
Title: Differentiable rotamer sampling with molecular force fields

Authors: Congzhou M. Sha1,2, Jian Wang2, Nikolay V. Dokholyan1,2,3,4,5,*

Affiliations: 1Department of Engineering Science and Mechanics, Penn State University,
University Park, PA USA
2Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
3Department of Biochemistry and Molecular Biology, Penn State College of Medicine,
Hershey, PA USA
4Department of Chemistry, Penn State University, University Park, PA USA
5Department of Biomedical Engineering, Penn State University, University Park, PA USA
*Corresponding author (dokh@psu.edu)

Abbreviations: molecular dynamics (MD), discrete molecular dynamics (DMD), Markov
chain Monte Carlo (MCMC), Protein Data Bank (PDB), Kullback-Leibler divergence
divergence (KL divergence), root mean square distance (RMSD)

Graphical Abstract

One Sentence Summary:
We make theoretical and practical improvements to the Boltzmann generator framework,
enabling rapid and accurate sampling of macromolecule rotameric states and replacing
molecular dynamics with neural network training.

Abstract:
Molecular dynamics is the primary computational method by which modern structural
biology explores macromolecule structure and function. Boltzmann generators have been
proposed as an alternative to molecular dynamics, by replacing the integration of
molecular systems over time with the training of generative neural networks. This neural
network approach to MD samples rare events at a higher rate than traditional MD,
however critical gaps in the theory and computational feasibility of Boltzmann generators
significantly reduce their usability. Here, we develop a mathematical foundation to
overcome these barriers; we demonstrate that the Boltzmann generator approach is
sufficiently rapid to replace traditional MD for complex macromolecules, such as proteins
in specific applications, and we provide a comprehensive toolkit for the exploration of
molecular energy landscapes with neural networks.

Main Text:

Introduction
Statistical mechanics describes the behavior of large numbers of physically identical
systems (1). Molecular dynamics (MD) is the computational application of statistical
mechanics to molecular systems such as proteins, nucleic acids, and lipid membranes
(2–5). The fundamental postulate of statistical mechanics is that every energetically
accessible microstate of the physical system is equally probable; a microstate is a
partition of the total energy of the physical system to each coordinate of its Hamiltonian
(1). When many identical copies of the physical system are present such as in molecular
systems at equilibrium, experimental observations reflect the overall probability
distribution of microstates.
 The goal of MD is to computationally sample enough microstates of a system of
molecules to approximate the distribution of microstates in a biological system at
equilibrium, in which there may be on the order of Avogadro’s number (𝑁! ∼ 10"#)
molecules. For MD, statistical equilibrium is defined as the NPT ensemble (6), in which
the number of particles, pressure, and temperature are fixed, and the underlying
microstate probability distribution is the Boltzmann distribution for the enthalpy.

Traditional MD attempts to sample microstates by integrating Newton’s second law
according to empirically determined molecular force fields (2, 3). The underlying major
assumption is that the MD trajectory is ergodic (6), that is given enough time steps the
trajectory will visit all microstates with a frequency given by the Boltzmann distribution.
However, there is no guarantee that a given MD trajectory will be ergodic. Transitioning
between states which are separated by large energy barriers presents a significant
challenge for MD simulations (7). Numerous approaches have been proposed to address
this shortcoming of MD, such as Monte Carlo methods (8–11), metadynamics (12), and
umbrella sampling (13). Recently, Boltzmann generators have emerged as a promising
candidate for rare-event sampling in MD (14, 15).

In 2019, foundational methods were proposed by Noé et al. to use generative
neural networks for the sampling of microstates (14). The central idea is that instead of
predicting a single trajectory as in MD, one may instead train a neural network to predict
Boltzmann-distributed states. This approach seeks to address the issue of rare-event
sampling by allowing the neural network to learn multiple energy minima simultaneously.
While Noé et al. successfully demonstrated their method for simple physical systems and
small proteins, there were critical theoretical and practical deficiencies limiting the
application of their methods that we address in this work.

The theoretical deficiencies in the original Boltzmann generator approach we
address are various biases in angle generation due to (i) the use of a Gaussian prior, and
(ii) the regularization of a discontinuous output. The practical deficiencies we address are
(iii) tight coupling between energy and entropy estimation, necessitating hundreds of
thousands of evaluations of an external molecular force field, (iv) potential numerical
instabilities due to reliance on eigendecomposition, and (v) other inefficiencies in the
generation of rotamers.

Here, we demonstrate that decoupling the energy and entropy training losses and
propagating forces directly from the molecular force field reduces the needed evaluations
of the force field by a factor of a thousand; we achieve rare-event sampling with only 102-
103 evaluations of the force field for chicken villin headpiece (PDB ID 1VII), a 35-residue
protein domain. We demonstrate a simple method of gradient propagation for an arbitrary
external force field, and we implement the AMBER 14 force field (2) in pure PyTorch (16),
as is done in the TorchMD framework (17). We include the Generalized Born implicit
solvent (18–22), which is not present in TorchMD (17). We suggest strategies to avoid
numerical instabilities and intrinsic biases in the neural network, and we propose a code-
efficient method of rotamer sampling that can handle arbitrary molecules while remaining
end-to-end differentiable for neural network training. We also present a highly parallel and
memory-efficient version of the rotamer sampling algorithm. The result of these
improvements is a numerically robust and fast architecture for Boltzmann generators.

Results
With our methods, we were able to train neural networks which produced rotameric states
with near-native energies, requiring only hundreds to thousands of evaluations of the
energy function, rather than the hundreds of thousands to millions in Boltzmann
generators, and millions to billions for traditional MD.

Our novel contributions are differentiable rotamer sampling, parallelized differentiable
rotamer sampling (Fig. 1, Fig. 2), a thorough guide to adapting OpenMM force fields for
PyTorch or TensorFlow use (particularly outlining the calculations necessary for the
generalized Born implicit solvent, which is not a feature of the similar framework TorchMD
(17)), and an ad hoc method of using arbitrary force fields for gradients without
modification to existing force field code, and without code for custom gradients. We also
propose the use of unbiased angle generation methods suitable for neural network
training.

Training a convergent model
We observed that due to occasional large force gradients, typically due to Lennard-Jones
internuclear repulsions, certain training steps would cause rapid divergence of model
parameters. Even with regularization techniques including layer normalization, weight
decay, force regularization, gradient clipping, and the use of the Adam training algorithm,
it was still necessary to adjust the learning rate from the default 𝛾 = 10$# to 𝛾 = 10$% or
10$&. We describe how we performed this tuning in the Methods.

Initializing Boltzmann generators at the native (or input) state
We tested the effect of pretraining the neural networks to output 𝜃 = 0, or in other words
to produce the identity function on the structure. For these experiments (Fig. 3a-b), we
trained the neural network for 𝑛'() epochs with the loss

𝐿'() =*𝜃*"

*

+ 𝐿()+

(1)

where 𝐿()+ includes fixed terms such as the angle modulus loss in Eq (50) in the
Methods and weight decay regularization.

We observed that initial pre-training was crucial to allow neural networks to converge.
With no pre-training epochs, we were unable to train neural networks within 5,000 epochs,
and all structures produced appeared highly unphysical, with numerically infinite energies
(not shown). However, any number of pre-training epochs above 100 appeared suitable
for initialization of the neural networks (Fig. 3a).

Sampling without entropy
When we trained neural networks solely on the energy and not the entropy (Fig. 3a-b)

𝐿),)(+-(𝜃) = 𝑈(𝜃) + 𝐿()+

(2)

we observed that while the intrinsic noise in the Adam optimizer allowed for sampling of
states which were not global energy minima (Fig. 3a), the resulting neural networks did
not reproduce the results of traditional MD at non-zero temperature (Fig. 3b).

Temperature and entropy, and effect of training length on structure generation
We observed that by estimating the multivariate circular distribution entropy and training
to maximize the entropy and minimize the energy, we were able to reproduce traditional
MD protein backbone root mean square fluctuations (Fig. 3c-h), as well as prevent mode

collapse (Fig. 4a-c) and sample Boltzmann-distributed states (Fig. 4d-i). For this set of
experiments, we used the training loss

𝐿.(/*,(𝜃; 𝑇00) = 1
𝑈(𝜃)
𝑇00

− 𝑆(𝜃) + 𝐿()+, 𝑇00 ≥ 1

𝑈(𝜃) − 𝑇00 ⋅ 𝑆(𝜃) + 𝐿()+, 𝑇00 < 1

(3)

where 𝑇00 is the temperature of the system. We chose this form of the loss to maintain
the relative contributions and dynamic range of the energy function 𝑈 and entropy 𝑆, while
preventing exploding gradient contributions from dividing 𝑈 by a small 𝑇00 or multiplying
𝑆 by a large 𝑇00. In the units of our implementation,

𝑇00 = 𝑅 ⋅ 𝑇
(4)

with the ideal gas constant 𝑅 = 8.314 × 10$#	kJ	mol$1	K$1 and physical temperature
measured in Kelvins 𝑇. A human body temperature of 310	K yields a numerical value of
𝑇00 = 2.58. However, since our estimate of the entropy is only correct asymptotically, the
actual numerical values for the temperature may differ in practice. Interestingly, it appears
that reproducing the results from traditional MD is a matter of fine-tuning both the length
of neural network training and temperature (Fig. 3c, Fig. 4d-i).

Benchmarking
We performed basic benchmarking of the rotamer sampler, the parallelized version of the
rotamer sampler, and the force field, on the CPU-only of an M1 Max Macbook Pro with
64 GB RAM, and on a NVIDIA Tesla T4 GPU with 16 GB RAM (Fig. 5). These
benchmarks were performed on the combined forward and backward passes through the
computational graph, to imitate real-world usage. We observed an advantage of up to 10x
on the GPU in terms of total throughput of rotamer sampling (Fig. 5a-b). We also
compared the original non-parallel dihedral sampler (Algorithm 3) to the parallel dihedral
sampling, running on the NVIDIA GPU (Fig. 5c-d), which showed a performance
advantage of 4x on the protein we used for these experiments. Finally, we demonstrated
that the energy function also demonstrated a performance benefit running on the NVIDIA
GPU compared to CPU, with 10x greater performance (Fig. 5e-f).

Discussion
By decoupling energy minimization from entropy maximization, we were able to perform
Boltzmann sampling with three orders of magnitude fewer calls to the energy function
than in the original Boltzmann generators. We were able to reproduce traditional MD
results in the form of RMSF from the initial state. Additionally, we provide benchmarks for
our algorithms which demonstrate automatic parallelization through PyTorch allowing for
significant computational throughput on an NVIDIA GPU.

 Unlike in the original Boltzmann generator work, we were able to directly sample
internal degrees of freedom (i.e. the dihedral angles), explicitly freezing out all other
modes in the molecule. A side effect of our approach was that we did not need to manually
remove modes such as overall molecular rotation/translation through eigendecomposition
(14). Despite removing a large fraction of the degrees of freedom from the molecule, we
were still able to reproduce the RMSF profile of the protein computed by traditional MD
(Fig. 3c). The methods we present may be useful in examining, for example, protein
allostery with far less computation than required by traditional MD.
 In terms of performance, it is not surprising that the GPU outperformed the CPU
significantly, given a large enough batch size (Fig. 5). We also observed the expected
plateau in performance increase due to the saturation of the CUDA driver with
simultaneously executing kernels. We discuss the theoretical advantage of the
parallelized rotamer sampler in the Methods. Our energy function was not completely
optimized, since many of the pairwise computations were computed for both the upper
and lower triangles of the distance matrix, resulting in a two-fold redundancy in certain
calculations which are symmetric in the particle order. We encountered difficulty with the
limited memory on the GPU (the NVIDIA Tesla T4 only has 16 GB of video RAM),
particularly with the energy function, whereas the CPU had access to 64 GB of RAM at
the cost of compute speed. We did not perform benchmarks on the M1 Max GPU because
the PyTorch backend for Apple’ Metal Performance Shaders is not complete.
 In the original Boltzmann generators proposed by Noé et al., angles were
generated as a real number, and invertibility of the networks was ensured through a
penalty on angles outside the range [−𝜋, 𝜋) through a squared loss for angles generated
outside that range (14). This method of angle generation makes it difficult for the network
to explore angles near the extremes −𝜋 and 𝜋 , and forces the neural network (a
continuous model) to approximate a discontinuous transformation from the angle 𝜃 to the
circle 𝑆1. In this work, we used the differentiable atan2 function to generate angles, which
does not suffer from these difficulties (Methods). Additionally, the form of the loss biases
generation of angles to 𝜃 = 0, as we illustrate in a simplified Markov chain model of
training (Methods).

One major theoretical limitation of traditional MD which carries over to Boltzmann
generators is difficulty in sampling disconnected local energy minima (i.e. metastable
states). Fundamentally, the neural networks used in Boltzmann generators are
differentiable models which generate 𝑛 molecular internal coordinates from 𝑚 latent
variables, and are therefore continuous functions from ℝ2 to ℝ,	(23). Furthermore, the
Boltzmann generators originally proposed by Noé et al. (14) and in this work generate
internal coordinates from the sampling of a single multidimensional Gaussian distribution

𝑧 ∈ ℝ2	~	𝑁(𝜇 = 0, Σ = 𝐼)

(5)

centered at 𝜇 = 0 with unit standard deviation in each coordinate. In Noé et al., 𝑚 and 𝑛
were both set to three times the number of atoms in the protein (i.e. the 3D coordinates).
This distribution is spherically symmetric; however in high dimensions, the volume of the
unit 𝑚-ball tends to 0 even for modest values of 𝑚, implying that the density of the
multidimensional Gaussian distribution is highly concentrated near the origin. Meanwhile,

the probability density of the molecule’s Boltzmann distribution is highly concentrated in
disjoint regions of ℝ, , since the energy minima of a molecule are separated by high
energy barriers (low Boltzmann probability). Since 𝑧 tends to the origin in the latent space,
we are asking the neural network to approximate a one-to-many relation, which is not a
function, let alone a continuous one. Instead, it may be beneficial to sample 𝑧 from a sum
of Gaussians

𝑧	~	*𝑁(𝜇 = 𝑥* , Σ = 𝐼)
*

(6)

and to require that the result of sampling from distinct regions 𝑥* ≠ 𝑥3 results in internal
coordinates 𝑝* and 𝑝3 which are also disjoint, such as through a repulsive loss on those
pairs of 𝑝* , 𝑝3. This method would be analogous to metadynamics sampling (12), in which
previously generated molecular states are avoided, formulated in the distributional sense.
This method is also analogous to k-means clustering, in which each centroid is
responsible for representing a single cluster in the data. Alternatively, one could use an
ensemble of neural networks, with each neural network responsible for generating
Boltzmann-distributed states for a single energy minimum and its neighborhood of
conformations.
 Another theoretical issue with practical considerations is the size of the neural
network necessary to represent the molecule. In the original Boltzmann generator
proposed by Noé et al., all 3𝑁 atomic coordinates are predicted, with principal component
analysis to remove the 6 components corresponding to rotations and translations of the
entire structure as well as to learn correlations among the degrees of freedom (14). Noé
et al. also required that the entire neural network be invertible so that exact gradients for
their KL divergence between Gaussian priors and Gaussian posteriors may be
backpropagated. Thus, the input dimension of their neural networks has the same 3𝑁
dimensions. Even for small proteins like the chicken villin headpiece we studied, 𝑁 = 596.
The neural networks quickly grow in number of trainable parameters. If we restrict the
number of hidden units in any layer to a value less than 3𝑁 , then the Jacobian
determinant of the neural network transformation will immediately become 0. Therefore,
the number of parameters in an invertible network is at least 9𝑁" (3,196,944 for chicken
villin headpiece, not including bias parameters). In practice, we require multiple hidden
layers with just as many parameters to gain sufficient approximation power for the neural
network. Though in principle, the number of trainable may be reduced by choosing fixed
values for some of the parameters, such a choice requires further assumptions on the
symmetries of the protein.

In this work, we did not assume a Gaussian posterior distribution for the degrees
of freedom, and we postulated that many of the degrees of freedom are unimportant to
protein dynamics near the energy minima. Though we no longer have a closed form
expression for the entropy, we gain an enormous computational advantage in the neural
network. Since we used a Gaussian input of dimension 32 (Methods), our networks
reproduce a maximum of 32 normal modes in the output. For backbone dihedral sampling,
we required only a prediction of the 𝜙,𝜓,𝜔 angles for each of the 36 residues, leading to

a final dimension of 105. Our networks for chicken villin headpiece had 196,692 trainable
parameters. It appeared that 32 normal modes were enough to describe the near native
structures to high accuracy (Fig. 3c), and we simultaneously accommodated for non-
Gaussian posterior distributions for the dihedral angles. In comparison to the original
approach proposed by Noé et al., the methods we propose can handle larger proteins in
less memory and with fewer trainable parameters. The major caveat is that each protein
may require tuning of neural network hyperparameters, especially the minimum
dimension of normal modes to predict.

In the case of classical molecular force fields, the high energy barriers tend to be
a result of physical singularities in Lennard-Jones and Coulomb potentials at low distance
due to internuclear forces, with Lennard-Jones repulsion (∝ 1/𝑟1") dominating any
electrostatic force (∝ 1/𝑟") at low distance. One might hope that the high internuclear
forces are UV divergences in the classical theory which disappear upon quantization.
However, even in the full quantum field theory of the strong nuclear force, while the
repulsion we observe is finite, it is still far larger than any of the forces due to
electromagnetism, and we must avoid generating states in which the nuclei are too close.
In traditional MD and in Monte Carlo methods, umbrella sampling is used to regularize
the singularities; we implemented umbrella sampling in this work by directly regularizing
the Lennard-Jones forces for nuclear repulsion to a finite, constant repulsive force. In Noé
et al., a logarithmic regularization is performed on the total energy. There is additional
regularization of the force field when training the neural network, accomplished through
gradient clipping (24), dropout (25), and weight penalties (16). Such methods of
regularization are forced upon the user in the process of training stable neural networks.
In this sense, Boltzmann generators as originally presented are umbrella-sampled.

Despite their shortcomings, Boltzmann generators maintain at least one significant
advantage over traditional MD with umbrella sampling. Boltzmann generators implicitly
retain some memory of the entire training trajectory, and therefore they may reuse
knowledge of the structure between different energy states. For example, an ideal
Boltzmann generator learns the correlations among the internal coordinates, correlations
which may hold between distinct energy minima. As a result, we may directly estimate
the entropy of the internal coordinates, i.e., the elusive conformational entropy.
 Training of quantum circuits has recently emerged as a promising technique in
molecular biophysics (26–30). Example applications of quantum computers include
generation of small molecule structures (27, 30), molecular docking (26, 28), and
optimization of molecular energies (29). Current state-of-the-art quantum computers
suffer from noise and low memory capacity. By representing the energy landscape of a
molecule in terms of its rotameric degrees of freedom, the differentiable rotamer sampling
algorithm significantly reduces the number of parameters necessary to represent the
molecule, from the naïve 3𝑁 coordinates to a much smaller set. Since quantum
computers can hold a superposition of states in memory, it may be advantageous to
create and train a quantum Boltzmann generator for small molecules such as alanine
dipeptide. However, numerous theoretical and practical challenges remain in quantum
circuit training, such as the barren plateau problem and the noisiness of current quantum
computers (31).
 Significant challenges remain in the practical use of Boltzmann generators. Even
though we were able to reproduce RMSFs with high correlation (>0.7, Fig. 3c), the

resulting structures still resemble the native state. We found that the energy landscape of
the protein was a highly sensitive function of both the temperature and learning rate; fine-
tuning of both appears to be required to produce useful results. However, the methods
we present in this work make the fine-tuning process more easily accessible to
researchers. Future work may also examine the effect of neural network architecture and
other hyperparameters on angle generation since we did not study that effect here. Finally,
it may be possible to further accelerate certain computations with a field-programmable
gate array, which can be configured on a per-protein basis to perform rotamer sampling
and energy computation.

In conclusion, we present a comprehensive toolkit of differentiable methods for
molecular science. Our contributions include: ad hoc propagation of forces from an
arbitrary force field for cases in which rewriting the force field is infeasible, differentiable
and parallel rotamer sampling/protein fragment assembly, a guide to writing molecular
force fields in a differentiable programming framework, decoupling of energy and entropic
estimation, and mathematical results on 3D point cloud alignment and 3D rotation
representation which can be applied to problems in molecular geometry. We additionally
address potential sources of bias in molecular structure generation and outline the
approach to remaining sources of bias which we did not implement. We demonstrate that
our methods are efficiently implementable on CPU and GPU, and mathematically sound.
We hope that other researchers will find these methods and the accompanying reference
code useful in investigating molecular energy landscapes.

References and Notes

1. F. Reif, H. L. Scott, Fundamentals of Statistical and Thermal Physics (McGraw Hill, Tokyo,
1998), vol. 66.

2. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, Development and testing
of a general Amber force field. J Comput Chem. 25, 1157–1174 (2004).

3. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian,
O. Guvench, P. Lopes, I. Vorobyov, A. D. Mackerell, CHARMM general force field: A force
field for drug-like molecules compatible with the CHARMM all-atom additive biological
force fields. J Comput Chem. 31, 671–690 (2010).

4. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindah, GROMACS:
High performance molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX. 1–2, 19–25 (2015).

5. G. Bussi, "Hamiltonian replica exchange in GROMACS: A flexible implementation" in
Molecular Physics (2014), vol. 112, pp. 379–384.

6. B. E. Husic, V. S. Pande, Markov State Models: From an Art to a Science. J Am Chem
Soc. 140, 2386–2396 (2018).

7. J. Hénin, C. Chipot, Overcoming free energy barriers using unconstrained molecular
dynamics simulations. J Chem Phys. 121, 2904 (2004).

8. E. A. Proctor, N. v. Dokholyan, Applications of Discrete Molecular Dynamics in biology
and medicine. Curr Opin Struct Biol. 37 (2016), pp. 9–13.

9. D. Shirvanyants, F. Ding, D. Tsao, S. Ramachandran, N. v. Dokholyan, Discrete
molecular dynamics: An efficient and versatile simulation method for fine protein
characterization. Journal of Physical Chemistry B. 116, 8375–8382 (2012).

10. F. Ding, S. Sharma, P. Chalasani, V. v. Demidov, N. E. Broude, N. v. Dokholyan, Ab initio
RNA folding by discrete molecular dynamics: From structure prediction to folding
mechanisms. Rna. 14, 1164–1173 (2008).

11. D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (2014).
12. A. Barducci, M. Bonomi, M. Parrinello, Metadynamics. Wiley Interdiscip Rev Comput Mol

Sci. 1, 826–843 (2011).
13. J. Kästner, Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci. 1 (2011), ,

doi:10.1002/wcms.66.
14. F. Noé, S. Olsson, J. Köhler, H. Wu, Boltzmann generators: Sampling equilibrium states

of many-body systems with deep learning. Science (1979). 365 (2019),
doi:10.1126/science.aaw1147.

15. P. Duchon, P. Flajolet, G. Louchard, G. Schaeffer, Boltzmann Samplers for the Random
Generation of Combinatorial Structures. Combinatorics, Probability and Computing. 13,
577–625 (2004).

16. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, "PyTorch: An imperative style,
high-performance deep learning library" in Advances in Neural Information Processing
Systems (2019), vol. 32.

17. S. Doerr, M. Majewski, A. Pérez, A. Krämer, C. Clementi, F. Noe, T. Giorgino, G. de
Fabritiis, TorchMD: A Deep Learning Framework for Molecular Simulations. J Chem
Theory Comput. 17, 2355–2363 (2021).

18. A. v. Onufriev, D. A. Case, Generalized Born Implicit Solvent Models for Biomolecules.
Annu Rev Biophys. 48 (2019), , doi:10.1146/annurev-biophys-052118-115325.

19. A. Onufriev, D. Bashford, D. A. Case, Exploring Protein Native States and Large-Scale
Conformational Changes with a Modified Generalized Born Model. Proteins: Structure,
Function and Genetics. 55 (2004), doi:10.1002/prot.20033.

20. J. Mongan, D. A. Case, J. A. McCammon, Constant pH molecular dynamics in
generalized Born implicit solvent. J Comput Chem. 25 (2004), doi:10.1002/jcc.20139.

21. V. Tsui, D. A. Case, Theory and applications of the Generalized Born solvation model in
macromolecular simulations. Biopolymers. 56 (2000), doi:10.1002/1097-
0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E.

22. H. Nguyen, D. R. Roe, C. Simmerling, Improved generalized born solvent model
parameters for protein simulations. J Chem Theory Comput. 9 (2013),
doi:10.1021/ct3010485.

23. Y. Zhou, C. Barnes, J. Lu, J. Yang, H. Li, "On the continuity of rotation representations in
neural networks" in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (2019), vols. 2019-June, pp. 5738–5746.

24. J. Zhang, T. He, S. Sra, A. Jadbabaie, Why Gradient Clipping Accelerates Training: A
Theoretical Justification for Adaptivity (2020).

25. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research.
15, 1929–1958 (2014).

26. K. Batra, K. M. Zorn, D. H. Foil, E. Minerali, V. O. Gawriljuk, T. R. Lane, S. Ekins, Quantum
Machine Learning Algorithms for Drug Discovery Applications. J Chem Inf Model. 61,
2641–2647 (2021).

27. J. Li, M. Alam, C. M. Sha, J. Wang, N. v. Dokholyan, S. Ghosh, "Invited: Drug Discovery
Approaches using Quantum Machine Learning" in 2021 58th ACM/IEEE Design
Automation Conference (DAC) (IEEE, 2021), pp. 1356–1359.

28. L. Banchi, M. Fingerhuth, T. Babej, C. Ing, J. M. Arrazola, Molecular docking with
Gaussian Boson Sampling. Sci Adv. 6 (2020), doi:10.1126/sciadv.aax1950.

29. A. Abu-Nada, Quantum computing simulation of the hydrogen molecular ground-state
energies with limited resources. Open Physics. 19, 628–633 (2021).

30. J. Li, R. O. Topaloglu, S. Ghosh, Quantum Generative Models for Small Molecule Drug
Discovery. IEEE Transactions on Quantum Engineering. 2, 1–8 (2021).

31. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, H. Neven, Barren plateaus in
quantum neural network training landscapes. Nat Commun. 9, 4812 (2018).

32. P. Eastman, J. Swails, J. D. Chodera, R. T. McGibbon, Y. Zhao, K. A. Beauchamp, L. P.
Wang, A. C. Simmonett, M. P. Harrigan, C. D. Stern, R. P. Wiewiora, B. R. Brooks, V. S.
Pande, OpenMM 7: Rapid development of high performance algorithms for molecular
dynamics. PLoS Comput Biol. 13 (2017), doi:10.1371/journal.pcbi.1005659.

33. A. Burden, R. L. Burden, J. Douglas Faires, Numerical Analysis, 10th ed. (2016), vol. 10.
34. Praxeolytic, Dihedral/Torsion Angle From Four Points in Cartesian Coordinates in Python.

Stack Overflow (2015).
35. A. Bondi, van der Waals Volumes and Radii. J Phys Chem. 68, 441–451 (1964).
36. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms (MIT

Press, Cambridge, MA, ed. 3, 2009).

37. J. S. Dai, Euler–Rodrigues formula variations, quaternion conjugation and intrinsic
connections. Mech Mach Theory. 92, 144–152 (2015).

38. P. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation (Wiley,
Hoboken, ed. 1st, 2017).

39. M. AlQuraishi, Parallelized Natural Extension Reference Frame: Parallelized Conversion
from Internal to Cartesian Coordinates. J Comput Chem. 40, 885–892 (2019).

40. M. AlQuraishi, End-to-End Differentiable Learning of Protein Structure. Cell Syst. 8, 292-
301.e3 (2019).

41. W. Kabsch, A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica Section A. 32 (1976), doi:10.1107/S0567739476001873.

42. E. A. Coutsias, C. Seok, K. A. Dill, Using quaternions to calculate RMSD. J Comput Chem.
25 (2004), doi:10.1002/jcc.20110.

43. Bindel, Power Iteration. Lecture Notes (2009), pp. 1–4.
44. B. Shi, B. Petrovic, Implementation of the modified power iteration method to two-group

Monte Carlo eigenvalue problems. Ann Nucl Energy. 38, 781–787 (2011).
45. N. Misra, H. Singh, V. Hnizdo, Nearest neighbor estimates of entropy for multivariate

circular distributions. Entropy. 12 (2010), doi:10.3390/e12051125.
46. S. Ross, Introduction to Probability and Statistics for Engineers and Scientists (Elsevier,

2021).
47. D. P. Kingma, J. L. Ba, "Adam: A method for stochastic optimization" in 3rd International

Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings
(2015).

48. K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition" in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (2016), vols. 2016-Decem, pp. 770–778.

49. B. Xu, N. Wang, T. Chen, M. Li, Empirical Evaluation of Rectified Activations in
Convolutional Network. ArXiv (2015) (available at http://arxiv.org/abs/1505.00853).

50. A. L. Maas, A. Y. Hannun, A. Y. Ng, "Rectifier nonlinearities improve neural network
acoustic models" in in ICML Workshop on Deep Learning for Audio, Speech and
Language Processing (2013).

51. A. A. Hagberg, D. A. Schult, P. J. Swart, "Exploring network structure, dynamics, and
function using NetworkX" in 7th Python in Science Conference (SciPy 2008) (2008).

52. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K.
Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, T. E. Oliphant, Array
programming with NumPy. Nature. 585 (2020), pp. 357–362.

53. S. van der Walt, S. C. Colbert, G. Varoquaux, The NumPy array: A structure for efficient
numerical computation. Comput Sci Eng. 13, 22–30 (2011).

54. W. McKinney, "Data Structures for Statistical Computing in Python" in (2010), pp. 56–61.
55. J. D. Hunter, Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 9, 90–95 (2007).
56. The PyMOL Molecular Graphics. Version 2.0 Schrödinger, LLC., (available at

https://pymol.org/2/support.html%0Ahttps://scholar.google.com/scholar?hl=en&as_sdt=
0%2C5&q=The+PyMOL+Molecular+Graphics+System%2C+Version+1.74.4+Schroding
er%2C+LLC.+https%3A%2F%2Fpymol.org%2F+%3B+Accessed+10+February+2020.&
btnG=%0Ahttps://pymol.org/2/supp).

57. D. Sehnal, S. Bittrich, M. Deshpande, R. Svobodová, K. Berka, V. Bazgier, S. Velankar,
S. K. Burley, J. Koča, A. S. Rose, Mol∗Viewer: Modern web app for 3D visualization and
analysis of large biomolecular structures. Nucleic Acids Res. 49 (2021),
doi:10.1093/nar/gkab314.

58. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K.
J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ.
Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.
Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P.
van Mulbregt, A. Vijaykumar, A. pietro Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A.
Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C.
Fitzgerald, D. A. Nicholson, D. R. Hagen, D. v. Pasechnik, E. Olivetti, E. Martin, E. Wieser,
F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G.-L. Ingold, G. E. Allen, G. R.
Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavič, J. Nothman,
J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J.
Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M.
Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N.
Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis,
S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel,
T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay,
Y. O. Halchenko, Y. Vázquez-Baeza, SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat Methods. 17, 261–272 (2020).

Acknowledgements:

Funding: We acknowledge support from the National Institutes of Health (NIH) 1R35
GM134864, 1RF1 AG071675, 1R01 AT012053, the National Science Foundation
2210963, and the Passan Foundation.

Author contributions:
C.M.S: conceptualization, data curation, formal analysis, investigation, methodology,
software, validation, visualization, writing – original draft, writing – review & editing.
J.W.: investigation, methodology, software, validation, writing – review & editing.
N.V.D.: formal analysis, funding acquisition, investigation, methodology, project
administration, resources, supervision, validation, visualization, writing – review & editing.

Competing interests:
We declare that we have no competing interests which might affect the results or
conclusions presented in this work.

Data and materials availability:
All code (Jupyter notebooks, Python scripts) to reproduce the results in this work are
included in the Supplemental Materials (diffrot-code.zip), and we will maintain a BitBucket
repository to address errors and bugs (https://bitbucket.org/dokhlab/diffrot-manuscript/).
Non-essential pretrained model weights are available upon request to the corresponding

author (dokh@psu.edu). We also include example movies generated by our rotameric
Boltzmann generators (Movies 1 and 2).

Supplementary materials
Materials and methods
Supplementary Table S1
Code (diffrot-code.zip)
Movie 1 and 2 (*.mp4)
Algorithms 1-6

Figures

Fig. 1: Differentiable rotamer sampling for Boltzmann generators. Given an arbitrary
macromolecule, we identify all the rotameric degrees of freedom; in the case of a protein
these degrees of freedom are the dihedral angles of backbones and side chains). We use
a neural network to generate changes to the dihedral angles, and perform the rotations
on the protein structure. Finally, we evaluate the energy and forces of the resulting
structure with respect to a molecular force field, and backpropagate the gradients through
the sampling process to the neural network. In this way, we can train the neural network
to produce states with low energy, allowing for the study of potential stable conformations
of the macromolecule.

Fig. 2: Differentiable rotamer sampling workflow. (a) The protein (chicken villin
headpiece, PDB ID 1VII) is split into fragments, whose rotamers can be sampled in
parallel. (b) For each rotameric degree of freedom, we split the macromolecule into two
connected components at the associated bond, using a depth-first search on the graph
of bonds. We then rotate (red) the smaller connected component (blue) about the bond
axis by the neural network output 𝜃, using Rodrigues’ formula. (c) To combine fragments
after dihedrals have been sampled for each fragment, we use an alignment algorithm
(Kabsch or quaternionic) on specific atoms in the backbone. Through this method, we
can therefore explore the energy landscape of the macromolecule solely as a function of
its internal, rotameric degrees of freedom. Because each step of this method is
differentiable, we can backpropagate gradients through the rotamer sampling process to
provide derivatives for 𝜃. (d) Intuition for exponential acceleration of power iteration. We
used repeated matrix squaring to achieve high matrix powers, leading to exponential
acceleration of the traditional power iteration algorithm for finding the largest magnitude
eigenvalue and associated eigenvector. With higher powers of 𝑀 multiplying an arbitrary
vector 𝑣, the 𝑒" component is gradually suppressed.

Fig. 3: Evaluating the consequences of neural network pre-training and entropy
(chicken villin headpiece, PDB ID 1VII). We only sampled the protein backbone
dihedrals. (a)-(b) Examining the effect of pre-training to produce the native structure, as
well as the role of entropy in neural network training. (a) The minimum energy structure
produced from ~600 structures across 3 trained networks; not trained on the entropy. (b)-
(c) Correlation coefficients between traditional MD alpha-carbon root mean square
fluctuations (RMSF) and neural network RMSF. (b) neural networks trained without
entropic estimation; (c) neural networks trained on the full loss described in Results.
Entropy training is necessary to reproduce traditional RMSFs. (d) Distribution of all
correlation coefficients from (b), with median of 0.23 (dashed line). (e) Distribution of all
correlation coefficients from (c), with median of 0.63 (dashed line). We performed a Fisher
r-to-z transform on the data for (d) and (e) and performed a t-test for unequal variances,
(𝑡 = −39.78, 𝑝	 < 	0.001). Training with entropy (e) better reproduces relative RMSFs
than without (d). (f)-(h) Traditional MD RMSF versus the neural network RMSF for the
four networks with the highest correlation. (f) RT=0.62, 1200 epochs, r=0.73; (g) RT=0.62,
1000 epochs, r=0.75; (h) RT=9.06, 200 epochs, r=0.75.

Fig. 4: Training characteristics across a range of temperatures. In these plots, we
examine the effect of training on the energies of output structures; for rotamer sampling,
we only sampled the protein backbone dihedrals. (a)-(c), for each value of the
temperature, we trained three neural networks, first on a loss to reproduce the native
structure for 1,000 epochs, and then by the Boltzmann loss of the full energy and entropy
for up to 2,400 epochs. Colorbars indicate the numerical value for each square. (a) Each
square represents the median energy of ~600 generated structures across all three
networks. (b) Minimum energy of the structures. (c) The median RMSD from the native
structure. (d) and (e) Initial energy distribution at 𝑅𝑇 = 0.62	kJ/mol and 10	kJ/mol
respectively. (g) and (h) Final energy distribution at the same temperatures. (f) Energy
distributions as a function of training epochs for one of the networks we trained at 𝑅𝑇 =
0.62	kJ/mol. (i) Energy distributions as a function of training epochs for one of the
networks we trained at 𝑅𝑇 = 10	kJ/mol. Higher temperatures homogenize the sampled
structures in terms of energy, in (a)-(b). In (d)-(i), we observe that training the neural
networks equilibrated within a few hundred epochs of training.

Fig. 5: Benchmarking of rotamer sampler and the energy function written in
PyTorch. (a) and (b) Comparing performance of the parallel dihedral sampler on chicken

villin headpiece (PDB ID 1VII), split into four fragments. We compared CPU-only
computation on an M1 Max MacBook Pro (blue) to a NVIDIA Tesla T4 GPU with 16 GB
RAM (orange). We observed a plateau above a batch size of 4096 in performance
increase, indicating saturation of the GPU with CUDA kernels. (c) and (d) Comparing the
performance of the non-parallel (blue) and parallel (orange) versions of the dihedral
sampler. (e) and (f) Comparing the M1 Max (blue) versus the NVIDIA GPU (orange) on
the energy function. For a batch size of 256 and higher, the 16 GB GPU ran out of memory.

Materials and methods
Ad hoc propagation of forces
Since MD force fields are optimized and parallelized to calculate forces in addition to
energies, we propose using the forces directly as gradients for neural network training.
Assume that a neural network 𝑁 produces atomic positions 𝒙 from Gaussian random
variables 𝒛 and neural network parameters 𝒑:

𝒙 = 𝑁(𝒛; 𝒑)
(7)

We sought to optimize 𝒑 with respect to the energy function

𝑈45(𝒙) = 𝑈(𝑁(𝒛; 𝒑))
(8)

In other words, we sought to calculate the gradients

𝜕𝑈
𝜕𝑝*

=*
𝜕𝑈
𝜕𝑥3

⋅
𝜕𝑥3
𝜕𝑝*3

=*
𝜕𝑈
𝜕𝑥3

⋅
𝜕i𝑁(𝒛; 𝒑)j

3

𝜕𝑝*3

(9)

However, by definition, the forces are the gradients of the energy with respect to the
position

𝐹3 = −
𝜕𝑈45
𝜕𝑥3

(10)

Therefore, we do not need to backpropagate gradients through the external molecular
force field to provide gradients with respect to 𝒑. Instead of differentiating 𝑈45 to train the
network, we propose to use the loss

𝑈,)6 = −*𝐹3 ⋅ 𝑥3
3

= −*𝐹3 ⋅ i𝑁(𝒛; 𝒑)j3
3

(11)

Notice that 𝐹3 is no longer a function of 𝒙 (and therefore not of 𝒛 or 𝒑 either), since we are
using it as a constant input from the molecular force field. Taking a derivative,

𝜕𝑈,)6
𝜕𝑥*

= −*𝐹3 ⋅
𝜕𝑥3
𝜕𝑥*3

= −𝐹* =
𝜕𝑈45
𝜕𝑥*

(12)

Since the gradients for 𝑈,)6 are the same as for 𝑈45, there is no theoretical difference
between training on 𝑈,)6 instead of on 𝑈45. There is no need for a statistical estimate

(i.e. KL divergence) of the gradients with respect to the force field energy, as was done
in the original work by Noé et al (14).

This method is shown in Algorithm 1: FFDiff.

Physical interpretation of 𝑈,)6
We can show that 𝑈,)6 has a physical meaning beyond being a convenient loss function.

First, we note that 𝑈,)6 is manifestly rotation-invariant. It is the sum of the inner products
of vectors in Euclidean space; rotation of the coordinate system rotates both the position
and force contravariantly, leaving the inner product unchanged.

Second, 𝑈,)6 is translation invariant. Say that we translate a system of particles by a
vector 𝒑. Then in the new primed coordinates, 𝑈,)67 is

𝑈,)67 = −*𝐹37 ⋅ 𝑥37

3

= −*𝐹3 ⋅ (𝑥3 − 𝒑)
3

(13)

assuming the intramolecular forces are unchanged (𝐹7 = 𝐹) with translation (𝑥7 = 𝑥 − 𝒑).

Splitting up the net forces 𝐹3 into all pairwise forces 𝐹3* (the force exerted on particle 𝑗 by
particle 𝑖), and then splitting up the sum, we may write

𝑈,)67 = −*𝐹3* ⋅ i𝑥3 − 𝒑j
*83

−*𝐹3* ⋅ i𝑥3 − 𝒑j
38*

−*𝐹3*
*93

⋅ i𝑥3 − 𝒑j

(14)

By Newton’s third law (assuming the molecular force field is conservative), every force
must be paired with an equal and opposite force, so 𝐹3* = −𝐹*3, and therefore the third
sum is 0 (𝑖 = 𝑗). The remaining sums are over the upper and lower triangles of 𝐹3*.

𝑈,)67 = −*𝐹3* ⋅ i𝑥3 − 𝒑j
*83

−*𝐹3* ⋅ i𝑥3 − 𝒑j
38*

(15)

By linearity,

𝑈,)67 = −*n𝐹3* ⋅ 𝑥3 − 𝐹3*	 ⋅ 𝒑o
*83

−*n𝐹3* ⋅ 𝑥3 − 𝐹3*	 ⋅ 𝒑o
38*

= −*𝐹3* ⋅ 𝑥3
*83

−*𝐹3* ⋅ 𝑥3
38*

− 𝒑 ⋅*𝐹3*
*83

− 𝒑 ⋅*𝐹3*
38*

= −*𝐹3* ⋅ 𝑥3
*83

−*𝐹3* ⋅ 𝑥3
38*

− 𝒑 ⋅ p*i𝐹3* + 𝐹*3j
*83

q

(16)

Finally, we apply Newton’s third law again so that the third term cancels, and therefore
𝑈,)67 has no dependence on 𝒑 and therefore it is translation-invariant.

To interpret the physical meaning of 𝑈,)6, it suffices to examine a simple system. Say
there is a pair of particles connected by a spring, with particle 1 at the origin (𝑥1 = [0, 0, 0])
and particle 2 at 𝑥" = [1, 0, 0]	. Assume that the spring is compressed, so that the force
pushes the particles away from each other: 𝐹1 = [−𝑘, 0, 0] and 𝐹" = [𝑘, 0, 0]. In this case,
we can directly calculate

𝑈,)6 = −𝐹1 ⋅ 𝑥1 − 𝐹" ⋅ 𝑥" = −[−𝑘, 0, 0] ⋅ [0, 0, 0] − [𝑘, 0, 0] ⋅ [1, 0, 0] = −𝑘
(17)

Hence, if the spring is instead stretched beyond its equilibrium length, then 𝑈,)6 is
positive. Since 𝑈,)6 is invariant under rotation and translation of the system, our choice
of coordinate system was irrelevant. Generalizing to many pairs of particles and many
springs, the interpretation for 𝑈,)6 is that it measures the total compressive energy of the
system, with negative values indicating the system is compressed with respect to
equilibrium and positive values indicating the system is stretched with respect to
equilibrium.

Differentiable force fields
Using OpenMM 7.7 (32) as our reference, we rewrote force field terms from OpenMM in
terms of pure PyTorch operations, allowing for automatic differentiation of the molecular
energy without the memory overhead of repeatedly transferring positional data between
PyTorch (16) and OpenMM. Our implementation creates a custom PyTorch function for
a provided molecule which stores the computational graph necessary to reproduce its
energy. After it is prepared, the PyTorch energy function requires the user only to supply
the coordinates (in nanometers) of each atom, in the same order as presented in the input
molecular file. From the user-supplied atomic positions 𝑥* , we calculate all pairwise
displacements

𝑠*3 = 𝑥* − 𝑥3
(18)

and Euclidean distances

𝑑*3 = v𝑠*3v = v𝑥* − 𝑥3v = w*x(𝑥*); − i𝑥3j;y
"

;

(19)

For the all-atom AMBER 14 force field (2), we implemented: (1) harmonic bond lengths,
(2) harmonic bond angles, (3) pairwise atomic Coulomb interactions, (4) pairwise atomic
Lennard-Jones potentials, (5) periodic backbone dihedral (torsional) angle energies, and
(6) generalized Born implicit solvent energies.

First, we imported the molecular topology into OpenMM, which assigns parameter values
for each atom or tuple of atoms. Second, we referenced the OpenMM documentation to
implement each of the forces.

Harmonic bond lengths: the AMBER force field provides particle indices representing a
covalent bond 𝑏 = (𝑖, 𝑗), the bond length 𝑙<, and the bond strength 𝑘<. For each bond, we
calculate an energy term with these parameters and the pairwise atomic distances:

𝐸=/(2>,*?	<>,@A =*
1
2𝑘<i𝑑*3 − 𝑙<j

"

<

	

(20)

In OpenMM, the parameters are contained in a HarmonicAngleForce object.

Harmonic bond angles: for every triple of atoms which are covalently connected in a linear
chain, the AMBER force field provides particles indices 𝑡 = (𝑖, 𝑗, 𝑘) ∈ 𝑇 in which 𝑗 is the
middle atom, a bond angle 𝜙., and a bond angle strength 𝑘.. We calculate the angle 𝜃*3;
formed between 𝑠3* and 𝑠3; (the order of the indices is important) through the dot product
identity

cos 𝜃*3; =
𝑠3* ⋅ 𝑠3;
v𝑠3*vv𝑠3;v

=
𝑠3* ⋅ 𝑠3;
𝑑3*𝑑3;

(21)

The corresponding energy term is then:

𝐸=/(2>,*?	/,+B)A =*
1
2𝑘.i𝜃*3; − 𝜙.j

"

.

(22)

In OpenMM, the parameters are contained in a HarmonicBondForce object.

Pairwise atomic Coulomb and Lennard-Jones interactions: for every pair of atoms, there
is an electrostatic force as a function of the interatom distance 𝑑*3 due to estimated partial
charges 𝑞* from AMBER.

𝐸)B)?.(>A./.*? =*
𝑞*𝑞3

4𝜋𝜖C𝑑*3*D3

(23)

For every pair of atoms, there is a Lennard-Jones potential which approximates long-
range dipole-dipole attractions and short-range nuclear repulsions. AMBER provides an
energy scale 𝜖*3 and interaction distance 𝜎*3 for each pair of particles.

𝐸EF =*
𝜖*3
4 ��

𝜎*3
𝑑*3
�
1"

− �
𝜎*3
𝑑*3
�
&

�
*D3

(24)

Certain Lennard-Jones and Coulomb interactions are often ignored or modified for atoms
which are within a certain number of bonds of each other. These modifications can be
thought of as setting elements of the matrices 𝜖*3, 𝜎*3, and 𝑑*3 to specific values and are
included in the OpenMM implementation of AMBER.

During regularization of the force field, we adjusted the Lennard-Jones potential so that
for all particles below a certain distance, the force was a constant repulsive one. Given a
maximum force magnitude for internuclear repulsion 𝐹2 , and for each Lennard-Jones
interaction, we first computed the magnitude of the force for that interaction

𝐹EF,*3(𝑑*3) =
𝜖*3
4𝑑*3

�6 �
𝜎*3
𝑑*3
�
&

− 12�
𝜎*3
𝑑*3
�
1"

�

(25)

For numerical stability, we computed �H!"
@!"
�
&
/𝑑*3 	 and �H!"

@!"
�
1"
/𝑑*3 in the given order of

operations rather than taking the ratio of the powers
H!"
#

@!"
$ and

H!"
%&

@!"
%'. At 𝑟2*,,*3 = √2# 𝜎, the

Lennard-Jones interaction achieves its minimum value, and thus 𝐹EF,*3i𝑟2*,,*3j = 0. This
is the only minimum of the Lennard-Jones potential, and it can be seen that 𝐹EF,*3 is a
monotonically increasing function of the distance, with an asymptote at 𝑑*3 = 0 which
tends to negative infinity. Therefore to find the value 𝑟2/I	+(/@,*3 at which the magnitude
of the repulsive force is equal to 𝐹2, we used the bisection method for root finding (33).
We did not use the Newton-Raphson method or other methods which require the second
derivative of the Lennard-Jones potential due to numerical stability.

For a given value of 0 ≤ 𝐹2 < ∞, we know that the solution of the equation

v𝐹EF,*3i𝑑*3jv − 𝐹2 = 0

lies in the interval (0, 𝑟2*,,*3]. Therefore by starting with the initial guess 𝑑*3C = 𝑟2*,,*3/2, we
may bisect the interval repeatedly to determine the approximate value of the zero ,

depending on if v𝐹EF,*3i𝑑*3jv > 𝐹2 or v𝐹EF,*3i𝑑*3jv < 𝐹2. We performed this bisection
𝑛<*A)?. = 100 times, which should ensure a negligibly small error for 𝑟2/I	+(/@,*3. Since 𝜎*3
was measured on the nanometer scale and numerical values for 𝜎*3, the bisection method
should be accurate to roughly 1 part in 2,(!)*+,, or 10$#C nanometers.

We defined the regularized energy as

𝐸EF,()+ =*�
𝜖*3
4
��
𝜎*3
𝑑*3
�
1"

− �
𝜎*3
𝑑*3
�
&

� , if	𝑑*3 > 𝑟2/I	+(/@,*3

𝐸C,*3 − 𝐹2𝑑*3 , otherwise*D3

(26)

Where 𝐸C,*3 was chosen so that the 𝐸EF,()+ is continuous at 𝑑*3 = 𝑟2/I	+(/@,*3 . By
inspection, the derivative of the regularized potential at close internuclear distances is
−𝐹2, as desired.

In OpenMM, parameters for Coulomb and Lennard-Jones interactions, as well as any
modifications, are contained in a NonbondedForce object.

Periodic backbone dihedral (torsional) angle energies: for every linear chain of four atoms
𝑐 = (𝑖, 𝑗, 𝑘, 𝑙), AMBER provides a periodic force for the dihedral angle, which is defined as
the angle that 𝑠3* makes with respect to 𝑠;B when viewed in the plane whose normal is 𝑠3;,
defined by a periodicity 𝑛?, energy scale 𝜖?, and phase shift 𝜙?.

The dihedral angle 𝜃? is calculated by first normalizing 𝑠3;:

�̂�3; =
𝑠3;
𝑑3;

(27)

and projecting 𝑠3* and 𝑠;B onto the plane of interest:

�̃�3* = i1 − 𝑠3* ⋅ �̂�3;j𝑠3*
�̃�;B = i1 − 𝑠;B ⋅ �̂�3;j𝑠;B

(28)

Then the dot product identity states that

�̃�3* ⋅ �̃�;B = |�̃�3*||�̃�;B| cos 𝜃?
(29)

To avoid numerical instabilities and to recover the dihedral angle from the full range
[−𝜋, 𝜋) (34), we compute

i�̂�3; × �̃�3*j ⋅ �̃�;B = |�̃�3*||�̃�;B| sin 𝜃?
(30)

which is a special case of the polar sine, and finally

𝜃? = atan2
�̃�3* ⋅ �̃�;B

i�̂�3; × �̃�3*j ⋅ �̃�;B

(31)

The torsional energy is then:
𝐸.>(A*>, =*𝜖?[1 + cos(𝑛?𝜃? − 𝜙?)]

?

(32)

In OpenMM, the parameters are contained in a PeriodicTorsionForce object.

Generalized Born implicit solvent: we used the generalized Born implicit solvent with
improved parameters (22, 35), labeled GBn2 in OpenMM or igb=8 in AMBER. The
functional form for this energy is complicated, so we only present the calculations
necessary to reproduce the energy. Global parameters for the implicit solvent are
cutoff,)?; = 0.68 , scale,)?; = 0.826836 , offset = 0.0195141 , 𝜖A>BJ.) = 1 , 𝜖A>BK),. = 78.5 ,
and integral corrections 𝜂 = 28.3919551 and 𝜃 = 0.14 ; per particle and per pair
parameters are Born radii radius* , Born/van der Waals cutoff adjustments or* and sr* ,
partial charges 𝑞*, effective radii scaling parameters (𝛼* , 𝛽* , 𝛾*), and pairwise neck integral
parameters 𝑑C,*3 and 𝑚C,*3. Given pairwise particle distances 𝑑*3 , we calculate

𝐷*3 = 𝑑*3 − 𝑠𝑟3
(33)

𝐿*3 = max(or* , 𝐷*3)
(34)

𝑈*3 = 𝑑*3 + 𝑠𝑟3
(35)

𝐼K@6,*3 = 1
1
2 �

1
𝐿*3

−
1
𝑈*3

+
1
4�𝑑*3 −

sr3"

𝑑*3
��

1
𝑈*3"

−
1
𝐿*3"
� +

1
2𝑑*3

log
𝐿*3
𝑈*3
 , 𝑑*3 > sr* − or*

0, otherwise

(36)

𝐼,)?;,*3

= 1

𝑚C,*3

1 + 100i𝑑*3 − 𝑑C,*3j
"
+ 300,000i𝑑*3 − 𝑑C,*3j

& , 𝑑*3 < radius* + radius3 + cutoff,)?;

0, otherwise

(37)

𝐼*3 = 𝐼K@6,*3 + scale,)?;𝐼,)?;,*3
(38)

For each particle, note that 𝐼** = 0. We then compute

𝐼* =*𝐼*3
3

(39)

𝜓* = 𝐼*or*
(40)

𝐵* = �
1
or*

−
tanh(𝛼*𝜓* − 𝛽*𝜓*" + 𝛾*𝜓*#)

radius*

$1

(41)

oroffset,* = 𝑜𝑟* + offset
(42)

𝑓QR,*3 = w𝑑*3" + 𝐵*𝐵3 exp �−
𝑑*3"

4𝐵*𝐵3
�

(43)

The implicit solvent energy is then

𝐸QR = −
1
2*

𝑞*"

4𝜋𝜖C𝐵*
¥

1
𝜖A>BJ.)

−
1

𝜖A>BK),.
¦

*

+*𝜂ioroffset,* + 𝜃j
" x
oroffset,*
𝐵 y

&

*

−*
𝑞1𝑞"

4𝜋𝜖C𝑓QR,*3
¥

1
𝜖A>BJ.)

−
1

𝜖A>BK),.
¦

*D3

(44)

In OpenMM, the parameters are contained in a CustomGBForce object. The implicit
solvent modifies the Coulomb energies computed earlier.

We computed all non-indexed sums on pairs of particles using the full matrix format, which
duplicated some of the necessary computations. We verified that energies and gradients
from our PyTorch implementation matched that of OpenMM to within 5% (see Code).

Avoiding singularities in the energy function during backpropagation
Numerical singularities in gradients arose due to true singularities in the energy function
and artificial singularities due to the computational graph.

True singularities in the gradient arose during both the forward and backward passes due
to square roots, logarithms, and negative powers. In all cases in our energy function, we

are guaranteed that the argument of the function is nonnegative. Therefore, we avoided
true singularities by adding a small positive offset 𝜖 to all affected computations.

For computations which were performed but later discarded, such as those involving the
diagonal of the distance matrix, we manually set specific terms to fixed constant values
using PyTorch’s masked fill function so that during backpropagation, the gradient for
those terms would be fixed to 0 instead of NaN.

Preparation of macromolecule graph metadata for rotameric sampling
Given an arbitrary macromolecule whose atoms are covalently bonded into a single
connected structure, we sought to modify only the dihedral angles.

First, we created an undirected graph (36) 𝐺 = (𝑉, 𝐸) of the macromolecule, with atoms
as the nodes 𝑉 and covalent bonds as the edges 𝐸 ⊆ 𝑉 × 𝑉.

Second, many macromolecules contain cycles which reduce the number of degrees of
freedom by one, so we performed a depth-first search (which generates a tree) to break
cycles at a single bond and retaining all other bonds as dihedral degrees of freedom: 𝑇 =
(𝑉, 𝐸S).

Third, we removed all leaf nodes and edges terminating on leaves, since the bonds
corresponding to such edges do not represent a dihedral angle: 𝑇@*= = (𝑉@*= , 𝐸@*=). For
each remaining edge 𝑒 ∈ 𝐸@*=, we assigned an output of the neural network to control the
dihedral angle for that bond.

Finally, for each dihedral edge 𝑒 ∈ 𝐸@*=, we used depth-first search to calculate the two
connected components of 𝑇@*= that result with the removal of 𝑒. We recorded the smaller
of the two connected components, 𝐶𝐶(𝑒) ⊆ 𝑉, as the atoms which we would rotate about
the dihedral axis represented by the 𝑒.

This method is shown in Algorithm 2: PrepRot.

Differentiable rotamer sampling
We started with the 𝑁 × 3 matrix of positions 𝑥*3

(C) (1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 3) of all the atoms in
the macromolecule. For each of the angles 𝜃2 predicted by the neural network, we
selected the corresponding edge 𝑒2 = (𝑢2, 𝑣2) , where 𝑢2 and 𝑣2 represent the two
atoms forming the covalent bond. We calculated the axis of rotation with components

𝑘2 = 𝑝J- − 𝑝K-
(45)

using the positions of atoms 𝑢2 and𝑣2 , which have components i𝑝J-j3 = 𝑥J-3
(2) and

i𝑝K-j3 = 𝑥K-3
(2). We did not prefer a specific orientation for each rotation axis, since we

predicted the full 2𝜋 range for each 𝜃2. We also computed the centroid of the bond as
the origin for rotation:

𝑐2 =
1
2 i𝑝J- + 𝑝K-j

(46)

We normalized 𝑘2 to a unit vector, 𝑘¬2 . We used Rodrigues’ rotation formula(37) for
rotation around an axis by an angle to calculate a rotation matrix 𝑅(𝜃2, 𝑘¬2):

𝑅i𝜃2, 𝑘¬2j = 𝐼 + (sin 𝜃2)𝐾2 + (1 − cos 𝜃2)𝐾2"
(47)

𝐾2 = ®
0 −𝑘V 𝑘-
𝑘V 0 −𝑘I
−𝑘- 𝑘I 0

¯

(48)

We then took the previously calculated connected component 𝐶𝐶(𝑒2), translated all the
particles in that connected component by −𝑐2 , applied the rotation matrix 𝑅2 , and
translated the selected particles back by 𝑐2:

𝑥*3
(2W1) = °

([𝑅2 ⋅ (𝑝* − 𝑐2)] + 𝑐2)3 , if	𝑖 ∈ 𝐶𝐶(𝑒2)
𝑥*32, otherwise

(49)

After performing this transformation for the 𝑀 dihedrals we wish to sample, we return our
final position matrix as the output, 𝑥*3

(4W1).

This method of differentiable rotamer sampling is shown in Algorithm 3: DiffRot.

Bias-free, continuous representation of dihedral angles
We used simple feedforward neural networks, with a continuous representation of angles
for the output (23). To avoid biasing predicted angles, we did not predict angles directly.
For each dihedral angle 𝜃2 , we used our neural network to predict two parameters,
(𝑥2, 𝑦2), and calculated 𝜃2 = atan2(𝑦2, 𝑥2). atan2 and its derivative are well-defined for
all (𝑥2, 𝑦2) in all four quadrants and produces an angle in the range [−𝜋, 𝜋). To regularize
our neural networks and prevent (𝑥2, 𝑦2) from drifting to the origin or infinity, we added
a loss to our training cost, with weight 𝜖I-:

𝐿I- = 𝜖I-*(𝑥2" + 𝑦2" − 1)
2

(50)

This training cost has the advantage of being rotationally symmetric so that there is no
preferred angle. For comparison, the regularization loss

𝐿X = 𝜖X p * 𝜃2"
X-8	X-./

+ * 𝜃2"
X-D	X-!0

q

(51)

will bias every angle 𝜃2 toward 1
"
(𝜃2/I + 𝜃2*,) , since the network is penalized for

exploring the space near 𝜃2/I and 𝜃2*, (14).

To show mathematically that the neural network training is biased in the latter case, even
for values of 𝜃 within the range [𝜃2/I , 𝜃2*,], we model the training process as a Markov
chain (38), and we also assume that 𝜃 can only take on a discrete set of values in the
range [𝜃2/I , 𝜃2*,] of size 𝑁 , or the values 𝜃2*, − 𝜖 or 𝜃2/I + 𝜖 . As a toy model, we
assume that the training algorithm makes a transition 𝜃 → 𝜃 − 𝜖 or 𝜃 → 𝜃 + 𝜖 with equal
probability while 𝜃 is within the range, and by the probability 1 transitions

𝜃2*, − 𝜖 → 𝜃2*, + 𝑛𝜖
𝜃2/I + 𝜖 → 𝜃2/I − 𝑛𝜖

(52)

where 𝑛 represents the learning rate and 𝑛 < 𝑁/2. This Markov chain is aperiodic and
irreducible.

At equilibrium, the Markov chain converges to a stationary or invariant probability
distribution on the angles, 𝜋(𝜃*) , which satisfies the global balance equations. The
invariant distribution can be calculated as the largest left eigenvalue/eigenvector of the
probability transition matrix 𝑞, in which the (𝑖, 𝑗) entry is the probability of transitioning
from state 𝑖 to state 𝑗.

For concreteness, we illustrate within an example. For the states

𝜃* = {𝜃2*, − 𝜖, 𝜃2*,, 𝜃2*, + 𝜖, 𝜃2*, + 2𝜖 = 	𝜃2/I − 2𝜖, 𝜃2/I − 𝜖, 𝜃2/I , 𝜃2/I + 𝜖}

(53)

and transition matrix

𝑞 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 0 1 0 0 0 0
1
2 0

1
2 0 0 0 0

0
1
2 0

1
2 0 0 0

0 0
1
2 0

1
2 0 0

0 0 0
1
2 0

1
2 0

0 0 0 0
1
2 0

1
2

0 0 0 0 1 0 0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(54)

the invariant distribution is

𝜋 = ¥ 1
18

1
9

2
9

2
9

2
9

1
9

1
18
¦

(55)

We see explicitly that values of 𝜃 outside the range [𝜃2/I , 𝜃2*,] are discouraged (𝜋1 =
𝜋Y =

1
1Z

) and that 𝜃2*, and 𝜃2/I are less likely than other values of 𝜃 which lie strictly
within the range (1

[
 vs "

[
). In practice, there may be other transitions from 𝜃 outside the

range to 𝜃 within the range, which is controlled by the learning rate. For example,
replacing 𝑞1" = 𝑞1# = 𝑞Y& = 𝑞Y% =

1
"
 and 𝑞1* = 𝑞Y* = 0 for all other 𝑖 in Eq. (54) leads to

𝜋 ≈ [0.053 0.105 0.210 0.263 0.210 0.105 0.053]

(56)

in which there is even more asymmetry among the states within the range.

Parallelization of differentiable rotamer sampling with improved memory usage
To take advantage of the parallel computing potential of GPU and TPU backends, we
followed an approach like that of AlQuraishi’s parallelized natural extension reference
frame (pNeRF) algorithm (39, 40); however, our method generalizes to all rotational
degrees of freedom.

We split protein chain into 𝑁\ fragments, splitting at the peptide bond between the C1
carbon of residue 𝑖 and the N2 nitrogen of residue 𝑖 + 1. We recorded the positions of
atoms in each segment, 𝑥;

\, where 𝑓 labels the fragment and 𝑘 labels the number of the
atom. For the N-terminal of fragment 𝑓, we appended the positions of four atoms near the
peptide bond (C1=O from the C-terminal residue of fragment 𝑓 − 1 and N2-C𝛼 from the
N-terminal residue of fragment 𝑓) and appended those four positions to the 𝑥;

\ ; we
selected the same four atoms from the C-terminal of fragment 𝑓 (C1=O from the C-

terminal residue of fragment 𝑓 and N2-C𝛼 from the N-terminal residue of fragment 𝑓 + 1).
Next, we applied our original rotamer sampling method on each fragment independently.
We then aligned the C-terminal of 𝑓 to the N-terminal of 𝑓 + 1, thus joining the fragments
together. Finally, we applied dihedral rotations using the Rodrigues’ formula as discussed
previously to the peptide bonds at which we initially split the protein chain, thus recovering
the 𝑁\ − 1 degrees of freedom lost upon splitting the chain into 𝑁\ pieces.

In addition to allowing for parallelization, this approach reduced memory usage. In our
original dihedral sampling method, instead of transforming each position separately for
each dihedral angle, we transformed all positions in the protein simultaneously, and then
masked those positions which were not part of the associated connected component
𝐶𝐶(𝑒2).

Assuming that PyTorch’s JIT compiler was not able to optimize the resulting
computational graph, this approach could be memory-intensive and computationally
inefficient, with roughly 𝑁@*= × 𝑁/.>2A 3D matrix-vector multiplications and 2 × 𝑁@*= ×
𝑁/.>2A 3D vector additions. In backpropagation, each of the intermediate matrices must
be used, resulting in 𝑁@*= × 𝑁/.>2A × 3 floating point numbers being stored (a copy of the
position matrix for each dihedral angle). In the parallel approach, ignoring the extra
positions appended to each fragment, the number of dihedrals per fragment is roughly
01!2
03

, and the number of positions per fragment is similarly 0.,4-)
03

. The total number of

floating point operations is therefore 𝑁\ × �
01!2
03

× 0.,4-)
03

� = 01!20.,4-)
03

, so we have reduced

the raw number of operations by a factor of 𝑁\. The analogous calculation for memory
usage shows a reduction by a factor of 𝑁\. Assuming PyTorch launches and runs all 𝑁\
kernels simultaneously on a GPU, we can achieve a speed-up over the original dihedral
sampler approach of 𝑁\" for large proteins, while using 1

03
 times as much memory.

Our parallelized version of differentiable rotamer sampling is summarized in Algorithm 6:
DiffRotParallel. For practical purposes, lines 1-21 in Algorithm 6 only need to be executed
once, and the rotamer sampling from lines 22 to the end may be placed in a separate
function.

Alignment of point clouds
We used two methods to align point clouds. The first was the well-known Kabsch
algorithm (41), and the second was through an alternative approach due to a quaternionic
derivation by Coutsias et al. (42). We chose to employ the second method, since it
reduced to a largest magnitude eigenvalue/eigenvector problem.

Given two sets of positions 𝑥 and 𝑦, represented by 𝑁 × 3 matrices 𝑥*3 and 𝑦*3 , with 𝑖
labeling the particle number and 𝑗 labeling the 3D components, the goal is to find the best
fit rotation matrix and translation which transform the positions of the particles in 𝑥 to the
corresponding positions in 𝑦.

We first center the two sets of points, by averaging the 3D components over all particles

�̅�3 =
1
𝑁*𝑥*3

*

𝑦½3 =
1
𝑁*𝑦*3

*

𝑋*3 = 𝑥*3 − �̅�3
𝑌*3 = 𝑦*3 − 𝑦½3

(57)

We then calculate the covariance matrix

𝐻*3 =*𝑋;*𝑌;3
;

(58)

In the Kabsch method, we calculate the singular value decomposition

𝐻 = 𝑈Σ𝑉S
(59)

Since the Kabsch method may result in improper rotations, we correct for changes in
basis orientation by calculating

𝑑 = sign(det(𝑉𝑈S))
(60)

and the optimal rotation matrix is expressed as

𝑅 = 𝑉 �
1 0 0
0 1 0
0 0 𝑑

�𝑈S

(61)

In the quaternionic approach, the quaternion associated with the optimal rotation in 3D is
the eigenvector [𝑞C, 𝑞1, 𝑞", 𝑞#] associated with the largest magnitude eigenvalue of the
traceless, symmetric matrix

𝐹 = Á

𝐻11 + 𝐻"" + 𝐻## 𝐻"# − 𝐻#" 𝐻#1 − 𝐻1# 𝐻1" − 𝐻"1
𝐻"# − 𝐻#" 𝐻11 − 𝐻"" − 𝐻## 𝐻1" + 𝐻"1 𝐻1# + 𝐻#1
𝐻#1 − 𝐻1# 𝐻1" + 𝐻"1 −𝐻11 + 𝐻"" − 𝐻## 𝐻"# + 𝐻#"
𝐻1" − 𝐻"1 𝐻1# + 𝐻#1 𝐻"# + 𝐻#" −𝐻11 − 𝐻"" − 𝐻##

Â

(62)

To convert the quaternion 𝑞 = (𝑞C, 𝑞1, 𝑞", 𝑞#) to a rotation matrix, we compute

𝑅 = ®
𝑞C" + 𝑞1" − 𝑞"" − 𝑞#" 2(𝑞1𝑞" − 𝑞C𝑞#) 2(𝑞1𝑞" + 𝑞C𝑞")
2(𝑞1𝑞" + 𝑞C𝑞#) 𝑞C" − 𝑞1" + 𝑞"" − 𝑞#" 2(𝑞"𝑞# − 𝑞C𝑞1)
2(𝑞1𝑞# − 𝑞C𝑞") 2(𝑞"𝑞# + 𝑞C𝑞1) 𝑞C" − 𝑞1" − 𝑞"" + 𝑞#"

¯

(63)

In the quaternionic approach, the sign of the eigenvalue determines the orientation of the
rotation. We assumed that the ideal proper rotation for our uses always has the largest
magnitude eigenvalue.

The quaternion approach is summarized in Algorithm 4: QuaternionAlignment.

Differentiable largest eigenvalue and associated eigenvector of a square matrix
Since linear algebra operations like torch.linalg.eigh for Hermitian matrices solve
for all eigenvalues of the matrix, we used a modified version of the power iteration
algorithm to determine the largest eigenvalue and associated eigenvector. Additionally,
this method has the advantage of being implemented in terms of pure PyTorch operations
(matrix multiplication and floating point division), which is convenient for PyTorch
backends such as Apple’s Metal Performance Shaders which do not yet have complete
coverage of linear algebra operations.

Symmetric matrices are diagonalizable, have real eigenvalues, and have an orthonormal
eigenbasis. Given such a matrix, for example the 4 × 4 matrix 𝐴 we may write

𝐴 = 𝑆Λ𝑆S
(64)

where Λ = diag(λ1, λ", ⋯ , 𝜆,) is a diagonal matrix of eigenvalues and 𝑆 is an orthonormal
matrix such that 𝑆S𝑆 = 𝐼 and the 𝑖.= column of 𝑆 is a normalized eigenvector 𝑣*
corresponding to 𝜆*. Then for any matrix power 𝑘, we may write

𝐴; = (𝑆𝛬𝑆S)(𝑆𝛬𝑆S)⋯ (𝑆𝛬𝑆S) = 𝑆Λ;𝑆S
(65)

Since Λ is diagonal, its powers are also diagonal. Carrying out the matrix multiplications,

𝐴; =*𝑣*𝜆*;𝑣*S

*

= 𝜆2/I; *�
𝜆*
𝜆2/I

�
;

𝑣*𝑣*S

*

(66)

𝑣*𝑣*S is the outer product of 𝑣* with itself:

𝑣*𝑣*S = ®

𝑣*1
𝑣*"
⋮
𝑣*,
¯ [𝑣*1 𝑣*" ⋯ 𝑣*,] = Á

𝑣*1(𝑣*1) 𝑣*1(𝑣*") ⋯ 𝑣*1(𝑣*,)
𝑣*"(𝑣*1) 𝑣*"(𝑣*") ⋯ 𝑣*"(𝑣*,)

⋮ ⋮ ⋱ ⋮
𝑣*,(𝑣*1) 𝑣*,(𝑣*") ⋯ 𝑣*,(𝑣*,)

Â

(67)

When 𝑘 is large, the relative contribution of each eigenvalue and its eigenvectors to 𝐴;
decreases in comparison to that of the maximum eigenvalue/eigenvector pair. To achieve
large powers of 𝐴, we may repeatedly square 𝐴, so that the relative contributions of the
smaller eigenvalues decreases exponentially. Thus with large 𝑘, (in practice we chose
𝑘 = 20) we have

𝐴; ≈ 𝜆2/I; 𝑣2/I𝑣2/IS
(68)

In practice, when we square 𝐴, we need to normalize by the largest magnitude element
(or any other matrix norm) to prevent 𝐴 from drifting off to infinity or 0 due to the factor of
𝜆2/I; .

We may directly read off the 𝑣* from the outer product because each row and each
column of 𝑣2/I𝑣2/IS is some multiple of 𝑣2/I. To recover the eigenvalue 𝜆2/I, we simply
apply the original matrix using the eigenvector equation 𝐴𝑣2/I = 𝜆2/I𝑣2/I and compute

𝜆2/I ≈
1
𝑛*

(𝐴𝑣2/I)*
(𝑣2/I)**

	

(69)

The power iteration through repeated squaring method is summarized in Algorithm 5:
PowerIterWithSquaring. Since we only required this method for a few 4 × 4 covariance
matrices, it contributed a negligible amount of overhead to the overall algorithm. It is novel
to this work, and can be thought of as a modified version of the power iteration algorithm
(43, 44).

Estimation of entropy
For estimation of distribution entropy of our Boltzmann generators, we used a method
tailored for multivariate circular distributions (45), which attempts to mitigate correlations
among the angles. The metric for two sets of angular samples 𝜙,𝜓 was defined as the
arclength on the unit circle for each angle

𝑑"(𝜙, 𝜓) =*n𝜋 − v𝜋 − |𝜙* − 𝜓*|vo
"	

*

(70)

Given a batch of samples Φ = [𝜙,𝜓,⋯ ,𝜔], we then computed the nearest neighbor for
each sample in the batch Φ7 = [𝜙7, 𝜓7, ⋯ , 𝜔7] according to the metric 𝑑, and estimated the
entropy of each sample as (Eq. 17 in the original manuscript (45), with first nearest
neighbors corresponding to 𝑚 = 1)

𝐻] = log 𝑑(𝜙, 𝜙7)
(71)

and averaged over the entire set of samples 𝜙 ∈ Φ. Since we were only using the entropy
to provide approximate gradients to the Boltzmann generator, we ignored all constants
which corrected for bias to the numerical value of the entropy in the original formula.

Estimation of temperature of Boltzmann-generated samples
We assumed that the energies of Boltzmann-generated samples follow an exponential
distribution

𝐸(𝑥) ∼ 𝑒$^I
(72)

To reduce the influence of outliers on our estimate, we used the median energy of the
sampled states as an estimator of the inverse temperature 𝛽. It is known analytically (46)
that

𝐸2)@*/, =
log 2
𝛽

(73)

Additional useful identities
To aid in debugging of rotation matrices, we made use of the formula for the rotation angle
and axis of an arbitrary 3 × 3 rotation matrix 𝑅.

𝜃 = cos$1 �
tr	𝑅 − 1

2 �
(74)

axis =
1

2 sin 𝜃
[𝑅#" − 𝑅"# 𝑅1# − 𝑅#1 𝑅"1 − 𝑅1"]S

(75)

where tr is the trace. These identities are direct consequences of Rodrigues’ rotation
formula.

Learning rate tuning
To ensure convergent training, we found that a learning rate of 𝛾 = 10$% was necessary
to prevent divergence during training due to large gradients. To arrive at this value of 𝛾,
we backpropagated gradients from the force field and entropic terms separately to the
angles output by the neural network (i.e., only backpropagation only through the rotameric
sampling and entropy estimation portions of the computational graph). We monitored
these gradients over the course of a training session and found that angular gradients
had a magnitude on the order of 10# . Therefore, parameters are tuned at a rate of
approximately 10# ⋅ 𝛾, per epoch, ignoring the momentum contributions in Adam (47).
With the choice 𝛾 = 10$%, we expect parameter tuning at a rate of roughly 0.01 per epoch;
along with the choice of gradient clipping at 10.0, we enforced a large dynamic range of
gradients with magnitudes under 0.01 to 10.0.

Neural network architecture
We used simple feedforward neural networks as our Boltzmann generators, with 32 latent
variables, 10 layers of 128 hidden units, dropout with a rate of 0.3 (25), residual
connections (48) between every other hidden layer, and LeakyReLU (49, 50) activations
with a coefficient of 0.3. The final output layer dimension equal to the total number of
dihedrals we wished to sample.

Traditional molecular dynamics
We performed traditional MD using the AMBER 14 force field (2) with generalized Born
implicit solvent (18–22) in OpenMM (32). We used a Langevin thermostat at 310 K,
friction coefficient of 91	ps$1, and timestep of 1	fs. We simulated 10& timesteps (1 ns
trajectory), and recorded positions of all atoms every 1,000 timesteps.

Order parameters
We calculated the root mean square deviation (averaged over the entire structure) and
root mean square fluctuation (averaged over a trajectory per alpha-carbon), with respect
to reference structure positions 𝑥*,C.

RMSD({𝑥*}) = w
1

𝑁/.>2A
v𝑥 − 𝑥*,Cv

"

*

RMSF({𝑥*})3 = w
1

𝑁.*2)A.)'A/A/2'B)A
*v𝑥3(𝑡) − 𝑥3,Cv

"

.

Implementation details
All algorithms were implemented in Python 3.10 with PyTorch 1.13 (16). We loaded
molecular topology and geometry using OpenMM 7.7 (32). We used PDBFixer 1.8.2 (32)
to fix errors in PDB files and model hydrogens. We used NetworkX 2.8.4 (51) for all graph
algorithms. We used a batch size of 8, and the Adam optimizer (47), with learning rate
𝛾 = 10$%, momentum coefficients 𝛽1 = 0.9, 𝛽" = 0.999, and machine tolerance offset 𝜖 =
10$Z. We also used a loss weight of 𝛾6)*+=. = 10$" for weight decay regularization.

For the molecular force field, we used AMBER 14 parameters (2) as provided by OpenMM
(32), and the implicit generalized Born solvent (GBn2) (18, 20, 22, 35). Other packages
used include NumPy 1.23.4 (52, 53) and Pandas 1.5.2 (54) for data organization,
Matplotlib 3.6.2 (55) for plotting, PyMol 2.5.0 (56) and Mol* (57) for macromolecule
visualization, and SciPy 1.9.3 (58). Training of models was performed in float32 accuracy
on the CPU only of an M1 Max MacBook Pro with 64 GB RAM. Benchmarking was also
performed on a single NVIDIA Tesla T4 GPU with 16 GB RAM on a Linux system. For
reproducibility, we also set the random seed for PyTorch to 0.

To optimize the speed of dihedral angle application, we used static data structures and
used PyTorch’s just-in-time compilation on the dihedral sampling function, as well as the
generative neural networks. This technique allows PyTorch to optimize numerical array

operations through fusion of kernels and memory locality. As a result, we observed that
the primary bottleneck for our pipeline was the force field computation and the transfer of
positional data between PyTorch and OpenMM.

Supplemental Tables
Table S1: Units of measurement and specific numerical values used to represent
molecules and their properties in OpenMM and PyTorch. This table may be used to
convert the numerical outputs of the computations to predicted measurements.

Physical quantity

Physical units Numerical value during
computation

distance (𝑑*3) nanometer (nm) 1
energy (𝐸, 𝜖*3) kilojoule / mole (kJ	mol$1) 1
electric charge (𝑞) elementary charge (𝑒 =

	1.609 × 10$1[C)
1

Avogadro’s constant (𝑁!) unitless 6.022 × 10"#
Ideal gas constant (𝑅) kilojoule / (mole Kelvin)

(kJ	mol$1	K$1)
8.314 × 10$#

Coulomb constant x 1
`ab5

y kJ	nm	mol$1	𝑒$" 138.9354576

Solute (protein) relative
electric permittivity (𝜖A>BJ.))

unitless 1

Solvent (water) relative
electric permittivity
(𝜖A>BK),.)

unitless 78.5

