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Resonance interaction energy 
between two entangled atoms in a 
photonic bandgap environment
Valentina Notararigo1, Roberto Passante   2,3 & Lucia Rizzuto2,3

We consider the resonance interaction energy between two identical entangled atoms, where one is in 
the excited state and the other in the ground state. They interact with the quantum electromagnetic 
field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation 
quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is 
assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the 
coherent resonant energy transfer between atoms in external environments. The analysis involves 
both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction 
asymptotically decays faster with distance compared to the free-space case, specifically as 1/r2 
compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to 
the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction 
energy remains significant and much stronger than dispersion interactions between atoms. On the 
other hand, spontaneous emission is strongly suppressed by the environment and the correlated state 
is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is 
suitable for observing the elusive quantum resonance interaction between entangled atoms.

The resonance interaction energy and the energy transfer between two identical atoms, one in the ground state 
and the other in the excited state, coupled with the electromagnetic field in the vacuum state, have recently 
received great attention in the literature in different research fields1–4. For example, coherent energy transfer is 
supposed to play an important role in the initial stages of photosynthesis5,6. From a quantum-electrodynamical 
point of view, the resonance interaction is due to the exchange of a real or virtual photon between the two atoms.

If the two atoms are in a factorized state, their radiation-mediated interaction energy is a fourth-order pro-
cess in the electric charge7,8, and controversial results exist in the literature concerning with the presence of 
spatially oscillating terms, when one atom is in an excited state9–12. However, the interaction is a second-order 
distance-dependent energy shift when two identical atoms are prepared in a symmetric or antisymmetric entan-
gled state1,8,13. The resonance interaction is particularly relevant because it is much more intense than dispersion 
interactions (van der Waals/Casimir-Polder, both for ground-state and excited atoms) and Casimir-Polder inter-
actions between a ground-state atom and a mirror, and comparable to the atom-surface interaction for excited 
atoms1,14,15. The Casimir-Polder interaction between an excited atom and a surface has recently been measured 
directly16,17. From a physical point of view, the resonance interaction is a second-order effect because the cor-
related state has non-vanishing dipole-dipole correlations, while, for dispersion interactions, correlated dipole 
moments must be induced by vacuum field fluctuations18–22. Moreover, the resonance interaction is of very long 
range; in free space and at very large distances (far zone), it scales as r−1 in the three dimensional case, with spatial 
oscillations, while it is a purely oscillating function for a one-dimensional system1,3.

However, the resonance interaction requires the system be prepared in an entangled state and that the 
coherence of this state be preserved over a sufficiently long time: this makes it extremely difficult to observe. 
In fact, this quantum correlated state is very fragile, and the coherent superposition can be easily destroyed by 
the influence of the environment and by spontaneous emission. As far as we know, there has not yet been any 
direct observation of this interaction and the resulting interatomic force. A somehow related effect, the coher-
ent dipolar-induced exchange of excitation (Förster resonance), has been recently observed for a system of two 
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Rydberg atoms in the short-distance regime23. It is thus a fundamental issue to investigate setups that could allow 
observation and measurement of the resonance force, an elusive quantum coherent phenomenon, in particular in 
the long-distance regime. We propose that an appropriate environment around quantum emitters (atoms, mole-
cules or quantum dots), could preserve the correlated atomic state for a sufficiently long time and could therefore 
be exploited to observe and measure the resonance force between two quantum emitters for the first time.

The observation of the resonance force, in particular in the retarded large-distance regime, would be an 
important confirmation of an effect due to the quantum coherence of the system. It could also be relevant in 
different physical processes and in other fields, such as biology. For example, the possible fundamental role of 
resonant interactions in long-distance biomolecular recognition has been recently argued24. An analogous inter-
action, mediated by the exchange of an electron in the continuum band of the wire, has been shown for two 
impurities (adatoms) embedded in a semiconductor quantum wire25,26.

In a recent paper, the interatomic resonance force has been shown to be strongly affected by the presence of 
a structured environment such as a photonic crystal that changes the photon dispersion relation and density of 
states, and determines a photon bandgap3. In the configuration under scrutiny in that paper the atomic transition 
frequency is outside the photon bandgap edge, but very close to it. In this case, for a one-dimensional photonic 
crystal and for an isotropic three-dimensional crystal, the force can be significantly enhanced up to a factor 103. 
However, the spontaneous emission rate increases too, making the entangled state of the two atoms even more 
fragile. As a result, on the one hand the resonance force can be more intense than in free space, but on the other 
hand, the correlated state decays quicker, making observation of the resonance force more difficult.

In this paper, we focus on two identical atoms in a generic environment with a photonic bandgap, whose transition 
frequency is now inside the bandgap and in the proximity of its lower edge. The model used relies on a dispersion 
relation which is quadratic for the photons near the edges of the band (effective mass approximation) and linear for 
low frequencies. The structured environment is assumed to be periodic in one dimension and homogeneous in the 
other two. Importantly, inside the bandgap the photon density of states is strongly reduced and therefore the sponta-
neous decay is inhibited (see refs27–29 for the case of a photonic crystal). Inhibited decay rates of spontaneous emission 
have been recently observed for a quantum dot in a three-dimensional photonic crystal30. Within photonic crystals a 
suppression of the spontaneous decay rate of more than a factor 10 has been obtained in the optical region31,32. Several 
different one-dimensional engineered environments exhibit a photonic bandgap, for example an array of coupled 
optical cavities, nanophotonic waveguides, photonic crystals, coupled transmission line resonators (for a review, see 
ref.33). Ultracold atoms in one-dimensional optical lattices have been also used to realize periodic structures34,35. The 
relevance of the configuration considered here is that the spontaneous emission of the atoms is suppressed, and this 
allows the correlated state to be maintained for a time long enough to observe the resonance interaction. In addition 
our result shows that if on the one hand the resonance interaction decays faster with the distance, compared to the 
free-space case in the long-distance regime, on the other hand it remains significant and it is also several orders of mag-
nitude larger than the dispersion interaction between two atoms in a factorized state. This is due to the fact that also 
off-resonance modes of the field contribute to the resonance force. In particular, low-frequency modes with a linear 
dispersion law are relevant for its asymptotic behavior, similarly to dispersion interactions, while only near-resonance 
modes (suppressed by the environment) are responsible of the spontaneous decay. In a three-dimensional isotropic 
system, we find that the resonance interaction energy at large distances scales as r−2 rather than the r−1 free-space 
behavior. Instead in the one-dimensional case and in the asymptotic limit it decreases as r−1 rather than the pure 
oscillation of the free-space case. We have also verified this result by a numerical evaluation using the exact dispersion 
relation of the photonic crystal. For typical parameters of quantum emitters and photonic crystals the strength of the 
interaction is not significantly reduced at relevant distances in both these configurations. All this indicates that our 
configuration can be an appropriate experimental setup for observing the resonance interaction. Controversial results 
have been obtained in the literature regarding the suppression of the dipole-dipole interaction and energy transfer in 
bandgap materials, when the frequency of the two atoms is inside the forbidden band36–39.

Other recent results on the dipole-dipole resonant interaction between two atoms in photonic crystals waveguides 
indicate an exponential decay when the atomic frequency is within the gap of a photonic crystal waveguide40–42 or in 
photonic crystals29. Our results, instead, show a power-law decay of the resonance interaction energy. We argue that 
the difference in the scaling with the distance is ultimately related to the different structure of the photonic modes 
in the models considered. In particular, the contribution of low-frequency modes where the dispersion relation is 
linear cannot be neglected in the system we are considering (these photons can propagate in the crystal, being their 
frequency outside the gap): it actually causes the leading asymptotic power-law decay of the interaction energy. Also, 
the possibility of controlling the entanglement of two qubits by coupling them to a common photonic bandgap envi-
ronment has been recently investigated43. Coupling quantum emitters to modes near the bandgap of a photonic 
crystal has allowed experimental investigation of the the strong coupling regime of quantum electrodynamics44, as 
well as observation of cooperative atom-atom interactions between emitters placed in a photonic crystal waveguide45.

The resonance interaction in a photonic bandgap environment
The Hamiltonian of our system describes the interaction between a pair of two-level quantum emitters (atoms or 
quantum dots, for example) inside the photonic bandgap environment. In the multipolar coupling scheme and 
within the dipole approximation, it can be written as
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where for the sake of generality we consider here both a three-dimensional and a one-dimensional system. A, B 
indicate the two atoms with positions 0 and r respectively, the polarization unit vectors ê jk  are assumed real, and 
Ω = V(L) in the three-dimensional (one-dimensional) case, with V and L being the quantization volume and 
length respectively. ω ω= | | − | | +⟩⟨ ⟩⟨H e e g g( )/2 /2A B a A B A B A B A B a/ / / / /   is the Hamiltonian of atom A/B, where |e〉 
and |g〉 respectively indicate the atomic excited and ground state, and ωa is the transition frequency of the atoms.

pA and pB are the atomic operators which couple to the field: in three dimensions they are the atomic dipole 
moment operators μA(B) = erA(B), while in the one dimensional case they have the dimension of a dipole moment 
per unit length and the wavevector k and the positions r are both along the same direction. At the end we will take 
the continuum limit ∫π∑ → ΩV dkk d/(2 )k k

3 2  and ∫π∑ → L dk/2k , for the three- and one-dimensional cases, 
respectively. In the dipolar coupling scheme (1), static interatomic dipole-dipole interactions are already included 
in the interaction with the transverse field and thus mediated by photons46. The presence of the external environ-
ment is fully taken into account through the specific photon dispersion relation and density of states.

In order to obtain the resonance interaction between the two identical emitters (atoms), we assume to prepare 
them in the following correlated symmetric or antisymmetric state

ψ| 〉 = | 〉 ± | 〉± g e e g1
2

( , ;0 , ;0 ),
(2)A B j A B jk k

where g (e) indicates the ground (excited) state of the atom, and 0kj is the photon vacuum. The two states (2) are 
degenerate and perturbation theory for degenerate states should be used. However, from second-order energy 
corrections for degenerate states47, it is possible to see that the symmetric and antisymmetric subspaces do not 
mix with each other, provided the dipole matrix elements of the two atoms are equal and the photon dispersion 
relation is symmetric for k and −k. If these conditions are met, the degenerate symmetric and antisymmetric 
states can then be treated separately and the second-order energy shift is given by non-degenerate perturbation 
theory in each subspace. These conditions are hold in our case, due to our dispersion relation and because 
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,  are the matrix elements of pA,B between states g and e.

The second-order energy shift is then given by

∑ ∑
ψ ψ

ω
〈 | | 〉〈 | | 〉

−
= ±

〈 | | 〉〈 | | 〉

−
+ . .

ψ

± ±

±
R

H i i H
E E

g e H i i H e g
E

L S
, ;0 , ;0

( ),
(3)i

I I

i i

A B j I I A B j

a i

k k



where R denotes the real part, |i〉 are intermediate states with energy Ei, ω = ψ±Ea  is the energy of the atomic 
excited state, and the + or − sign refers to the symmetric or antisymmetric state in (2), respectively. (L.S.) indi-
cates energy corrections independent of the distance between the two atoms, i.e. the Lamb shift of the individual 
atoms. Equation (3) shows that the resonance interaction energy is strictly related to the resonant energy transfer 
between an excited and a ground-state atom, that is the excitation transfer between two atoms, whose probability 
is exactly given by the absolute value of the first term in the RHS of (3) 13,48. Therefore our results are also relevant 
for the resonant energy transfer between atoms.

Our purpose is to investigate the situation where the atomic transition frequency is inside the photon gap and 
in the proximity of its lower edge, so that the atom-field interaction can be safely described by second-order per-
turbation theory (the photonic gap reduces the resonant pole contribution). There are two possible intermediate 
states in Eq. (3), |gA, gB; 1kj〉,|eA, eB; 1kj〉, which involve one real or virtual photon, respectively.

Since we can neglect distance-independent terms that do not contribute to the interatomic interaction, the 
second-order energy shift becomes
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where ωa is the atomic transition frequency and pA B
ge

,  are matrix elements of the atomic operators between the 
ground and excited state, that we assume real. Both rotating and counterrotating terms appear in Eq. (4) as these 
terms give a comparable contribution in the low-frequency part of the integral.

An analysis has been carried out on both the three-dimensional and one-dimensional case. In the latter, it 
has become possible to experimentally obtain an environment with a photonic bandgap and a quadratic disper-
sion relation near the gap using nanophotonic waveguides, photonic crystals guides, coupled transmission line 
resonators or coupled cavities arrays33. In the three-dimensional case, after the sum over polarizations, angular 
integration and in the continuum limit (V → ∞), we obtain
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where r is the distance between the atoms.
Similarly, in the one-dimensional case, after the sum over polarizations (the two polarizations are orthogonal 

to the distance between the atoms) and in the continuum limit (L → ∞), the energy shift becomes
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where the subscript ⊥ indicates the projection on the plane orthogonal to the interatomic distance.
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Up to now, we have not yet specified the environment around the two atoms, except that ωk depends only on 
k = |k|. We now assume that the two atoms are embedded in an environment with a photonic band gap whose 
dispersion relation between frequency and wavevector is quadratic outside the gap and in the proximity of one 
of its edges, and linear for wavelengths much larger than the environment periodicity length. A quadratic dis-
persion relation is typical of a one-dimensional27,28,49 photonic crystal in the effective mass approximation, a 
coupled cavities array33,50, or an impurity in a quantum wire near the gap3,51. It is commonly used to investigate 
radiative properties of atoms or quantum dots in a structured environment2,33,52,53, for example a one-dimensional 
photonic crystal41,54. In the isotropic three-dimensional case the same dispersion relation is assumed to be valid 
independently of the direction of propagation of the photon29.

We now consider the case of a one-dimensional (or, equivalently, isotropic three-dimensional) photonic crys-
tal made by an infinite sequence of periodic nondispersive and nondissipative dielectric slabs with refractive 
index n and thickness 2a. They are separated by a distance b of vacuum space, therefore the periodicity of the 
crystal is L = 2a + b. The crystal is periodic in one dimension and homogeneous in the two other directions. In 
such a case the dispersion relation can be obtained analytically when b = 2na in the following form28,29
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The first gap occurs at k0 = π/L with L = 2a(n + 1) (the other gaps are at k = mπ/L with m an odd integer num-
ber), and the lower and upper edges of the first gap are given by
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Near the lower edge of the gap, the quadratic dispersion relation is

ω ω= − −
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while in the region above the upper edge of the gap is

ω ω= + −A k k( ) , (11)k u 0
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where A is a positive constant that depends on the physical parameters of the environment (effective mass approx-
imation). For a photonic crystal we get
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For a photon with wavelength much larger than the periodicity of the crystal, kL 1, the dispersion relation 
(7) gives the following linear relation
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where the factor c/n1/2 is a sort of effective propagation velocity of low-frequency photons in the crystal: it takes 
into account the presence of the dielectric slabs of the photonic crystal which reduces the speed of light.

In order to be able to evaluate analytically the integrals over k in Eqs (5) and (6) in the range from 0 to k0, we 
interpolate the linear and quadratic behaviors of Eqs (10) and (13) respectively, in the following form
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where α and β are positive constants chosen appropriately to obtain a good approximation to the exact disper-
sion relation (7) in the complete range below the first gap (0 < k < k0). Requiring that the slope of the dispersion 
relation at k = k0 = π/L = π/(2a(n + 1)) is zero as in the exact dispersion relation, we get β = 2(n − 1)α/(π(n + 1)) 
and thus
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where the value of the parameter α can be set to α π= + + − + +n n n n n n( 1)/( )arccos[(1 6 )/(1 2 )]2 2  in 
order to obtain the correct value of the frequency of the lower edge of the gap given by (8). For n = 3 we obtain 
α = 1.5396.

Figure 1 shows the physical situation we are considering, where the atomic frequency ωa is just above the lower 
edge ω



 of the gap at k0, and well below its upper edge ωu. The relative density of states can be obtained from the 
dispersion relation. We wish to stress that the results we will obtain are not limited to the photonic crystal case, 
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but valid for any bandgap environment with a dispersion relation linear at low frequencies and quadratic near the 
edge of the gap.

In the integrals over k in (5) and (6), all values of k should in principle be included. However, only a much 
smaller range of k gives a significant contribution in our case. The density of states vanishes inside the gap (that is 
for photon frequencies between ω



 and ωu), while it diverges just outside both edges of the gap27,33. If the atomic 
frequency ωa is inside the gap, ω ω ω< <

 a u, and very close to its lower edge ω


 (ω ω ω ω ω− Δ = −�� �a u ) as 
shown in Fig. 1, the modes above the gap give a quite smaller contribution to the integrals compared to the modes 
below the gap. This is due to both the near-resonance effect and the large density of states for the modes just below 
the gap. Moreover, low-frequency modes can give a relevant contribution at large distances between the atoms, 
exactly as in dispersion interactions1,7. These arguments can be also verified by a direct comparison between the 
contribution of field modes with 0 ≤ k ≤ k0 (first Brillouin zone) and the contribution of modes in some frequency 
range above k0. In our calculations we choose the range k0 ≤ k ≤ 3k0/2, where the upper extreme is half way 
between the first and the second gap of the photonic crystal, with the assumption of the quadratic dispersion 
relation (11) above the first gap. We now show that the latter contribution is indeed quite smaller than the former. 
This also indicates that we can safely neglect the contribution of the remaining modes with k > 3k0/2. The rapid 
convergence of the integral over the higher Brillouin zones is also confirmed by the numerical calculation dis-
cussed later on in this section.

In the three-dimensional isotropic case, where the dispersion relation (15) is assumed valid independently of 
the direction of propagation and polarization of the photon, the k integral in (5) is given by
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while in the one-dimensional case the integral over k in (6) becomes
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where B = αc/(2n1/2k0) and only the range of k from 0 to k0 has been considered in both expressions.
We now consider the large-distance limit ω−� �r k c/ a0

1 , where the interaction energy has a sharp quantum 
nature. This limit is indeed the most important from a physical point of view, as it gives an interatomic energy 
with a very long range (as r−1 in free space8,13). It is related to the quantum coherence property of the state consid-
ered, while the short distance limit is essentially of electrostatic nature. In this limit, the integrals over k in (16) 
and (17) can be evaluated as
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k r
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is a dimensionless constant expressed in terms of the physical parameters of the system, and

Figure 1.  The figure shows the position of the atomic frequency ωa, in relation to the lower and upper edge of 
the first photonic gap at wavenumber k0, given by ω



 and ωu respectively. We assume that the width of the 
photonic gap, ω ω ωΔ = −

u , is such that ω ω ω− Δ��a .
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ΓI k r
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where we have introduced the dimensionless constant

ω
ω

Γ =



 −

+





> .
Bk

B k
2 1 0

(21)
a

a
1

0
2

2 2
0
4

We can now compare the contributions obtained before with those coming from the integration above the 
(first) gap, for example between the first and the second gap in the case of a photonic crystal. In this range, we 
expect that values of k closer to k0 should give a larger contribution with respect to values near the next gap, as 
they are closer to resonance. Hence we may evaluate the contribution of the range of k from k0 to 3k0/2, using the 
dispersion relation in the effective mass approximation above the gap (11): the upper limit could be anywhere 
within the second band without significantly changing our results. The relative k integrals can be evaluated ana-
lytically in terms of the system parameters ω ω ω



k B, , , ,a u0 : it is possible to use typical values for the transition 
frequency in the optical region and a typical photonic crystal for the environment.

The use of typical values such as n = 3 and a = 2 · 10−8 m in Eqs (8) and (9) gives ω = . ⋅ −


2 616 10 s15 1 and 
ωu = 5.232 · 1015 s−1 for the frequency of the lower and upper edge respectively, which are found in the optical 
region of the spectrum. Choosing the atomic transition frequency ωa = 2.65 · 1015 s−1, that is just above the lower 
edge of the gap and in the optical region, the width of the photonic gap ω ω ωΔ = −

u  is such that ω ω ω− Δ��a , 
as we have assumed. Also, we have in this case α = 1.5396 and the quantity αc

n1/2
 in Eq. (15), which gives the effec-

tive propagation speed for low-frequency photons in the crystal, has the value 0.89 c. With these numerical 
values the contribution from the integration range ↔ k0 0 in the three-dimensional case is several orders of 
magnitude larger than the corresponding contribution from the integration range ↔k k3 /20 0 , while in the 
one-dimensional case it is about two orders of magnitude larger, thus allowing the latter contribution to be 
neglected in both cases. The closer the atomic frequency is to the lower edge of the gap, the better the approxima-
tion of neglecting contributions with k > k0. The previous discussion also gives a strong indication that all contri-
butions coming from k > 3k0/2 will be negligible, since they are more distant from resonance. Moreover, they 
involve higher field frequencies, yielding a much smaller contribution of the related (virtual) transitions at large 
distance, due to the higher energy unbalance for the intermediate state. This is also confirmed by a numerical 
calculation of the integrals over k in the lowest Brillouin zones using the exact dispersion relation (7), as we will 
discuss in the following.

Substitution of (16) and (18) into (5) finally gives

π
µ µ δΔ

Γ
−� ∓ � � �̂ˆE k r r k r

k r
( ) ( ) ( ) cos( )

( )
,

(22)
D A

ge
B
eg

m m m3
3

0
3 0

0
2

showing that the resonance interaction asymptotically scales as r−2 inside our bandgap environment.
The result (22) should be compared to the three-dimensional free-space case8,13
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where the resonant energy scales as r−1 at large distances.
For the one-dimensional case, substitution of (17) and (20) into (6) yields, in the long-distance limit,
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The result above should be compared with the analogous quantity obtained for atoms in the (one-dimensional) 
free space2,3
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Our findings (22) and (24) should be also compared to the results obtained in refs3,55 when the atomic transi-
tion frequency is outside the gap and in the proximity of one of its edges. In this case a strong enhancement of the 
interaction energy is obtained, due to the large density of states near the band edge (van Hove singularity), while 
the scaling with the distance is the same as in free space: (k0r)−1 cos(k0r) and sin(k0R) for the three-dimensional 
and one-dimensional cases respectively. In ref.55 the resonant dipole-dipole interaction has been also considered 
in the case of atomic frequency in the gap, just below its upper edge (on the contrary, our results refer to the case 
of the atomic frequency just above the lower edge of the gap).

These outcomes clearly show that the bandgap environment can qualitatively change the scaling of the interac-
tion with the distance when the atomic transition frequency is within the photonic gap. The change of the scaling 
of the interaction in comparison with the free-space case comes from the suppression of the contribution of the 
resonance pole in the frequency integration: in fact the interaction is basically mediated by nonresonant photons. 



www.nature.com/scientificreports/

7Scientific RePorTs |  (2018) 8:5193  | DOI:10.1038/s41598-018-23416-0

In a quasi-static approach, the force between the two atoms can then be obtained by taking the opposite of the 
derivative of the energy shift (22) or (24) with respect to the interatomic distance.

Equations (22) and (24) contain our main results. Eq. (22) exhibits a large-distance ω −� �r c k/ a 0
1 scaling of 

the resonance energy as r−2 in the isotropic three-dimensional case, with an oscillation which gives a spatially 
periodic change of the resonance force from attractive to repulsive, analogously to the one-dimensional case. 
Since in 3D free space the asymptotic behavior of the interaction energy given by Eq. (23) decays as r−1, our result 
in Eq. (22) clearly reveals that the presence of the bandgap environment can qualitatively change the scaling of the 
interaction with the distance. Analogously, Eq. (24) shows that in the one-dimensional case, for ω −� �r c k/ a 0

1, 
the resonant interaction scales with the interatomic distance as r−1, again presenting a spatial oscillation which 
changes the resonance force from attractive to repulsive. Because in 1D free space the respective behavior is a pure 
oscillation (see Eq. (25)), our results indicate that also in the one-dimensional case the bandgap environment can 
qualitatively modify the dependence of the interaction energy on the distance.

We have also checked numerically our power-law result by using the exact dispersion relation (7) for both 
one- and three-dimensional cases. In particular we performed a numerical evaluation of the integrals over k 
resulting from Eq. 4. Here we explicitly show the numerical result for the three-dimensional case, when identical 
dipoles are oriented perpendicularly to the interatomic distance (similar considerations apply in other configura-
tions and for the one-dimensional case). In this case, Eq. 4 yields
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We have evaluated numerically the integrals over k in (26) with the exact dispersion relation (7), using the 
same values of the parameters chosen for our previous considerations on our analytical results. The periodicity of 
the photonic crystal is thus L = 1.6 · 10−7 m and the first gap is at k0 = 1.96 · 107 m−1. Figures 2 and 3 show in arbi-
trary units the outcome of the numerical calculation for distances r from 10−7 m to 10−5 m for ΔE3D and r2ΔE3D, 
respectively. This distance range goes from the transition region between near and far zone to the full far zone. 
Figure 2 shows the oscillations of the interaction energy: in particular its envelope in the far zone coincides with 
the red dashed curve, which represents the function r−2. This makes clear the asymptotic behaviour of ΔE3D as 
1/r2, in full agreement with our power-law analytical result (22). Moreover, Fig. 3 explicitly shows that r2ΔE3D 
settles to a constant value after the transition zone between near and far zone at ∼ −r k0

1. Our numerical evalua-
tion of (26) in the first and next Brillouin zones has also allowed us to check the rapid convergence of the k inte-
gral over the Brillouin zones, in agreement with our previous analytical considerations.

To summarize, we have considered the case where the atomic transition frequency is within the band gap of 
the structured environment: in this configuration the resonance interaction decreases more rapidly with the dis-
tance compared to the free space case. Despite that, the important aspect to stress is that the spontaneous decay 
of the atoms is strongly suppressed by the presence of the environment (see also56,57): this is crucial to preserve 
the quantum coherence of the correlated state from the decoherence effects due to spontaneous emission. For 
example, in refs31,32 a suppression of the spontaneous decay rate of more than a factor 10 in the optical region has 
been obtained by using a photonic crystal. Also, inhibition of spontaneous emission of quantum dots in the near 
infrared region by two or more orders of magnitude has been obtained in recent experiments57 when they are 
placed in photonic nanostructures. In our case this would guarantee the ability to significantly extend the lifetime 
of the correlated state of the two atoms.

Figure 2.  Plot of the resonance interaction energy ΔE3D in arbitrary units for distances of the atoms between 
10−7 m and 10−5 m obtained by a numerical integration using the exact dispersion relation of the photonic 
crystal (blue continuous curve). The atomic dipoles are assumed equal and oriented perpendicularly to the 
atomic distance. Parameters are such that n = 3, a = 2 · 10−8 m, ωa = 2.65 · 1015 s−1, and thus k0 = 1.96 · 107 m−1. 
The red dashed line represents the function r−2. The figure clearly shows the asymptotic power-law decay as r−2, 
in agreement with the analytical results obtained using our approximate dispersion relation in the first Brillouin 
zone of the photonic crystal.
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Our findings display a large-distance scaling of the interaction energies (22) (three-dimensional case) and (24) 
(one-dimensional case) with the interatomic distance as a power law. This result should be compared with other 
recent results in the literature for the dipole-dipole interaction in a photonic crystal waveguide, where an expo-
nential behavior of the related dipole-dipole interaction is obtained29,40–42. The main difference between these 
systems and the one under our consideration is that in our case the photonic crystal is homogeneous in the two 
directions orthogonal to that with the periodical dielectric slabs, and has a very large extension (in particular 
compared to the atomic transition wavelength c/ωa). This is a crucial point as implies that there is not a lower 
cut-off frequency (see discussion around Eq. (15)), therefore our environment is quite different from a (photonic 
crystal) waveguide. Under these conditions, a relevant contribution to the interaction energy comes from 
low-frequency modes: they give a power-law behavior even if virtual transitions are involved, since the resonant 
transition is suppressed by the presence of the photonic gap. This is similar to what happens in dispersion forces 
between ground-state atoms7,8. In our case the fact that a single low-frequency mode has a factor 1/V, with V the 
quantization volume36, does not reduce the role of these modes because the integration over all continuous modes 
below the first gap at k = k0 introduces a multiplicative factor V. Some previous results in the literature indicate an 
exponential decay of the dipole-dipole resonance interaction29 for the same model of photonic crystal as ours. 
However, the analytical result reported in ref.29 is based on the effective mass approximation and a quadratic 
dispersion relation yielding a nonvanishing frequency at k = 0 was used for all frequencies considered. Such a 
dispersion relation does not take into account properly the contribution of photons with kL 1 though, which 
have a linear dispersion relation, as we have shown above. These photons give an important contribution to the 
resonance interaction at large distances and their linear dispersion relation is at the origin of the power-law scal-
ing we find for large interatomic distance. The numerical results in ref.29 cannot be immediately compared to our 
power-law results, because there the plots of the dipole-dipole interaction are given in a small range of distances. 
In addition the typical analytical asymptotic behavior given in29 contains the localization length, that is related to 
resonant photons bound to the atom because they cannot propagate in the photonic crystal. This indicates that 
probably only the contribution of the guided modes close to the atomic resonance has been included. Similar 
considerations hold also for the strong suppression of the interaction inside the gap found in ref.36 (see also the 
comment in ref.37 and the reply in ref.38). Our results for the resonance interaction energy have been obtained for 
identical atoms, assuming the symmetrical or antisymmetrical state given in Eq. (2). Our procedure requires that 
the transition frequency of the two atoms be nearly equal and both close to the lower band edge of the photonic 
crystal. The (effective) coupling strenght with the field can however be different for the two atoms; this situation 
could occur even for identical atoms in the case of spatial inhomogeneities of the environment yielding different 
environment’s local properties at the atomic positions. This situation could be described through an effective 
value of the coupling constant and, in such a case, our results (22) and (24) are still valid, using the appropriate 
values of the effective coupling constants for the two atoms.

We can conclude that a possible experiment aiming to observe the resonance interaction energy and force 
(not directly observed yet) could be performed including such environment. Although its presence reduces 
the interaction for ω r c/ 1a , this effect is sensibly counteracted by the much stronger stability of the corre-
lated state provided by the inhibition of the spontaneous decay induced by the environment: this effect allows 
to observe the system for a much longer time. This could be an essential point in designing an experiment for 
a direct observation of the resonance force, strongly suggesting that a photonic bandagap environment can 
provide a suitable setup when the atomic frequency is inside the bandgap and close to its lower edge. 
Furthermore, using the typical values of the system parameters given after Eq. (19), our results show that the 
bandgap environment increases the interaction for distances up to ~25c/ωa, although it decreases with respect 
to the free-space case at larger distances. A critical point for an experimental realization of the setup we are 

Figure 3.  Plot of r2ΔE3D in arbitrary units for distances of the atoms between 10−7 m and 10−5 m obtained by a 
numerical integration using the exact dispersion relation of the photonic crystal and the same parameters of 
Fig. 2. The figure clearly shows that, after the transition region between the near and far zone at ∼ ⋅ −r 5 10 m6 , 
the function r2ΔE3D asymptotically settles to a constant value. This confirms that asymptotically the resonance 
interaction energy ΔE3D scales as r−2.
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proposing rests on how to prepare the (symmetric or antisymmetric) entangled state inside the photonic 
crystal, given that photons resonant with the atomic frequency cannot propagate inside the crystal. A possi-
bility could be to send photons with a frequency lower than the atomic one, which can propagate in the pho-
tonic crystal as the bandgap does not affect them. Then a multi-photon absorption by the atoms could be 
exploited to excite one of them and create the correlated state. Trapping of cesium atoms in a photonic crystal 
waveguide by tight optical potentials has been recently achieved to observe superradiance from entangled 
atoms and strong coupling58.

Discussion
In this paper we have considered the resonance interaction energy between two entangled atoms, one excited and 
the other in its ground state, prepared in their symmetric or antisymmetric state and interacting with the electro-
magnetic field in the vacuum state. The two atoms are placed in a generic photonic bandgap environment with a 
quadratic dispersion relation and their transition frequencies inside the gap and in the proximity of its lower edge. 
Several environments, such as photonic crystals, an array of coupled optical cavities, nanophotonic waveguides 
and coupled transmission line resonators, are common experimental realizations of the environment we are con-
sidering. We have stressed the formal similarity of the expression for the interaction energy with the excitation 
transfer between atoms, which provides a direct extension of our results to this problem too. In our case the spon-
taneous decay of the atoms is strongly suppressed due to the small photon density of states inside the gap. We have 
shown that the presence of the environment changes the asymptotic distance dependence of the resonance inter-
action energy (where quantum coherent effects are essential) from 1/r to 1/r2 in an isotropic three-dimensional 
case, and from a pure oscillation to 1/r in the one-dimensional case. We have also checked our analytical results 
obtained with an approximated dispersion relation with a numerical calculation using the exact dispersion rela-
tion, obtaining a full agreement between the two approaches. We compare our outcomes with previous results in 
the literature for the dipole-dipole interaction of atoms in photonic crystals and photonic crystal waveguides and 
highlight the differences on the scaling of the interaction energy with the distance. Our results explicitly show 
the possibility to control the resonance interaction energy and force using the bandgap environment. In the case 
considered in this paper the resonance force between the two atoms can be reduced with respect to the free space 
case for very large distances. However, it is still much stronger than other long-range interactions, such as dis-
persion interactions, even when factorized excited states are considered. More importantly, the most meaningful 
point here is that the decoherence effect of the spontaneous decay is significantly reduced. Strong inhibition of 
the spontaneous emission rate of about two orders of magnitude has been recently measured due to the presence 
of structured environments such as photonic crystals57. Thus the quantum coherent atomic superposition can 
live for an extended period of time thanks to the presence of the environment. Its lifetime is of the same order of 
the excited state lifetime in the environment considered, which allows possible detection of this elusive coherent 
quantum effect. Therefore our findings are relevant for designing a future experiment aiming to directly measure 
the resonance force, which has not been observed yet, using atoms or quantum dots embedded in an appropriate 
structured environment with a photonic bandgap.
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