest magnitude eigenvalue/eigenvector problem. 
 
Given two sets of positions 𝑥 and 𝑦, represented by 𝑁 × 3 matrices 𝑥*3  and 𝑦*3 , with 𝑖 
labeling the particle number and 𝑗 labeling the 3D components, the goal is to find the best 
fit rotation matrix and translation which transform the positions of the particles in 𝑥 to the 
corresponding positions in 𝑦. 
 



We first center the two sets of points, by averaging the 3D components over all particles 
 

�̅�3 =
1
𝑁*𝑥*3

*

 

𝑦½3 =
1
𝑁*𝑦*3

*

 

𝑋*3 = 𝑥*3 − �̅�3 
𝑌*3 = 𝑦*3 − 𝑦½3 

( 57 ) 

We then calculate the covariance matrix 
 

𝐻*3 =*𝑋;*𝑌;3
;

 

( 58 ) 

In the Kabsch method, we calculate the singular value decomposition 
 

𝐻 = 𝑈Σ𝑉S 
( 59 ) 

Since the Kabsch method may result in improper rotations, we correct for changes in 
basis orientation by calculating 
 

𝑑 = sign(det(𝑉𝑈S)) 
( 60 ) 

and the optimal rotation matrix is expressed as 
 

𝑅 = 𝑉 �
1 0 0
0 1 0
0 0 𝑑

�𝑈S 

( 61 ) 

In the quaternionic approach, the quaternion associated with the optimal rotation in 3D is 
the eigenvector [𝑞C, 𝑞1, 𝑞", 𝑞#] associated with the largest magnitude eigenvalue of the 
traceless, symmetric matrix 
 

𝐹 = Á

𝐻11 + 𝐻"" + 𝐻## 𝐻"# − 𝐻#" 𝐻#1 − 𝐻1# 𝐻1" − 𝐻"1
𝐻"# − 𝐻#" 𝐻11 − 𝐻"" − 𝐻## 𝐻1" + 𝐻"1 𝐻1# + 𝐻#1
𝐻#1 − 𝐻1# 𝐻1" + 𝐻"1 −𝐻11 + 𝐻"" − 𝐻## 𝐻"# + 𝐻#"
𝐻1" − 𝐻"1 𝐻1# + 𝐻#1 𝐻"# + 𝐻#" −𝐻11 − 𝐻"" − 𝐻##

Â 

( 62 ) 

To convert the quaternion 𝑞 = (𝑞C, 𝑞1, 𝑞", 𝑞#) to a rotation matrix, we compute 
 



𝑅 = ®
𝑞C" + 𝑞1" − 𝑞"" − 𝑞#" 2(𝑞1𝑞" − 𝑞C𝑞#) 2(𝑞1𝑞" + 𝑞C𝑞")
2(𝑞1𝑞" + 𝑞C𝑞#) 𝑞C" − 𝑞1" + 𝑞"" − 𝑞#" 2(𝑞"𝑞# − 𝑞C𝑞1)
2(𝑞1𝑞# − 𝑞C𝑞") 2(𝑞"𝑞# + 𝑞C𝑞1) 𝑞C" − 𝑞1" − 𝑞"" + 𝑞#"

¯ 

( 63 ) 

In the quaternionic approach, the sign of the eigenvalue determines the orientation of the 
rotation. We assumed that the ideal proper rotation for our uses always has the largest 
magnitude eigenvalue. 
 
The quaternion approach is summarized in Algorithm 4: QuaternionAlignment. 
 
Differentiable largest eigenvalue and associated eigenvector of a square matrix 
Since linear algebra operations like torch.linalg.eigh for Hermitian matrices solve 
for all eigenvalues of the matrix, we used a modified version of the power iteration 
algorithm to determine the largest eigenvalue and associated eigenvector. Additionally, 
this method has the advantage of being implemented in terms of pure PyTorch operations 
(matrix multiplication and floating point division), which is convenient for PyTorch 
backends such as Apple’s Metal Performance Shaders which do not yet have complete 
coverage of linear algebra operations. 
 
Symmetric matrices are diagonalizable, have real eigenvalues, and have an orthonormal 
eigenbasis. Given such a matrix, for example the 4 × 4 matrix 𝐴 we may write 
 

𝐴 = 𝑆Λ𝑆S 
( 64 ) 

where Λ = diag(λ1, λ", ⋯ , 𝜆,) is a diagonal matrix of eigenvalues and 𝑆 is an orthonormal 
matrix such that 𝑆S𝑆 = 𝐼  and the 𝑖.=  column of 𝑆  is a normalized eigenvector 𝑣* 
corresponding to 𝜆*. Then for any matrix power 𝑘, we may write 
 

𝐴; = (𝑆𝛬𝑆S)(𝑆𝛬𝑆S)⋯ (𝑆𝛬𝑆S) = 𝑆Λ;𝑆S 
( 65 ) 

Since Λ is diagonal, its powers are also diagonal. Carrying out the matrix multiplications, 
 

𝐴; =*𝑣*𝜆*;𝑣*S

*

= 𝜆2/I; *�
𝜆*
𝜆2/I

�
;

𝑣*𝑣*S

*

 

( 66 ) 

𝑣*𝑣*S is the outer product of 𝑣* with itself: 
 

𝑣*𝑣*S = ®

𝑣*1
𝑣*"
⋮
𝑣*,
¯ [𝑣*1 𝑣*" ⋯ 𝑣*,] = Á

𝑣*1(𝑣*1) 𝑣*1(𝑣*") ⋯ 𝑣*1(𝑣*,)
𝑣*"(𝑣*1) 𝑣*"(𝑣*") ⋯ 𝑣*"(𝑣*,)

⋮ ⋮ ⋱ ⋮
𝑣*,(𝑣*1) 𝑣*,(𝑣*") ⋯ 𝑣*,(𝑣*,)

Â 

( 67 ) 



When 𝑘 is large, the relative contribution of each eigenvalue and its eigenvectors to 𝐴; 
decreases in comparison to that of the maximum eigenvalue/eigenvector pair. To achieve 
large powers of 𝐴, we may repeatedly square 𝐴, so that the relative contributions of the 
smaller eigenvalues decreases exponentially. Thus with large 𝑘, (in practice we chose 
𝑘 = 20) we have 
 

𝐴; ≈ 𝜆2/I; 𝑣2/I𝑣2/IS  
( 68 ) 

 
In practice, when we square 𝐴, we need to normalize by the largest magnitude element 
(or any other matrix norm) to prevent 𝐴 from drifting off to infinity or 0 due to the factor of 
𝜆2/I; . 
 
We may directly read off the 𝑣*  from the outer product because each row and each 
column of 𝑣2/I𝑣2/IS  is some multiple of 𝑣2/I. To recover the eigenvalue 𝜆2/I, we simply 
apply the original matrix using the eigenvector equation 𝐴𝑣2/I = 𝜆2/I𝑣2/I and compute  
 

𝜆2/I ≈
1
𝑛*

(𝐴𝑣2/I)*
(𝑣2/I)**

	 

( 69 ) 

The power iteration through repeated squaring method is summarized in Algorithm 5: 
PowerIterWithSquaring. Since we only required this method for a few 4 × 4 covariance 
matrices, it contributed a negligible amount of overhead to the overall algorithm. It is novel 
to this work, and can be thought of as a modified version of the power iteration algorithm 
(43, 44). 
 
Estimation of entropy 
For estimation of distribution entropy of our Boltzmann generators, we used a method 
tailored for multivariate circular distributions (45), which attempts to mitigate correlations 
among the angles. The metric for two sets of angular samples 𝜙,𝜓 was defined as the 
arclength on the unit circle for each angle 
 

𝑑"(𝜙, 𝜓) =*n𝜋 − v𝜋 − |𝜙* − 𝜓*|vo
"	

*

 

( 70 ) 

Given a batch of samples Φ = [𝜙,𝜓,⋯ ,𝜔], we then computed the nearest neighbor for 
each sample in the batch Φ7 = [𝜙7, 𝜓7, ⋯ , 𝜔7] according to the metric 𝑑, and estimated the 
entropy of each sample as (Eq. 17 in the original manuscript (45), with first nearest 
neighbors corresponding to 𝑚 = 1) 
 

𝐻] = log 𝑑(𝜙, 𝜙7) 
( 71 ) 



and averaged over the entire set of samples 𝜙 ∈ Φ. Since we were only using the entropy 
to provide approximate gradients to the Boltzmann generator, we ignored all constants 
which corrected for bias to the numerical value of the entropy in the original formula. 
 
Estimation of temperature of Boltzmann-generated samples 
We assumed that the energies of Boltzmann-generated samples follow an exponential 
distribution 
 

𝐸(𝑥) ∼ 𝑒$^I 
( 72 ) 

To reduce the influence of outliers on our estimate, we used the median energy of the 
sampled states as an estimator of the inverse temperature 𝛽. It is known analytically (46) 
that 
 

𝐸2)@*/, =
log 2
𝛽  

( 73 ) 

Additional useful identities 
To aid in debugging of rotation matrices, we made use of the formula for the rotation angle 
and axis of an arbitrary 3 × 3 rotation matrix 𝑅. 
 

𝜃 = cos$1 �
tr	𝑅 − 1

2 � 
( 74 ) 

axis =
1

2 sin 𝜃
[𝑅#" − 𝑅"# 𝑅1# − 𝑅#1 𝑅"1 − 𝑅1"]S 

( 75 ) 

where tr is the trace. These identities are direct consequences of Rodrigues’ rotation 
formula. 
 
Learning rate tuning 
To ensure convergent training, we found that a learning rate of 𝛾 = 10$% was necessary 
to prevent divergence during training due to large gradients. To arrive at this value of 𝛾, 
we backpropagated gradients from the force field and entropic terms separately to the 
angles output by the neural network (i.e., only backpropagation only through the rotameric 
sampling and entropy estimation portions of the computational graph). We monitored 
these gradients over the course of a training session and found that angular gradients 
had a magnitude on the order of 10# . Therefore, parameters are tuned at a rate of 
approximately 10# ⋅ 𝛾, per epoch, ignoring the momentum contributions in Adam (47). 
With the choice 𝛾 = 10$%, we expect parameter tuning at a rate of roughly 0.01 per epoch; 
along with the choice of gradient clipping at 10.0, we enforced a large dynamic range of 
gradients with magnitudes under 0.01 to 10.0. 
 



Neural network architecture 
We used simple feedforward neural networks as our Boltzmann generators, with 32 latent 
variables, 10 layers of 128 hidden units, dropout with a rate of 0.3 (25), residual 
connections (48) between every other hidden layer, and LeakyReLU (49, 50) activations 
with a coefficient of 0.3. The final output layer dimension equal to the total number of 
dihedrals we wished to sample. 
 
Traditional molecular dynamics 
We performed traditional MD using the AMBER 14 force field (2) with generalized Born 
implicit solvent (18–22) in OpenMM (32). We used a Langevin thermostat at 310 K, 
friction coefficient of 91	ps$1, and timestep of 1	fs. We simulated 10& timesteps (1 ns 
trajectory), and recorded positions of all atoms every 1,000 timesteps. 
 
Order parameters 
We calculated the root mean square deviation (averaged over the entire structure) and 
root mean square fluctuation (averaged over a trajectory per alpha-carbon), with respect 
to reference structure positions 𝑥*,C. 
 

RMSD({𝑥*}) = w
1

𝑁/.>2A
*v𝑥* − 𝑥*,Cv

"

*

 

 

RMSF({𝑥*})3 = w
1

𝑁.*2)A.)'A/A/2'B)A
*v𝑥3(𝑡) − 𝑥3,Cv

"

.

 

 
Implementation details 
All algorithms were implemented in Python 3.10 with PyTorch 1.13 (16). We loaded 
molecular topology and geometry using OpenMM 7.7 (32). We used PDBFixer 1.8.2 (32) 
to fix errors in PDB files and model hydrogens. We used NetworkX 2.8.4 (51) for all graph 
algorithms. We used a batch size of 8, and the Adam optimizer (47), with learning rate 
𝛾 = 10$%, momentum coefficients 𝛽1 = 0.9, 𝛽" = 0.999, and machine tolerance offset 𝜖 =
10$Z. We also used a loss weight of 𝛾6)*+=. = 10$" for weight decay regularization. 
 
For the molecular force field, we used AMBER 14 parameters (2) as provided by OpenMM 
(32), and the implicit generalized Born solvent (GBn2) (18, 20, 22, 35). Other packages 
used include NumPy 1.23.4 (52, 53) and Pandas 1.5.2 (54) for data organization, 
Matplotlib 3.6.2 (55) for plotting, PyMol 2.5.0 (56) and Mol* (57) for macromolecule 
visualization, and SciPy 1.9.3 (58). Training of models was performed in float32 accuracy 
on the CPU only of an M1 Max MacBook Pro with 64 GB RAM. Benchmarking was also 
performed on a single NVIDIA Tesla T4 GPU with 16 GB RAM on a Linux system. For 
reproducibility, we also set the random seed for PyTorch to 0. 
 
To optimize the speed of dihedral angle application, we used static data structures and 
used PyTorch’s just-in-time compilation on the dihedral sampling function, as well as the 
generative neural networks. This technique allows PyTorch to optimize numerical array 



operations through fusion of kernels and memory locality. As a result, we observed that 
the primary bottleneck for our pipeline was the force field computation and the transfer of 
positional data between PyTorch and OpenMM. 
 
  



Supplemental Tables 
Table S1: Units of measurement and specific numerical values used to represent 
molecules and their properties in OpenMM and PyTorch. This table may be used to 
convert the numerical outputs of the computations to predicted measurements. 

Physical quantity 
 

Physical units Numerical value during 
computation 

distance (𝑑*3) nanometer (nm) 1 
energy (𝐸, 𝜖*3) kilojoule / mole (kJ	mol$1) 1 
electric charge (𝑞) elementary charge (𝑒 =

	1.609 × 10$1[	C)  
1 

Avogadro’s constant (𝑁!) unitless 6.022 × 10"# 
Ideal gas constant (𝑅) kilojoule / (mole Kelvin) 

(kJ	mol$1	K$1) 
8.314 × 10$# 

Coulomb constant x 1
`ab5

y kJ	nm	mol$1	𝑒$" 138.9354576 

Solute (protein) relative 
electric permittivity (𝜖A>BJ.)) 

unitless 1 

Solvent (water) relative 
electric permittivity 
(𝜖A>BK),.) 

unitless 78.5 

 
 


