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Published online: 26 March 2018 We consider the resonance interaction energy between two identical entangled atoms, where one is in

the excited state and the other in the ground state. They interact with the quantum electromagnetic
field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation
quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is
assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the
coherent resonant energy transfer between atoms in external environments. The analysis involves
both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction
asymptotically decays faster with distance compared to the free-space case, specifically as 1/r
compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to

the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction
energy remains significant and much stronger than dispersion interactions between atoms. On the
other hand, spontaneous emission is strongly suppressed by the environment and the correlated state
is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is
suitable for observing the elusive quantum resonance interaction between entangled atoms.

The resonance interaction energy and the energy transfer between two identical atoms, one in the ground state
and the other in the excited state, coupled with the electromagnetic field in the vacuum state, have recently
received great attention in the literature in different research fields' . For example, coherent energy transfer is
supposed to play an important role in the initial stages of photosynthesis®¢. From a quantum-electrodynamical
point of view, the resonance interaction is due to the exchange of a real or virtual photon between the two atoms.

If the two atoms are in a factorized state, their radiation-mediated interaction energy is a fourth-order pro-
cess in the electric charge”®, and controversial results exist in the literature concerning with the presence of
spatially oscillating terms, when one atom is in an excited state’~'2. However, the interaction is a second-order
distance-dependent energy shift when two identical atoms are prepared in a symmetric or antisymmetric entan-
gled state'®1*. The resonance interaction is particularly relevant because it is much more intense than dispersion
interactions (van der Waals/Casimir-Polder, both for ground-state and excited atoms) and Casimir-Polder inter-
actions between a ground-state atom and a mirror, and comparable to the atom-surface interaction for excited
atoms"'*'%. The Casimir-Polder interaction between an excited atom and a surface has recently been measured
directly'®'”. From a physical point of view, the resonance interaction is a second-order effect because the cor-
related state has non-vanishing dipole-dipole correlations, while, for dispersion interactions, correlated dipole
moments must be induced by vacuum field fluctuations'®-?2. Moreover, the resonance interaction is of very long
range; in free space and at very large distances (far zone), it scales as r~! in the three dimensional case, with spatial
oscillations, while it is a purely oscillating function for a one-dimensional system">.

However, the resonance interaction requires the system be prepared in an entangled state and that the
coherence of this state be preserved over a sufficiently long time: this makes it extremely difficult to observe.
In fact, this quantum correlated state is very fragile, and the coherent superposition can be easily destroyed by
the influence of the environment and by spontaneous emission. As far as we know, there has not yet been any
direct observation of this interaction and the resulting interatomic force. A somehow related effect, the coher-
ent dipolar-induced exchange of excitation (Forster resonance), has been recently observed for a system of two
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Rydberg atoms in the short-distance regime?®. It is thus a fundamental issue to investigate setups that could allow
observation and measurement of the resonance force, an elusive quantum coherent phenomenon, in particular in
the long-distance regime. We propose that an appropriate environment around quantum emitters (atoms, mole-
cules or quantum dots), could preserve the correlated atomic state for a sufficiently long time and could therefore
be exploited to observe and measure the resonance force between two quantum emitters for the first time.

The observation of the resonance force, in particular in the retarded large-distance regime, would be an
important confirmation of an effect due to the quantum coherence of the system. It could also be relevant in
different physical processes and in other fields, such as biology. For example, the possible fundamental role of
resonant interactions in long-distance biomolecular recognition has been recently argued®!. An analogous inter-
action, mediated by the exchange of an electron in the continuum band of the wire, has been shown for two
impurities (adatoms) embedded in a semiconductor quantum wire*>*,

In a recent paper, the interatomic resonance force has been shown to be strongly affected by the presence of
a structured environment such as a photonic crystal that changes the photon dispersion relation and density of
states, and determines a photon bandgap®. In the configuration under scrutiny in that paper the atomic transition
frequency is outside the photon bandgap edge, but very close to it. In this case, for a one-dimensional photonic
crystal and for an isotropic three-dimensional crystal, the force can be significantly enhanced up to a factor 10°.
However, the spontaneous emission rate increases too, making the entangled state of the two atoms even more
fragile. As a result, on the one hand the resonance force can be more intense than in free space, but on the other
hand, the correlated state decays quicker, making observation of the resonance force more difficult.

In this paper, we focus on two identical atoms in a generic environment with a photonic bandgap, whose transition
frequency is now inside the bandgap and in the proximity of its lower edge. The model used relies on a dispersion
relation which is quadratic for the photons near the edges of the band (effective mass approximation) and linear for
low frequencies. The structured environment is assumed to be periodic in one dimension and homogeneous in the
other two. Importantly, inside the bandgap the photon density of states is strongly reduced and therefore the sponta-
neous decay is inhibited (see refs?”~? for the case of a photonic crystal). Inhibited decay rates of spontaneous emission
have been recently observed for a quantum dot in a three-dimensional photonic crystal*®. Within photonic crystals a
suppression of the spontaneous decay rate of more than a factor 10 has been obtained in the optical region®"*2. Several
different one-dimensional engineered environments exhibit a photonic bandgap, for example an array of coupled
optical cavities, nanophotonic waveguides, photonic crystals, coupled transmission line resonators (for a review, see
ref.**). Ultracold atoms in one-dimensional optical lattices have been also used to realize periodic structures®***. The
relevance of the configuration considered here is that the spontaneous emission of the atoms is suppressed, and this
allows the correlated state to be maintained for a time long enough to observe the resonance interaction. In addition
our result shows that if on the one hand the resonance interaction decays faster with the distance, compared to the
free-space case in the long-distance regime, on the other hand it remains significant and it is also several orders of mag-
nitude larger than the dispersion interaction between two atoms in a factorized state. This is due to the fact that also
off-resonance modes of the field contribute to the resonance force. In particular, low-frequency modes with a linear
dispersion law are relevant for its asymptotic behavior, similarly to dispersion interactions, while only near-resonance
modes (suppressed by the environment) are responsible of the spontaneous decay. In a three-dimensional isotropic
system, we find that the resonance interaction energy at large distances scales as r~? rather than the r~! free-space
behavior. Instead in the one-dimensional case and in the asymptotic limit it decreases as ™! rather than the pure
oscillation of the free-space case. We have also verified this result by a numerical evaluation using the exact dispersion
relation of the photonic crystal. For typical parameters of quantum emitters and photonic crystals the strength of the
interaction is not significantly reduced at relevant distances in both these configurations. All this indicates that our
configuration can be an appropriate experimental setup for observing the resonance interaction. Controversial results
have been obtained in the literature regarding the suppression of the dipole-dipole interaction and energy transfer in
bandgap materials, when the frequency of the two atoms is inside the forbidden band**-%.

Other recent results on the dipole-dipole resonant interaction between two atoms in photonic crystals waveguides
indicate an exponential decay when the atomic frequency is within the gap of a photonic crystal waveguide**-* or in
photonic crystals®. Our results, instead, show a power-law decay of the resonance interaction energy. We argue that
the difference in the scaling with the distance is ultimately related to the different structure of the photonic modes
in the models considered. In particular, the contribution of low-frequency modes where the dispersion relation is
linear cannot be neglected in the system we are considering (these photons can propagate in the crystal, being their
frequency outside the gap): it actually causes the leading asymptotic power-law decay of the interaction energy. Also,
the possibility of controlling the entanglement of two qubits by coupling them to a common photonic bandgap envi-
ronment has been recently investigated*’. Coupling quantum emitters to modes near the bandgap of a photonic
crystal has allowed experimental investigation of the the strong coupling regime of quantum electrodynamics*, as
well as observation of cooperative atom-atom interactions between emitters placed in a photonic crystal waveguide®.

The resonance interaction in a photonic bandgap environment

The Hamiltonian of our system describes the interaction between a pair of two-level quantum emitters (atoms or
quantum dots, for example) inside the photonic bandgap environment. In the multipolar coupling scheme and
within the dipole approximation, it can be written as
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where for the sake of generality we consider here both a three-dimensional and a one-dimensional system. A, B
indicate the two atoms with positions 0 and r respectively, the polarization unit vectors é,; are assumed real, and
Q= V(L) in the three-dimensional (one-dimensional) case, with V and L being the quantization volume and
length respectively. H, = fiw,(|eqp)(easl — 18,,5)(8,,51)/2 + hiew,/2 is the Hamiltonian of atom A/B, where [e)
and |g) respectively indicate the atomic excited and ground state, and w,, is the transition frequency of the atoms.

P4 and p; are the atomic operators which couple to the field: in three dimensions they are the atomic dipole
moment operators Li,p) = er, ), while in the one dimensional case they have the dimension of a dipole moment
per unit length and the wavevector k and the positions r are both along the same direction. At the end we will take
the continuum limit ", — V/(27) f dkk*dQ and Y, — L/27 f dk, for the three- and one-dimensional cases,
respectively. In the dipolar coupling scheme (1), static interatomic dipole-dipole interactions are already included
in the interaction with the transverse field and thus mediated by photons*. The presence of the external environ-
ment is fully taken into account through the specific photon dispersion relation and density of states.

In order to obtain the resonance interaction between the two identical emitters (atoms), we assume to prepare
them in the following correlated symmetric or antisymmetric state

1
)y = ﬁ(‘g“" eB;ij> =+ [ey, gB;ij>)’ @)
where g () indicates the ground (excited) state of the atom, and 0y is the photon vacuum. The two states (2) are
degenerate and perturbation theory for degenerate states should be used. However, from second-order energy
corrections for degenerate states?, it is possible to see that the symmetric and antisymmetric subspaces do not
mix with each other, provided the dipole matrix elements of the two atoms are equal and the photon dispersion
relation is symmetric for k and —k. If these conditions are met, the degenerate symmetric and antisymmetric
states can then be treated separately and the second-order energy shift is given by non-degenerate perturbation
theory in each subspace. These conditions are hold in our case, due to our dispersion relation and because
p§ = pj> wherep#’  are the matrix elements of p, ; between states g and e.
The second-order energy shift is then given by
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where R denotes the real part, |i) are intermediate states with energy E, i, = E, = is the energy of the atomic
excited state, and the + or — sign refers to the symmetric or antisymmetric state in (2), respectively. (L.S.) indi-
cates energy corrections independent of the distance between the two atoms, i.e. the Lamb shift of the individual
atoms. Equation (3) shows that the resonance interaction energy is strictly related to the resonant energy transfer
between an excited and a ground-state atom, that is the excitation transfer between two atoms, whose probability
is exactly given by the absolute value of the first term in the RHS of (3) 1>, Therefore our results are also relevant
for the resonant energy transfer between atoms.

Our purpose is to investigate the situation where the atomic transition frequency is inside the photon gap and
in the proximity of its lower edge, so that the atom-field interaction can be safely described by second-order per-
turbation theory (the photonic gap reduces the resonant pole contribution). There are two possible intermediate
states in Eq. (3), |4, g5 lkj),|e 4> €55 1kj), which involve one real or virtual photon, respectively.

Since we can neglect distance-independent terms that do not contribute to the interatomic interaction, the
second-order energy shift becomes
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where w, is the atomic transition frequency and p¥ ; are matrix elements of the atomic operators between the
ground and excited state, that we assume real. Both rotating and counterrotating terms appear in Eq. (4) as these
terms give a comparable contribution in the low-frequency part of the integral.

An analysis has been carried out on both the three-dimensional and one-dimensional case. In the latter, it
has become possible to experimentally obtain an environment with a photonic bandgap and a quadratic disper-
sion relation near the gap using nanophotonic waveguides, photonic crystals guides, coupled transmission line
resonators or coupled cavities arrays®. In the three-dimensional case, after the sum over polarizations, angular
integration and in the continuum limit (V' — 00), we obtain

sin(kr)
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where r is the distance between the atoms.
Similarly, in the one-dimensional case, after the sum over polarizations (the two polarizations are orthogonal
to the distance between the atoms) and in the continuum limit (L — c0), the energy shift becomes
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(6)

where the subscript L indicates the projection on the plane orthogonal to the interatomic distance.
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Up to now, we have not yet specified the environment around the two atoms, except that w; depends only on
k=|k|. We now assume that the two atoms are embedded in an environment with a photonic band gap whose
dispersion relation between frequency and wavevector is quadratic outside the gap and in the proximity of one
of its edges, and linear for wavelengths much larger than the environment periodicity length. A quadratic dis-
persion relation is typical of a one-dimensional?”?** photonic crystal in the effective mass approximation, a
coupled cavities array*>*’, or an impurity in a quantum wire near the gap*°'. It is commonly used to investigate
radiative properties of atoms or quantum dots in a structured environment***>%3, for example a one-dimensional
photonic crystal*"*. In the isotropic three-dimensional case the same dispersion relation is assumed to be valid
independently of the direction of propagation of the photon®.

We now consider the case of a one-dimensional (or, equivalently, isotropic three-dimensional) photonic crys-
tal made by an infinite sequence of periodic nondispersive and nondissipative dielectric slabs with refractive
index n and thickness 2a. They are separated by a distance b of vacuum space, therefore the periodicity of the
crystal is L=2a+ b. The crystal is periodic in one dimension and homogeneous in the two other directions. In
such a case the dispersion relation can be obtained analytically when b= 2na in the following form?**

4ncos(kL) + (1 — n)?
1+ n)?

c
Wy = ——arccos
4na

™

The first gap occurs at ky= /L with L=2a(n+ 1) (the other gaps are at k =m/L with m an odd integer num-
ber), and the lower and upper edges of the first gap are given by

c 1+ n*—6n
Wy = ——arccos| ——————
4na 1+n"+2n (8)
T c 1+ n* —6n
W, = —— — ——arccos| ——————
2na 4na 14+ n"+2n 9)
Near the lower edge of the gap, the quadratic dispersion relation is
we = w, — Ak — k), (10)
while in the region above the upper edge of the gap is
W = w, + Atk — ko), (11)

where A is a positive constant that depends on the physical parameters of the environment (effective mass approx-
imation). For a photonic crystal we get

(n + 1)%ac
2(n — Dn'?’ (12)

For a photon with wavelength much larger than the periodicity of the crystal, kL < 1, the dispersion relation
(7) gives the following linear relation

Ck,

Wy & ——
k n1/2 (13)

where the factor ¢/n'/? is a sort of effective propagation velocity of low-frequency photons in the crystal: it takes
into account the presence of the dielectric slabs of the photonic crystal which reduces the speed of light.

In order to be able to evaluate analytically the integrals over k in Eqs (5) and (6) in the range from 0 to k, we
interpolate the linear and quadratic behaviors of Eqs (10) and (13) respectively, in the following form

2
f/zk - nt 1) alc/zkz’
n 2(n — 1)n (14)

where o and (3 are positive constants chosen appropriately to obtain a good approximation to the exact disper-
sion relation (7) in the complete range below the first gap (0 < k < k). Requiring that the slope of the dispersion
relation at k= ky=m/L=mn/(2a(n+ 1)) is zero as in the exact dispersion relation, we get S=2(n— 1)a/(m(n+ 1))
and thus

oy ac[ _(n+ l)akz] ac

i = : (2kky — k%),

T 2n'%k

(15)
where the value of the parameter « can be set to v = (n + 1)/(w+/m)arccos[(1 + n? — 6n)/(1 + n* + 2n)]in
order to obtain the correct value of the frequency of the lower edge of the gap given by (8). For n=3 we obtain
a=1.5396.

Figure 1 shows the physical situation we are considering, where the atomic frequency w, is just above the lower
edge w, of the gap at k), and well below its upper edge w,. The relative density of states can be obtained from the
dispersion relation. We wish to stress that the results we will obtain are not limited to the photonic crystal case,
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Figure 1. The figure shows the position of the atomic frequency w,, in relation to the lower and upper edge of
the first photonic gap at wavenumber k,, given by w, and w, respectively. We assume that the width of the
photonic gap, Aw = w, — wy, is such thatw, — w, < Aw.

but valid for any bandgap environment with a dispersion relation linear at low frequencies and quadratic near the
edge of the gap.

In the integrals over k in (5) and (6), all values of k should in principle be included. However, only a much
smaller range of k gives a significant contribution in our case. The density of states vanishes inside the gap (that is
for photon frequencies between w, and w,), while it diverges just outside both edges of the gap*”**. If the atomic
frequency w, is inside the gap, w, < w, < w,, and very close to its lower edge w; (w, — w, € Aw = w, — wy) as
shown in Fig. 1, the modes above the gap give a quite smaller contribution to the integrals compared to the modes
below the gap. This is due to both the near-resonance effect and the large density of states for the modes just below
the gap. Moreover, low-frequency modes can give a relevant contribution at large distances between the atoms,
exactly as in dispersion interactions'”. These arguments can be also verified by a direct comparison between the
contribution of field modes with 0 < k <k, (first Brillouin zone) and the contribution of modes in some frequency
range above k. In our calculations we choose the range k, < k < 3k,/2, where the upper extreme is half way
between the first and the second gap of the photonic crystal, with the assumption of the quadratic dispersion
relation (11) above the first gap. We now show that the latter contribution is indeed quite smaller than the former.
This also indicates that we can safely neglect the contribution of the remaining modes with k > 3k,/2. The rapid
convergence of the integral over the higher Brillouin zones is also confirmed by the numerical calculation dis-
cussed later on in this section.

In the three-dimensional isotropic case, where the dispersion relation (15) is assumed valid independently of
the direction of propagation and polarization of the photon, the k integral in (5) is given by

Lo fko k_ BQkk — k) BQkky — k) _|sin(kr)

PJo e, - B@kky — KB w, + BQkky — K| kO (16)
while in the one-dimensional case the integral over k in (6) becomes

L fko k| B(2kk — k) BQkk, — k) cos(kr)

P Jo e, - Bkk, — KB w, + B(2kk, — k) (17)

where B= ac/(2n'"?*k,) and only the range of k from 0 to k, has been considered in both expressions.

We now consider the large-distance limit r 3> k; ' ~ c¢/w,, where the interaction energy has a sharp quantum
nature. This limit is indeed the most important from a physical point of view, as it gives an interatomic energy
with a very long range (as r ! in free space®"?). It is related to the quantum coherence property of the state consid-
ered, while the short distance limit is essentially of electrostatic nature. In this limit, the integrals over k in (16)
and (17) can be evaluated as

Ly~ —T, cos(kyr) )
kor (18)

- 2w,Bkg N Bk “o
WP Bk \w + Bk (19)

is a dimensionless constant expressed in terms of the physical parameters of the system, and

where
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I~ 1_‘—0,
1D 1 B (20)

where we have introduced the dimensionless constant

w, Bk
ﬁ“‘l > 0.
w,; — B%,
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We can now compare the contributions obtained before with those coming from the integration above the
(first) gap, for example between the first and the second gap in the case of a photonic crystal. In this range, we
expect that values of k closer to k, should give a larger contribution with respect to values near the next gap, as
they are closer to resonance. Hence we may evaluate the contribution of the range of k from k, to 3k,/2, using the
dispersion relation in the effective mass approximation above the gap (11): the upper limit could be anywhere
within the second band without significantly changing our results. The relative k integrals can be evaluated ana-
lytically in terms of the system parameters w,, k,, B, w, w,,: it is possible to use typical values for the transition
frequency in the optical region and a typical photonic crystal for the environment.

The use of typical values such as =3 and a=2-10"%m in Eqs (8) and (9) gives w, = 2.616 - 10'°s™" and
w,=5.232-10"%s7! for the frequency of the lower and upper edge respectively, which are found in the optical
region of the spectrum. Choosing the atomic transition frequency w,=2.65-10"s7", that is just above the lower
edge of the gap and in the optical region, the width of the photonic gap Aw = w,, — wyissuch thatw, — w, < Aw,
as we have assumed. Also, we have in this case o =1.5396 and the quantity ‘)‘T‘Z in Eq. (15), which gives the effec-

tive propagation speed for low-frequency photons in the crystal, has the value ~0.89 c. With these numerical
values the contribution from the integration range 0 < k in the three-dimensional case is several orders of
magnitude larger than the corresponding contribution from the integration range k, < 3k,/2, while in the
one-dimensional case it is about two orders of magnitude larger, thus allowing the latter contribution to be
neglected in both cases. The closer the atomic frequency is to the lower edge of the gap, the better the approxima-
tion of neglecting contributions with k > k. The previous discussion also gives a strong indication that all contri-
butions coming from k > 3k,/2 will be negligible, since they are more distant from resonance. Moreover, they
involve higher field frequencies, yielding a much smaller contribution of the related (virtual) transitions at large
distance, due to the higher energy unbalance for the intermediate state. This is also confirmed by a numerical
calculation of the integrals over k in the lowest Brillouin zones using the exact dispersion relation (7), as we will
discuss in the following.
Substitution of (16) and (18) into (5) finally gives

cos(kyt)

T
AE;p o T2k (1) (1) By — Fify)——2—
3D n o\My /e\Mp 8 l (kor)z (22)

showing that the resonance interaction asymptotically scales as 7~ inside our bandgap environment.
The result (22) should be compared to the three-dimensional free-space case®!?

3 cos( -+
AE?;st = [%] (Mfe)f(ﬂl;g)m(éfm - fﬁm>¥’

(23)
where the resonant energy scales as r~! at large distances.
For the one-dimensional case, substitution of (17) and (20) into (6) yields, in the long-distance limit,
sin(k,r)
AE,p ~ £2Ip% - p% k,——2>~.
1D Pa - Pg Ko kor (24)

The result above should be compared with the analogous quantity obtained for atoms in the (one-dimensional)
free space*’

(25)

Our findings (22) and (24) should be also compared to the results obtained in refs*** when the atomic transi-
tion frequency is outside the gap and in the proximity of one of its edges. In this case a strong enhancement of the
interaction energy is obtained, due to the large density of states near the band edge (van Hove singularity), while
the scaling with the distance is the same as in free space: (k,r) ™! cos(k,r) and sin(k,R) for the three-dimensional
and one-dimensional cases respectively. In ref.> the resonant dipole-dipole interaction has been also considered
in the case of atomic frequency in the gap, just below its upper edge (on the contrary, our results refer to the case
of the atomic frequency just above the lower edge of the gap).

These outcomes clearly show that the bandgap environment can qualitatively change the scaling of the interac-
tion with the distance when the atomic transition frequency is within the photonic gap. The change of the scaling
of the interaction in comparison with the free-space case comes from the suppression of the contribution of the
resonance pole in the frequency integration: in fact the interaction is basically mediated by nonresonant photons.
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Figure 2. Plot of the resonance interaction energy AE;}, in arbitrary units for distances of the atoms between
1077m and 107> m obtained by a numerical integration using the exact dispersion relation of the photonic
crystal (blue continuous curve). The atomic dipoles are assumed equal and oriented perpendicularly to the
atomic distance. Parameters are such that n=3,a=2-10"*m, w,=2.65-10""s"!, and thus k,=1.96-10’m ..
The red dashed line represents the function 2. The figure clearly shows the asymptotic power-law decay as r 2,
in agreement with the analytical results obtained using our approximate dispersion relation in the first Brillouin
zone of the photonic crystal.

In a quasi-static approach, the force between the two atoms can then be obtained by taking the opposite of the
derivative of the energy shift (22) or (24) with respect to the interatomic distance.

Equations (22) and (24) contain our main results. Eq. (22) exhibits a large-distance r > c/w, =~ k, ! scaling of
the resonance energy as r—2 in the isotropic three-dimensional case, with an oscillation which gives a spatially
periodic change of the resonance force from attractive to repulsive, analogously to the one-dimensional case.
Since in 3D free space the asymptotic behavior of the interaction energy given by Eq. (23) decays as 7!, our result
in Eq. (22) clearly reveals that the presence of the bandgap environment can qualitatively change the scaling of the
interaction with the distance. Analogously, Eq. (24) shows that in the one-dimensional case, for r > ¢/w, ~ k, L
the resonant interaction scales with the interatomic distance as r~!, again presenting a spatial oscillation which
changes the resonance force from attractive to repulsive. Because in 1D free space the respective behavior is a pure
oscillation (see Eq. (25)), our results indicate that also in the one-dimensional case the bandgap environment can
qualitatively modify the dependence of the interaction energy on the distance.

We have also checked numerically our power-law result by using the exact dispersion relation (7) for both
one- and three-dimensional cases. In particular we performed a numerical evaluation of the integrals over k
resulting from Eq. 4. Here we explicitly show the numerical result for the three-dimensional case, when identical
dipoles are oriented perpendicularly to the interatomic distance (similar considerations apply in other configura-
tions and for the one-dimensional case). In this case, Eq. 4 yields

AE,p - :I:l\uge|2 foo P " [cos(zkr) B sin(l;r) n ksin(kr) '
T 0 W, — Wy W+ wy r kr r (26)

We have evaluated numerically the integrals over k in (26) with the exact dispersion relation (7), using the
same values of the parameters chosen for our previous considerations on our analytical results. The periodicity of
the photonic crystal is thus L=1.6-10""m and the first gap is at ky=1.96-10’ m™". Figures 2 and 3 show in arbi-
trary units the outcome of the numerical calculation for distances r from 1077 m to 10~>m for AE;, and PAE;p,
respectively. This distance range goes from the tr