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ABSTRACT: Energy efficiencies and maintenance 
parameters have been traditionally estimated with 
a linear regression model that treated metabolizable 
energy intake as the dependent variable and protein 
and lipid depositions as the independent variables. 
Several studies have described the statistical issues 
associated with this approach, such as the reverse 
role of dependent and independent variables and 
a potential multicollinearity issue due to the high 
correlation between protein and lipid depositions. 
Biased regression techniques have been proposed 
to minimize the harmful effects of multicollinear-
ity on the estimates of energy efficiencies. These 
approaches, however, only partially addressed the 
issues described for the linear regression approach. 
A first multivariate approach was developed by L. 
J. Koong in the 1970s, who estimated the energy 
parameters using a set of simultaneous equations. 
This multivariate approach has been considerably 

extended in the past two decades with the complete 
characterization of model’s biological interpreta-
tion under different feeding conditions, the simulta-
neous estimation of maintenance requirements, the 
extension of the model to a mixed-effects frame-
work, and the implementation of a Bayesian frame-
work for model fitting. The multivariate approach 
has been successfully applied to model energy dep-
osition and partitioning by mice, pigs, salmon, and 
rainbow trout. However, multivariate models are, 
in general, harder to fit than linear regression mod-
els due to 1) larger number of parameters, 2) issues 
with parameter identifiability, and 3) overall lack of 
algorithm convergence. Therefore, with the recent 
availability of easy to use and efficient computer 
packages for model fitting, the use of a Bayesian 
framework seems to be an attractive approach for 
fitting multivariate models describing protein and 
lipid deposition.
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INTRODUCTION

Feeds often represent the largest fraction 
of production costs in most livestock systems. 
Minimizing feeding costs for profitable animal pro-
duction requires a comprehensive characterization 

of nutrient availability in feeds and a precise deter-
mination of animal’s nutrient requirements for 
maintenance and production functions. Current 
feeding systems for cattle represent animals’ energy 
requirements and the energy availability in feeds on 
a net energy basis (Lofgreen and Garrett, 1968; Moe 
et al., 1972). The connection between net energy 
availability in feeds and the animal’s requirements 
relies on quantification of energy efficiencies and 
determination of the maintenance requirements. 
The efficiency with which metabolizable energy 
(ME) from the diet is utilized for maintenance and 
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growth has stimulated scientific research for decades. 
Likewise, the quantification of maintenance require-
ments for net energy (NEm) and metabolizable energy 
(MEm) has been extensively explored by research 
groups worldwide (e.g., Blaxter and Wainman, 1966; 
Moraes et al., 2014). Traditionally, the estimation of 
these energy efficiencies has relied on the use of a 
multiple regression model:

MEI/MBS = β0 + β1(LG/MBS) + β2(PG/MBS)(1)

where MEI is the ME intake (Mcal or MJ), MBS 
is the metabolic body size (kg0.75), LG is the energy 
gain as lipid (Mcal or MJ), and PG is the energy 
gain as protein (Mcal or MJ). In this approach, 
energy parameters, such as maintenance and effi-
ciencies, are estimated as function of the parameters. 
For example, the efficiency of utilizing ME for pro-
tein gain is computed as kp = 1/β2. Over the years, 
some variant of equation (1) has been the basis for 
estimation of maintenance and efficiency parame-
ters in numerous publications, despite the compre-
hensive critique of this approach by Koong (1977). 
For instance, the reverse definition of the dependent 
vs. independent variables and issues with multicol-
linearity in equation (1) were described in detail at 
least three decades ago (Koong, 1977; Bernier et al., 
1987), but this approach is still in use worldwide. It 
is important to note that although there are issues 
described by these authors underlying the general 
structure of this model, this univariate approach 
provided a method for estimating energy parame-
ters at a time when computing power was probably a 
limiting factor for estimating more complex models.

Equation (1) can be seen as a univariate approach, 
in the sense that it has one dependent variable related 
to a set of independent variables. A series of multivar-
iate models, with protein deposition (PD) and lipid 
deposition (LD) as dependent variables, has been pro-
posed to overcome the limitation of equation (1). In 
this context, the objective of this article is to describe 
this univariate approach and to explore the use of 
multivariate models as alternatives for estimating 
energy efficiencies, maintenance requirements, and 
modeling LD and PD. Our secondary objective is to 
provide a historical timeline of major developments 
in techniques to model protein and lipid deposition 
in growing animals while describing both advantages 
and disadvantages of each approach.

Univariate Approach

Generally, equation (1) can be described as a linear 
regression model with multiple independent variables:

yi = β0 + β1x1i + · · ·+ βpxpi + εi (2)

where yi is the dependent variable for the ith observa-
tion (i = 1, …, N), β0 is the intercept, β1, …, βp are the 
regression coefficients describing the relationships 
between dependent and independent variables x1i, 
…, xpi and εi is the error, often assumed to be inde-
pendent and identically distributed as εi ∼ N(0, σ2)

. Parameters in this model can be estimated by ordi-
nary least squares although, under the assumptions 
just described, maximum likelihood estimators 
would produce the same solutions (Kutner et al., 
2004). The estimates for equation (2) are obtained 
through the following minimization problem:

β̂ = argmin
β





N∑
i=1

Ñ
yi − β0 −

p∑
j=1

βjxij

é2


 (3)

where argmin is the argument of the minimum, β̂ 
is the vector of parameter estimates, often referred 
in the statistics literature as least square estimates 
(LSE). The LSE have many desirable properties, such 
as when the errors are uncorrelated, have zero expec-
tation and equal variances, the estimates in equation 
(2) are unbiased and have minimum variance among 
all unbiased linear estimators (Kutner et al., 2004).

The LSE, however, can have large sampling 
variability if  independent variables are highly cor-
related, a problem known as multicollinearity. With 
high correlation among independent variables, 
parameter estimates may vary dramatically from 
one sample to another, and the interpretation of 
regression coefficients as the marginal changes may 
be not valid (Kutner et al., 2004). A geometric rep-
resentation of the effects of multicollinearity was 
comprehensively described by Slinker and Glantz 
(1985). For example, consider the case where the 
dependent variable yi is to be modeled through the 
use of independent variables xi and zi:

yi = β0 + β1xi + β2zi + εi (4)

It is easy to see that equation (4) is a special case 
of equation (2) such that x1i = xi and x2i = zi. To 
obtain the LSE, we need to identify the plane that 
minimizes the squared distances with the points in 
space (Slinker and Glantz, 1985). This process is 
presented in Figure 1. The plot on the left describes 
a situation with low degree of correlation among 
independent variables. Observations provide a 
good “base” for the plane and for the estimation 
of stable model parameters (Slinker and Glantz, 
1985). Contrariwise, the plot on the right describes 
the situation with high collinearity between x and z.  
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Observations, in this case, provide a base that is 
excessively narrow for the estimation of the plane 
location and, consequently, for the estimation of 
stable parameters. Thus, parameter estimates will 
be unstable and suffer from high sampling variabil-
ity. The situation reaches the extreme when x and 
z are perfectly collinear and y can be described by 
a line in the plane that can be determined equally 
well by more than one set of positions (Slinker and 
Glantz, 1985). In this extreme case, model parame-
ters may not be estimated simultaneously.

From an energetics standpoint, multicollinearity 
between the two independent variables in equation 
(1) has the potential to prevent stable and accurate 
estimates of energy efficiencies and maintenance 
parameters. That is, if protein and lipid deposi-
tions are highly correlated, the base for the geomet-
ric plane is probably narrow, and the estimates of 
energy efficiencies and maintenance will probably 
suffer from large sampling variability and have poor 
interpretability.

Ridge regression approach. A variety of tech-
niques exists to deal with multicollinearity. Biased 
regression techniques such as ridge regression and 
principal component regression have been tradi-
tionally utilized for incorporating highly collinear 
independent variables into regression models. In 
particular, ridge regression is one of the most com-
monly used techniques for which the estimators can 
be described as follows (Hastie et al., 2009):

β̂
ridge

= argmin
β





N∑
i=1

Ñ
yi − β0 −

p∑
j=1

βjxij

é2

+ λ

p∑
j=1

β2
j


       

(5)

where λ (λ ≥ 0) is the penalty parameter that deter-
mines the shrinkage. For instance, a larger λ deter-
mines a greater shrinkage of parameters toward 
zero (Hastie et al., 2009). The shrinkage can reduce 
the variance of ridge regression estimators when 
compared with LSE, with the cost of introducing 
some bias. From a multicollinearity standpoint, 
this reduction in variance is attractive, if  not overly 
compensated by the increase in bias and mean 
square error (Kutner et al., 2004).

From an energetics standpoint, ridge regres-
sion and, more generally, biased regression tech-
niques may provide an alternative to the univariate 
approach when PD and LD are highly correlated. 
This approach was explored by Bernier et al. (1987) 
who utilized ridge regression and principal compo-
nents regression for the estimation of the energy 
efficiencies of protein and fat deposition in mice. 
The authors compared these two biased regression 
approaches with ordinary LSE using a database for 
which, according to the authors, PD and LD were 
highly collinear. The authors concluded that biased 
regression estimates produced biologically pos-
sible estimates of energy efficiencies, whereas the 
efficiencies estimated through ordinary LSE were 
biologically impossible and unstable. In particular, 
ridge regression estimators were less biologically 
likely than principal components regression and 
introduced some subjectivity in the analysis when 
compared with the LSEs (Bernier et al., 1987). The 
efficiencies of utilizing ME for PD were 0.37 and 
0.39 for the two lines of mice presented by Bernier 
et al. (1987), whereas the efficiencies of LD were 
estimated at 0.51 and 0.69 for both lines of mice. It 
is important to note that the use of ridge regression 
has practical limitations, as most statistical meth-
ods. The penalty parameter has to be estimated, and 

Figure 1. Visual representation of multicollinearity in a linear regression model. The plot on the left represents the scenario where x and z have 
low correlation, whereas the plot on the right represents the case where x and z are highly collinear. Figure adapted from Slinker and Glantz (1985). 
The plot on the left describes the case when x and z provide a good “base” for the plane because they are distributed over the entire region. In this 
scenario, observations provide a stable “base” for the estimation of regression parameters. The plot on the right describes the situation with highly 
collinear x and z. The base formed by observations is too narrow to uniquely estimate the plane position, resulting in unstable estimates for the 
regression parameters. The narrow base is described by Slinker and Glantz (1985) as a “base” that allows the plane to “wobble around” and being 
unstable.
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the use of statistical inference procedures developed 
for linear models may not apply directly (Kutner et 
al., 2004). More importantly, from an energetics 
standpoint, biased regression approaches address 
the multicollinearity but do not address the criti-
cism that in equation (1), the role of dependent and 
independent variables is reversed (Koong, 1977).

Multivariate Approach

The approach developed by Koong (1977) relied 
on the use of simultaneous equations. The author 
describes a previous attempt by Pullar and Webster 
(1974) to model protein and lipid deposition with 
a multivariate approach, but this initial approach 
assumed that the energy efficiencies for lean and 
fat gain were the same in rats (Pullar and Webster, 
1974). To the best of our knowledge, Koong (1977) 
was the first study to describe protein and fat depo-
sitions as a set of simultaneous equations and that 
represented energy efficiencies of utilizing ME for 
each process.

The initial approach. The framework proposed by 
Koong (1977) is described in Figure 2. In the first 
step, the metabolizable energy available for fat and 
protein deposition (MEA) is computed by remov-
ing the maintenance requirement (MR) or the MEm 
from the ME intake:

MEA = MEI − MR (6)

where MR denotes the maintenance requirement 
(or MEm). The author estimated MR with the fol-
lowing model:

BG/MBS = b0 + b1(MEI/MBS) (7)

where BG is the total body energy gain (Mcal), 
MBS is the metabolic body size (kg0.75), and MEI 
is as before. Mathematically, the multivariate ap-
proach proposed by Koong (1977) can be described 
by the following equations:

FG = P × Ef × MEA
LG = (1 − P)× El × MEA (8)

where FG is the energy gain in fat tissue, LG is the 
energy gain in lean tissue, and P is the fraction of 
MEA that is used for fat synthesis with (1 − P) as 
the remaining fraction of MEA that is used for pro-
tein synthesis. Furthermore, in the abovementioned 
notation, Ef and El were defined by Koong as the 
efficiencies of utilizing the corresponding fractions 
for MEA for fat and lean gain. It is important to 
note that we used the same notation as in Koong 
(1977), which is different than the more recent pub-
lications focused on energetics of growing animals 
(e.g., Strathe et al., 2010). For example, more recent 
publications define the responses as protein and 
lipid depositions (i.e., PD, LD) rather than fat and 
lean gain with the efficiencies of protein and lipid 
depositions defined as kp and kf.

The partitioning coefficient P is further modeled 
to allow the fraction of MEA that designated to fat vs. 
lean gain to change as a function of variables describ-
ing animals and dietary characteristics. In the Koong’s 
(1977) model, P was described as a Michaelis–Menten 
type of equation with respect to the MEA:

P =
MEA

K + MEA (9)

where K is the parameter describing the level of 
MEA at which half  of the MEA is used for fat syn-
thesis. Therefore, the complete system of equations 
proposed by Koong can then be described by sub-
stituting equation (8) in equation (9):

FG =
MEA

K + MEA
× Ef × MEA

LG =
K

K + MEA
× El × MEA 

(10)

Biologically, this set of equations describes the phe-
nomenon that growing animals at low MEA sup-
ply, a greater proportion of MEA is utilized for LG, 
whereas at greater MEA supply, the proportion of 
MEA directed to FG increases and ultimately pla-
teaus (Koong, 1977).

An application of the system was presented by 
Koong (1977) with a data set of growing mice of 
two lines. Equations were fit to data using a nonlin-
ear least squares procedure based on a Nelder and 
Mead’s (1965) type of algorithm that minimized the 
weighted sum of squares of residuals. The multivariate 
approach was compared with the univariate approach 
(equation (1)) that produced biologically impossible 

Figure 2. Diagram to describe the Koong (1977) approach for esti-
mating the energy efficiencies for fat and lean gain using simultane-
ous equations. Adapted from Koong (1977). The same notation from 
Koong (1977) was used to construct the diagram: MEA is the metabo-
lizable energy available for fat and lean gain, P is the fraction of MEA 
utilized for fat synthesis, with (1 − P) as the remainder of MEA that 
is used for lean gain synthesis. Ef and El are the efficiencies with which 
the corresponding MEA fractions are utilized for fat and lean gain.
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point estimates of Ef, that is, point estimates > 1 and 
parameters with large standard errors. In particular, 
the univariate models estimated by Koong (1977) for 
two lines of growing mice were as follows: 1) MEI/
MBS = 176.2 + 0.90 (± 1.05) × FG/MBS + 7.11 (± 
1.64) × LG/MBS for the control line and 2) MEI/MBS 
= 170.4 + 1.40 (± 0.25) × FG/MBS + 3.40 (± 0.92) 
× LG/MBS for the fast-growing line. In this notation, 
MEI is the ME intake, FG is the fat gain, LG is the 
lean tissue gain, all expressed on a kcal basis, and MBS 
is the metabolic body size, that is, BW0.75. The efficien-
cies in this univariate approach are given by the inverse 
of the parameters. Thus, Ef is 1.11 and 0.71 for the 
control line and fast-growing line, respectively. The El 
were 0.14 and 0.29 for the control and selected lines, 
respectively. When utilizing the multivariate approach, 
Ef and El were estimated at 0.36 and 0.17 for the control 
line and 0.57 and 0.39 for the selected line, respectively. 
It is important to note that these efficiencies estimated 
with the multivariate model are particularly smaller 
than what usually observed for monogastric animals, 
as reviewed by Strathe et al. (2012).

Extensions of the Multivariate Approach

An extension of the initial approach. The ap-
proach proposed by Koong (1977) was extended by 
van Milgen and Noblet (1999) with the multivariate 
framework described in Figure 3. Mathematically, 
this framework can be described with the following 
system of equations:

PD = kpX(ME − MEm)

LP = kf(1 − X)(ME − MEm)
 (11)

where ME is the metabolizable energy intake, MEm 
is the metabolizable energy required for main-
tenance, X is the fraction of  ME supplied above 
maintenance that is directed toward protein syn-
thesis with the remainder fraction (1 − X) directed 

toward lipid synthesis. It is important to note that 
we, again, utilize the notation as in the original 
manuscript, but the X fraction has a similar func-
tion as the P fraction proposed by Koong (1977). 
Similarly, the kp and kf efficiencies are denoted by 
El and Ef in the Koong’s approach, respectively.

The fraction of MEA directed toward PD is 
modeled as a function of body weight:

Xi = ci + di(BW − 20) (12)

where ci is the fraction of ME above maintenance 
directed toward PD at a BW of 20 kg and di is the 
change in the partitioning toward PD (vs. LD) with 
a unit change in BW. The index i describes the pos-
sibility of introducing between group variation into 
the parameters describing ME partitioning, for 
example, changes in the partitioning according to 
gender and genotype. This framework extends the 
previously developed multivariate model in many 
ways. First, it does not require an a priori estimate 
of the maintenance to solve the set of simultaneous 
equations. That is, MEm is estimated simultaneously 
in equation (11) with the use of MEm = aiBWb in 
equation (11) and the estimation of the parameters 
ai (the MEm requirement for the ith group, in [kcal 
or kJ/k BW]b per day) and b (the body weight met-
abolic exponent). Second, the authors formalized 
computations of total heat production (HP) and 
fasting heat production (FHP) using the model esti-
mated parameters:

HP = MEm + (1 − kp)X(ME − MEm)
+ (1 − kf)(1 − X)(ME − MEm)

FHP = MEm(kpX + kf(1 − X))

(13)

Moreover, van Milgen and Noblet (1999) com-
prehensively explored the interpretation of model 
parameters under different feeding conditions, 
proposed reparameterizations of the model for ad 
libitum feeding animals, and described a modifica-
tion of the system for animals fed close to mainte-
nance with zero energy retention (ME = MEm). The 
approach was demonstrated with the fitting of the 
multivariate model to a data set of growing pigs of 
seven combinations of sex and genotype. Overall, 
the approach from van Milgen and Noblet (1999) 
produced estimates of energy efficiencies that are 
consistent with biochemistry. Using their models, 
energy efficiencies varied between 0.58 and 0.60 
for PD and 0.77 and 0.82 for LD. Interestingly, the 
authors reported that these estimates were similar 
to the ones computed with a univariate, factorial 
approach (Noblet et al., 1999) and attributed this 

Figure 3. Diagram showing the van Milgen and Noblet’s (1999) 
multivariate approach for describing energy partitioning in pigs. 
Adapted from van Milgen and Noblet (1999). ME is the metaboliza-
ble energy intake, MEm is the metabolizable energy required for main-
tenance, X is the fraction of ME supplied above maintenance (MEm) 
that is directed toward protein syntshesis, with the remainder fraction 
(1 − X) directed toward lipid synthesis. MEPD and MELD are the ME 
above maintenance that are directed toward protein and lipid synthesis, 
kp and kf are the efficiencies with which MEPD and MELD are used for 
protein deposition (PD) and lipid deposition (LD), respectively.
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fact to the relatively low correlation between PD 
and LD in this data set (0.107). The authors have 
suggested, however, that the two approaches would 
probably produce different results if  different feed-
ing levels were used within the same genotype and 
BW, possibly increasing the correlation between PD 
and LD (van Milgen and Noblet, 1999).

The van Milgen and Noblet’s (1999) approach 
has been successfully applied to a database of growing 
rainbow trout and Atlantic salmon by Azevedo et al. 
(2005). The overall correlation between PD and LD 
was relatively low in this database: −0.102. Estimates 
of energy efficiencies under the multivariate model 
ranged from 0.43 to 0.52 for PD and were centered at 
0.81 for LD. When using a univariate model, estimates 
of the energy efficiency for LD for both rainbow trout 
and Atlantic Salmon were biologically unrealistic as 
they were estimated to be greater than one.

The mixed model extension. Both the approach of 
Koong (1977) and van Milgen and Noblet (1999) were 
developed and fitted under a multivariate, nonlinear 
regression approach. That is, the procedures do not 
directly consider the situation of grouped data, such 
as multiple animals from the same litter, and the pos-
sibility of multiple records collected on the same ani-
mal (Strathe et al., 2010). The approach of van Milgen 
and Noblet (1999) also ignores a potential covariance 
between the errors of PD and LD. In this context, 
Strathe et al. (2010) proposed a multivariate mixed-ef-
fects model to describe PD and LD. The authors 
argued that the proposed framework has the following 
advantages: 1) the possibility of describing PD and LD 
with nonlinear, diminishing return functions, such as 
the Gompertz functional form; 2) the extension of the 
multivariate approach to a mixed model framework 
that directly represents correlations on grouped data 
(Pinheiro and Bates, 2000) and allows the estimation 
of between animal variation; and 3) allows for a poten-
tial covariance between errors on PD and LD. In short, 
the mixed model framework proposed by Strathe et al. 
(2010) can be generally described as follows:

à
yi11 yi12

yi21 yi22

...
...

yini1 yini2

í

=

à
f (θi, MEi, BWi)i11 f (θi, MEi, BWi)i12
f (θi, MEi, BWi)i21 f (θi, MEi, BWi)i22

...
...

f (θi, MEi, BWi)ini1 f (θi, MEi, BWi)ini2

í

+

â
εi11 εi12

εi21 εi22

...
...

εini1 εini2

ì

 (14)

where the ni × 2 matrix on the left-hand side of 
equation (14) describes the response matrix for the 
ith animal (or, more generally, subject) with rows 
representing the ni different observations and col-
umns representing the two different responses: PD 
and LD. The first matrix on the right-hand side of 
the equation (14) has the functions to describe PD 
and LD and the last matrix on the right-hand side 
of equation (14) the matrix of errors.

The expectations of PD and LD are described 
by functions of ME intakes, BWs, and vector of 
animal-specific parameter θi that contains both 
fixed and random effects (Pinheiro and Bates, 2000): 
θi = Aiβ+ Biγi where β is a vector of fixed popu-
lation parameters, γi is a vector of random effects, 
and the matrices Ai and Bi are design matrices. 
Thus, random effects, describing between animal 
variation, may be incorporated into the model and 
are allowed to enter the model nonlinearly. The set 
of equations describing PD and LD expectations in 
equation (14) are given by:

PD =
PDPotential

1 +
k × BW

ME − MEm

, (ME − MEm) > 0

LD = kf ×
Å

ME − MEm − 1
kp

× PD
ã

 (15)

where PDPotential is the parameter describing the 
potential PD, k is the saturation parameter, and kp 
and kf are the energy efficiencies of protein and fat 
deposition, as before. This approach determines the 
effect of limiting the energy supply on PD with a 
Michaelis–Menten type of equation. Biologically, 
under this model structure, PD approaches 
PDPotential asymptotically as ME directed toward PD 
approaches infinity (Strathe et al., 2010).

The proposed model was fitted to two data sets of 
growing pigs, and when compared with the functional 
forms proposed by van Milgen and Noblet (1999), 
residuals suggested better ability of the simultane-
ous equations in describing the data sets. The mod-
els, however, proved to be challenging for achieving 
model convergence. For instance, in one of the data 
sets, a simultaneous estimate of maintenance (i.e., 
MEm = aiBWb) could not be simultaneously obtained 
due to a failure of model to converge. The estimates 
of the efficiencies for PD ranged from 0.52 to 0.62 for 
the two data sets presented by the authors, whereas 
the efficiencies for LD ranged from 0.72 to 0.88.

The Bayesian framework. Parameter estimates from 
multivariate, nonlinear models are inherently harder 
to obtain than parameters obtained through LSE in 
equation (1). In fact, in the nonlinear mixed-effects 
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model, the marginal likelihood function of the data 
obtained by integrating out the random effects 
from the joint density of the data and random 
effects usually does not have a closed form expres-
sion (Pinheiro and Bates, 2000). Furthermore, the 
utilization of multivariate models can increase the 
number of model parameters, with the nonlinear 
model structure often reducing parameter identi-
fiability and aggravating the issues with algorithm 
convergence. In this context, a Bayesian framework 
was proposed by Strathe et al. (2012) to estimate 
parameters in a multivariate model to describe 
energy intake and deposition in growing pigs. 
In particular, the authors argued that energetics 
experiments have been conducted for decades, and 
a considerable amount of a priori information is 
available in the literature. The combination of prior 
distributions and data likelihood in the construc-
tion of posterior density has the potential to assist 
with issues of parameter identifiability, especially in 
sparse data sets (Strathe et al., 2012). The Bayesian 
approach can be described as follows:

yijk|βi, kp, kf, b,Σ ∼ MVN( f (βi, kp, kf, b, BWij)k,Σ)
 

(16)

where yijk is the kth observed response (MEI, PD, 
and LD, all expressed in MJ/d) for the ith group 
(in this example, groups represent animal’s sex: bar-
row, boar, and gilt) at the jth BW (j = 1, …., ni), f 
(•)k is the expected of response k described by the 
set of multivariate equations (equation (17)), and 
βi is the vector of parameters for the ith group. 
Furthermore, kp and kf are the partial efficiencies 
and b is the metabolic exponent parameter, as 
before. The variance covariance matrix Σ describes 
the residual variability in MEI, PD, and LD.

The multivariate approach from Strathe et al. 
(2012) extends the previous approaches by also 
treating ME intake as an additional response vari-
able. In particular, ME intake is a response variable 
modeled as a function of BW, but it is also used 
as an explanatory variable for modeling LD. The 
set of equations describing the expected responses, 
f (•), are given by:

MEIij = Mi(1 − e−ki×BWij)

PDij =
PDmaxi

BWPDmaxi

BWij × log

Å
BWPDmaxi × e

BWij

ã

LDij = kf

Å
MEIij − ai × BWb

ij −
PDij

kp

ã
 (17)

where PDmax is the parameter describing the pat-
tern of maximum PD, BWPDmax is the parameter 

describing the BW at maximum rate of PD, M and 
k are the parameters describing the nonlinear rela-
tionship between MEI and BW, and all other param-
eters are defined as before. The Bayesian framework 
proposed by Strathe et al. (2012) requires the speci-
fication of prior distributions for all model param-
eters. For instance, Strathe et al. (2012) assumed 
that βi ∼ MVN(µ, H) and Σ ∼ IW(I, 3). The 
successful estimation of model parameters relied 
on utilizing literature information for constructing 
informative prior distributions, incorporated into 
the model through the mean vector μ and variance–
covariance matrix H. An application of the model 
was presented with a data set of growing pigs for 
which parameters were estimated using a Markov 
Chain Monte Carlo approach (Strathe et al., 2012). 
The estimates of the efficiency of PD ranged from 
0.58 to 0.62 for different models and sexes, whereas 
the efficiency of LD ranged from 0.73 to 0.78. It 
is important to note, however, that model conver-
gence in the Bayesian framework can also be an 
issue and attention to model structure and form as 
well as specification of prior distributions will play 
a key role in model fitting and results.

SUMMARY AND CONCLUSIONS

Energy efficiencies and maintenance parame-
ters have been traditionally estimated with a linear 
regression model. Several studies have described 
the statistical issues associated with this approach, 
such as the reverse role of  dependent and inde-
pendent variables and a potential multicollinear-
ity issue due to the high correlation between PD 
and LD. A first multivariate approach was devel-
oped by Koong (1977) who estimated the energy 
parameters using a set of  simultaneous equations. 
This multivariate approach has been considerably 
extended in the past two decades with the complete 
characterization of  model’s biological interpreta-
tion under different feeding conditions, the simul-
taneous estimation of  maintenance requirements, 
the extension of  the model to a mixed-effects 
framework, and the implementation of  a Bayesian 
framework for model fitting. Multivariate models 
are often harder to fit than linear regression mod-
els due to 1) larger number of  parameters, 2) issues 
with parameter identifiability, 3) potential issues 
with overparameterization, and 4) overall lack of 
algorithm convergence. Therefore, with the recent 
availability of  easy-to-use computer packages 
for model fitting (Plummer, 2003; Thomas et al., 
2006; Carpenter et al., 2017), the use of  a Bayesian 
framework seems as an attractive approach for 
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fitting multivariate models describing protein and 
lipid deposition.
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