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Abstract
Rheumatoid	 arthritis	 (RA)	 is	 a	 chronic,	 systemic	 autoimmune	 disease	 without	
known	cure	that	primarily	affects	synovial	 joints.	RA	has	a	prevalence	of	approxi-
mately	 1%	 of	 the	 population	 worldwide.	 A	 vicious	 circle	 between	 two	 critical	 im-
mune	cell	types,	B	cells	and	neutrophils,	develops	and	promotes	disease.	Pathogenic	
anti-	citrullinated	protein	antibodies	(ACPA)	directed	against	a	range	of	citrullinated	
epitopes	 are	 abundant	 in	 both	 plasma	 and	 synovial	 fluid	 of	 RA	 patients.	 In	 addi-
tion	 to	 stimulating	 numerous	 cell	 types,	 ACPA	 and	 other	 autoantibodies,	 notably	
rheumatoid	factor,	form	immune	complexes	(ICs)	that	potently	activate	neutrophils.	
Attracted	to	the	synovium	by	abundant	chemokines,	neutrophils	are	locally	stimu-
lated	by	 ICs.	They	generate	cytokines	and	 release	cytotoxic	 compounds	 including	
neutrophil	extracellular	traps	(NETs),	strands	of	decondensed	chromatin	decorated	
with	citrullinated	histones	and	granule-	derived	neutrophil	proteins,	which	are	par-
ticularly	abundant	 in	 the	synovial	 fluid.	 In	 this	way,	neutrophils	generate	citrulli-
nated	 epitopes	 and	 release	 peptidylarginine	 deiminase	 (PAD)	 enzymes	 capable	 of	
citrullinating	extracellular	proteins	in	the	rheumatic	joint,	contributing	to	renewed	
ACPA	generation.	This	review	article	focusses	on	the	central	function	of	citrullina-
tion,	 a	 post-	translational	 modification	 of	 arginine	 residues	 in	 RA.	 The	 discussion	
includes	 ACPA	 and	 related	 autoantibodies,	 somatic	 hypermutation-	mediated	 es-
cape	from	negative	selection	by	autoreactive	B	cells,	promotion	of	the	dominance	of	
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RHEUMATOID ARTHRITIS

Rheumatoid	arthritis	 (RA)	 is	a	chronic,	 systemic	autoim-
mune	 disease	 (reviewed	 in	 Ref.	 [1]).	 This	 most	 common	
form	of	 inflammatory	arthritis	affects	~1%	of	 the	popula-
tion	worldwide	and	is	more	prevalent	in	women	than	men.	
RA	is	a	disabling	condition	characterized	by	symmetrical	
inflammation	 of	 synovial	 joints,	 with	 small,	 peripheral	
joints	 most	 commonly	 affected.	 The	 synovial	 fluid	 (SF)	
becomes	enriched	in	leucocytes	and	cytokines,	and	the	in-
flamed	synovial	membrane	develops	into	an	inflammatory	
pannus,	an	abnormal	layer	of	blood	vessel-	containing	tis-
sue	which	invades	the	space	between	the	bones,	covering	
bones	and	cartilage.	Unless	treated,	RA	erodes	the	joint	car-
tilage	and	bone,	causing	chronic	pain,	stiffness,	progressive	
loss	 of	 function,	 disability	 and,	 once	 fusion	 of	 bones	 has	
occurred,	lasting	deformities.	Up	to	40%	of	patients	develop	
extraarticular	 RA,	 which	 ranges	 from	 systemic	 features,	
such	as	vasculitis,	to	affecting	individual	organs,	for	exam-
ple	 the	 lung	 (e.g.,	 interstitial	 lung	 disease)	 or	 heart	 (e.g.,	
pericarditis).	With	the	advent	of	improved	and	increasingly	
sophisticated	disease-	modifying	anti-	rheumatic	drugs,	RA	
has	 become	 more	 manageable	 in	 recent	 years.	 Although	
it	remains	incurable,	a	combination	of	early	intervention,	
control	 of	 inflammation	 and	 prevention	 of	 joint	 damage	
can	culminate	in	reaching	a	sustained	state	of	remission.

Rheumatoid	 arthritis	 is	 sometimes	 regarded	 not	 as	 a	
single	disease	but	a	group	of	related	diseases.	Although	the	
pathogenesis	of	RA	is	complex	and	remains	incompletely	
understood,	it	is	clear	that	this	is	a	long,	stepwise	process	
which	 involves	 the	 dysregulation	 of	 many	 cell	 types,	 all	
of	which	make	contributions	to	this	disease.	Despite	their	
important	contributions,	cell	types,	including	T	cells,	os-
teoclasts,	 macrophages	 and	 fibroblast-	like	 synoviocytes,	
are	 not	 discussed	 here.	 Instead,	 this	 review	 focusses	 on	
the	interplay	of	B	cells	and	neutrophils	in	autoantibody-	
driven	(seropositive)	RA.	Following	on	from	the	introduc-
tion	 to	 these	 two	 important	 cell	 types,	 and	 their	 critical	
role	in	the	formation	of	autoantibodies	and	protein	citrul-
lination,	which	drive	RA,	we	will	discuss	risk	factors	and	
how	they	link	into	RA	pathogenesis	by	promoting	citrulli-
nation	and	autoantibody	formation.

B CELLS

Anti-	citrullinated	 protein	 antibodies	 (ACPA;	 see	 below	
for	a	detailed	discussion)	are	present	in	serum	of	>80%	of	
patients	with	established	RA	and	in	~50%	of	those	with	
early	RA.	These	autoantibodies	can	present	as	much	as	
a	decade	prior	to	the	onset	of	any	clinical	disease	[2–	4]	
indicative	of	an	early	loss	of	tolerance	that	initiates	dis-
ease	pathogenesis.	During	B-	cell	development,	the	anti-
body	 repertoire	 is	 developed.	 Tolerance	 is	 regulated	 at	
the	central	and	peripheral	checkpoints,	when	autoreac-
tive	 B	 cells	 are	 eliminated,	 become	 anergic	 or	 undergo	
B-	cell	receptor	editing	[5].	These	processes	are,	however,	
less	strict	than	those	applying	to	T	cells,	and	some	auto-
reactive	 B	 cells	 escape.	 Survival	 of	 autoreactive	 B	 cells	
may	be	aided	by	their	genetic	predisposition	(see	below),	
and	self-	reactive	low-	affinity	antibodies	may	be	masked	
on	 anergic	 B	 cells.	 Moreover,	 somatic	 hypermutation	
(SHM)	leading	to	N-	linked	glycosylation	of	the	variable	
region	 may	 permit	 escape	 from	 negative	 selection	 [6].	
Indeed,	 glycosylation	 of	 the	 ACPA	 Fc	 changes	 during	
the	transition	from	pre-	arthritis	to	arthritis	with	the	ap-
pearance	of	a	more	pro-	inflammatory	glycoform	of	these	
autoantibodies	[7,8].	In	the	context	of	collagen-	induced	
arthritis	(CIA)	in	the	mouse,	differential	glycosylation	of	
ACPA	was	shown	to	affect	their	pathogenicity	[9],	with	
IL-	23	and	Th17	cells	having	key	roles	in	promoting	path-
ogenicity	[10].

In	addition	to	pathological	autoantibodies,	the	success	
of	 B-	cell	 depletion	 therapies	 targeting	 CD20	 and	 BAFF	
[11–	14]	identified	a	critical	function	of	B	cells	in	promot-
ing	chronic	inflammation	in	RA.	The	curious	observation	
that	good	responsiveness	 to	B-	cell	depletion	 therapy	did	
not	 correlate	 with	 reduced	 ACPA	 titres,	 prompted	 stud-
ies	 into	B	cells	as	drivers	of	chronic	inflammation.	Such	
studies	 identified	 continuous	 antigen-	driven	 B-	cell	 ac-
tivation,	 proliferating	 ACPA-	positive	 memory	 B	 cells	 in	
both	circulation	and	SF,	as	well	as	the	production	of	pro-	
inflammatory	 mediators,	 notably	 the	 neutrophil	 chemo-
kine	 IL-	8	 by	 synovial	 ACPA+	 B	 cells	 [15],	 suggestive	 of	
crosstalk	 between	 pathogenic	 B	 cells	 and	 neutrophils	
(Figure	1).

citrullinated	antigens	by	genetic	and	lifestyle	susceptibility	 factors	and	the	vicious	
circle	between	ACPA-	producing	pathogenic	B	cells	and	NET-	producing	neutrophils	
in	RA.

K E Y W O R D S

anti-	citrullinated	protein	antibodies,	B	cells,	citrullination,	dysbiosis,	immune	complexes,	
neutrophil	extracellular	traps,	neutrophils,	peptidylarginine	deiminase,	rheumatoid	arthritis
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NEUTROPHILS

Neutrophils,	 the	most	abundant	circulating	 leucocyte	 in	
humans,	play	a	key	role	in	host	defence	in	killing	bacte-
ria	and	fungi	either	intracellularly,	following	phagocyto-
sis,	 or	 extracellularly	 [16,17].	 Unstimulated	 neutrophils	
circulate	for	only	up	to	1 day	before	homing	back	to	the	
bone	marrow	where	they	undergo	apoptosis	to	be	cleared	
by	resident	macrophages	in	an	anti-	inflammatory	process	
termed	 efferocytosis.	 In	 contrast,	 upon	 activation,	 the	
short-	lived	 neutrophil	 leaves	 the	 blood	 stream	 and	 trav-
els	to	inflammatory	sites,	such	as	the	inflamed	synovium,	
following	gradients	of	chemo-	attractants	and	chemokines	
[17,18].

Neutrophils	are	armed	with	granules	loaded	with	pow-
erful	proteases	and	highly	toxic	antimicrobial	peptides	and	

possess	 the	 ability	 to	 generate	 cytotoxic	 reactive	 oxygen	
species	(ROS),	which	can	be	released	into	a	phagosome	or	
to	the	outside	of	the	cell.	Neutrophils	can	moreover	release	
their	chromatin	as	‘neutrophil	extracellular	traps’	(NETs;	
see	 also	 below),	 strands	 of	 granule	 protein-	decorated	
chromatin	that	have	important	functions	in	host	defence	
and	 that	 are	 highly	 inflammatory	 [16,17].	 Neutrophilic	
inflammation	 can	 be	 triggered	 by	 microbes	 and	 sterile	
stimuli	and	can	impart	serious	host	tissue	injury.	Immune	
complexes	 (ICs)	 are	 powerful	 pro-	inflammatory	 stimuli	
of	neutrophils	 that	 ligate	Fc	receptors,	and	 trigger	effec-
tor	functions,	including,	ROS	production,	degranulation,	
NETs,	chemokine	and	cytokine	generation	[19–	22],	all	of	
which	are	thought	to	contribute	to	tissue	damage	incurred	
in	RA.	ICs	are	key	to	RA.	Depending	on	their	ratio	of	an-
tibody	and	antigen,	ICs	can	be	soluble	or	insoluble.	Both	

F I G U R E  1  B	cells	and	neutrophils	form	a	vicious	circle	in	RA.	Activated	B	cells	release	cytokines	to	crosstalk	with	other	immune	
cells,	with	B-	cell-	derived	IL-	8	recruiting	neutrophils	to	the	synovium	[15].	B	cells	receive	T-	cell	help	with	class	switching	and	somatic	
hypermutation,	promoting	the	development	of	autoantibodies	in	a	HLA-	DR	SE-	dependent	fashion.	Local	plasma	cells	produce	large	
amounts	of	autoantibodies	including	RF	and	ACPA;	these	form	ICs	which	activate	the	complement	pathway	and	promote	inflammation,	
for	example	by	stimulating	neutrophils	both	in	the	circulation	and	also	in	the	synovium.	Amongst	other	events,	this	results	in	the	release	of	
NETs,	which	are	particularly	abundant	in	RA.	Myeloperoxidase	(MPO),	neutrophil	elastase	(NE)	and	citrullinated	histones	are	amongst	the	
proteins	that	decorate	NETs	[22,141].	Citrullinated	histones	are	thought	to	act	as	a	continuous	source	of	fresh	antigen	to	B	cells,	promoting	
the	production	of	new	IgM	ACPA.	In	the	synovium,	this	is	promoted	by	HLA-	DR	expressing,	activated	neutrophils	which	release	cytokines	
including	BAFF	and	IL-	21,	activating	B	cells	[38–	41].	In	the	interest	of	clarity,	RF	and	ICs	are	simplified	in	this	cartoon	drawing	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.com]
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types	are	abundant	in	the	SF,	with	further	ICs	precipitated	
onto	synovial	surfaces.

The	SF	in	RA	is	characteristically	sterile,	though	con-
taining	 chemokines	 and	 cytokines	 and	 infiltrated	 by	 a	
large	 number	 of	 leucocytes	 (>5000/μl),	 the	 majority	 of	
which	are	neutrophils	[23,24].	At	early	stages	of	(clinical)	
disease,	 neutrophils	 are	 also	 recruited	 into	 the	 synovial	
tissue	[25,26],	providing	indirect	clues	about	the	import-
ant	role	of	neutrophils	in	RA.

Circulating	 neutrophils	 from	 RA	 patients	 are	 charac-
terized	by	an	activated	phenotype	that	is	characterized	by	
increased	ROS,	cytokine,	protease	and	NET	production	as	
well	 as	 delayed	 apoptosis	 [27–	30].	 Intriguingly,	 patients	
with	RA,	as	well	as	 rats	 in	an	RA	model,	were	 found	to	
harbour	circulating	low-	density	granulocytes,	with	differ-
ential	cell	surface	marker	and	gene	expression	signatures	
that	are	 the	subject	of	ongoing	 investigation	[31–	33].	SF	
neutrophils	 were	 reported	 to	 be	 more	 activated	 still	 and	
having	a	differential	gene	expression	signature	compared	
to	circulating	cells	from	the	same	patient	[34].	SF	neutro-
phils	are	longer-	lived	than	circulating	neutrophils	[35,36],	
secrete	proteases,	and	release	cytokines	and	chemokines	
to	activate	and	recruit	further	neutrophils	[29,37].	SF	neu-
trophils	 also	 crosstalk	 with	 adaptive	 immune	 cells,	 for	
example	by	production	of	B-	cell	activating	factor	(BAFF),	
inducing	B-	cell	proliferation	and	directly	contributing	to	
autoantibody	 production	 [38,39].	 SF	 neutrophils	 more-
over	 acquire	 the	 ability	 to	 present	 antigen	 in	 an	 MHC-	
II-	dependent	fashion	and	drive	CD4+	T-	cell	proliferation	
[40,41].	This	 is	 in	keeping	with	observations	 that	 the	SF	
containing	 neutrophil-	derived	 cytotoxic	 products,	 NETs,	
cytokines	 and	 chemokines	 produced	 by	 neutrophils	 fur-
ther	inflammation	[36,42,43].

While	experiments	with	laboratory	animals	and	disease	
models	need	to	be	interpreted	with	caution,	mouse	models	
of	RA	suggest	that	neutrophils	play	a	key	role	in	this	dis-
ease.	 Antibody-	mediated	 neutrophil	 depletion	 abolished	
development	of	K/BxN	serum	transfer	arthritis	and	also	
of	collagen	antibody-	induced	arthritis	(CAIA)	[44,45],	and	
neutrophil	depletion	after	disease	onset	resulted	in	steep	
decline	of	CIA	[46].	 In	a	 series	of	extensive	and	elegant	
investigations,	the	recruitment	of	neutrophils	to	the	rheu-
matic	joint	in	the	K/BxN	serum	transfer	model	was	shown	
to	 depend	 on	 FcγR	 as	 well	 as	 a	 cascade	 of	 chemokines,	
cytokines	and	chemo-	attractants	generated	by	a	variety	of	
cells	and	their	respective	receptors	on	neutrophils	[47–	50].	
Meanwhile,	IC-	mediated	neutrophil	gene	expression,	 in-
cluding	that	of	pro-	inflammatory	mediators,	is	dependent	
on	 CARD9-	dependent	 regulation	 of	 the	 NFκB	 pathway	
downstream	of	FcγR,	Src	family	kinases	and	Syk	[51–	53].	
Elegant,	 very	 recent	 work	 with	 FcγR-	humanized	 mouse	
neutrophils	 revealed	 that	 internalization	 of	 ICs	 permits	
these	 neutrophils	 to	 become	 antigen-	presenting	 cells	 in	

a	FcγR-	dependent	fashion	[54].	The	resulting	neutrophils	
combined	 dendritic	 cell	 (antigen	 presentation,	T-	cell	 ac-
tivation,	 cytokine	 production)	 and	 neutrophil	 functions	
(ROS	production,	phagocytosis)	[54].

NETS

Neutrophil	 extracellular	 traps	 are	 web-	like	 structures	 that	
are	 released	 by	 neutrophils.	 NETs	 consist	 of	 decondensed	
chromatin	 decorated	 with	 cytotoxic	 proteins,	 citrullinated	
histones,	 granule-	derived	 proteins	 including	 neutrophilic	
proteases,	myeloperoxidase	 (MPO),	and	antimicrobial	pep-
tides.	 Initially	 described	 as	 a	 pro-	inflammatory	 cell	 death	
mechanism	(NETosis),	vital	NET	release	was	since	also	dem-
onstrated	[55],	with	the	pathway	employed	being	stimulus-	
dependent	and	varying	in	its	NADPH	oxidase	dependency	as	
well	as	cleavage	of	N-	terminal	histone	tails	[56].	Apart	from	
their	crucial	function	in	host	immunity,	trapping	and	killing	
pathogens,	NETs	have	important	functions	in	autoimmune	
diseases	including	RA	[57,58].	Elevated	levels	of	NETs	were	
identified	in	RA	serum	and	SF	[56,59,60].

Peptidyl-	arginine	 deiminase	 4	 (PAD4),	 a	 leucocyte-	
restricted	 nuclear	 PAD,	 mediates	 histone	 citrullination,	
a	 post-	translational	 modification	 of	 arginine	 residues	
during	NET	formation	(Figure	2).	NETs	represent	an	im-
portant	 source	 of	 citrullinated	 (and	 homocitrullinated)	
epitopes	in	RA.	Indeed,	NET-	associated	citrullinated	his-
tones	represent	a	continuous	source	of	antigen	for	B	cells	
and	promote	the	localized	generation	of	ACPA	(see	below	
for	 a	 detailed	 section	 on	 ACPA)	 that	 are	 able	 to	 cross-	
react	with	citrullinated	histones	in	ectopic	germinal	cen-
tres	in	the	inflamed	synovial	joint	[59,61,62].	Plasma	cell	
differentiation	and	antibody	production	are	promoted	in	
situ	 by	 pathogenic,	 IL-	21-	producing	T	 peripheral	 helper	
cells	[63].	Not	only	are	ACPA	pathogenic	by	themselves.	
Potentially	aided	by	RF	(see	below	for	a	detailed	section	
on	RF),	which	has	the	capacity	to	bind	several	IgG	mol-
ecules,	 ACPA	 form	 ICs.	 These	 ICs	 fix	 complement,	 ac-
cumulate	 in	 SF	 and/or	 deposit	 on	 synovial	 surfaces	 to	
amplify	inflammation	[64–	66].	ICs	are	powerful	stimuli	of	
NET	release	(e.g.,	[22,67,68]).	In	addition,	NETs	stimulate	
neutrophils	 to	produce	 further	NETs	and	 to	secrete	 IL-	8	
and	 BAFF	 [69],	 promoting	 the	 vicious	 circle	 between	 B	
cells	and	neutrophils	(Figure	1).

Having	 introduced	 neutrophils	 and	 B	 cells,	 and	 how	
they	activate	one	another	in	established	disease,	the	next	
section	of	this	review	article	will	discuss	genetic	and	life-
style	factors	that	predispose	to	RA.	The	focus	lies	on	how	
these	 factors	 promote	 post-	translational	 modification	
such	as	citrullination	and/or	the	NET	generation	by	neu-
trophils,	in	turn	promoting	B-	cell	generation	of	autoanti-
bodies,	in	particular	ACPA,	promoting	RA	pathogenesis.
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GENETIC FACTORS

While	 it	 is	 still	 unclear	 why	 some	 people	 ultimately	 de-
velop	 RA,	 there	 are	 well-	documented	 genetic	 and	 envi-
ronmental	 risk	 factors.	 The	 most	 significant	 genetic	 risk	
factor	identified	to	date	is	the	class	II	major	histocompat-
ibility	locus,	with	so-	called	shared	epitope	(SE)	containing	
alleles	 increasing	 the	 risk	 of	 developing	 seropositive	 RA	
according	to	epidemiological	studies	[70,71].	SE	sequences	
70QKRAA74,	70QRRAA74	or	70RRRAA74	within	HLA-	DRB1	
are	involved	in	shaping	the	peptide-	binding	pocket	of	the	
HLA	 molecule.	 The	 presence	 of	 two	 positively	 charged	
residue	 (lysine,	 arginine)	 in	 residues	 71–	73	 increases	

the	binding	capacity	of	citrullinated	peptides	over	native	
peptides	 [72,73].	 In	 addition,	 citrullinated	 peptides	 were	
also	shown	to	display	enhanced	binding	to	HLA-	DQ	[74].	
Altogether,	 these	 mechanisms	 achieve	 that	 citrullinated	
peptides	 are	 preferentially	 presented,	 and	 activate	 CD4+	
T-	cell	responses,	which	in	turn	promote	the	immune	re-
sponse	by	helping	ACPA-	producing	B-	cell	antibody	matu-
ration	(class	switching	and	somatic	hypermutation).

Additional	 genetic	 risk	 factors	 have	 been	 attributed	
to	 single	 nucleotide	 polymorphisms	 (SNPs)	 in	 a	 range	 of	
genes.	The	most	prominent	of	 these	 is	a	SNP,	C1858T,	 in	
the	leucocyte-	restricted	protein	tyrosine	phosphatase	non-
receptor	 22	 (PTPN22)	 which	 encodes	 the	 R620W	 variant	

F I G U R E  2  Citrullination	and	homocitrullination	underpin	the	pathogenesis	of	RA.	Pathogenic	autoantibodies	including	ACPA	and	
anti-	CarP	in	pre-	rheumatic	patients	precede	the	onset	of	clinical	symptoms	in	RA	by	up	to	a	decade.	In	addition	to	a	genetic	disposition,	
triggers	at	mucosal	sites	are	thought	to	play	a	key	role	in	these	early	events.	Smoking-	induced	lung	inflammation	can	promote	neutrophil-	
derived	NETs	in	the	lung	form	and	exteriorization	of	myeloperoxidase	(MPO).	Together	with	smoke-	derived	cyanate,	homocitrullination	
(also	known	as	carbamylation)	of	lysine	causes	the	generation	of	homocitrulline,	indirectly	promoting	the	generation	of	anti-	carP	antibodies	
[86].	Alternative	scenarios	involve	microbial	dysbiosis	at	mucosal	surfaces,	such	as	the	gingival	tissues.	Two	causative	pathogens	in	
gingivitis,	P. gingivalis	and	A. actinomycetemcomitans	can	promote	citrullination	of	antigens	by	employing	bacterial	P-	PAD	and	neutrophil	
PAD4,	respectively	[95,100].	Citrullination	is	a	process	by	which	arginine	is	enzymatically	converted	to	citrulline,	generating	a	highly	
immunogenic	antigen	[62].	The	events	leading	to	the	onset	of	symptomatic	disease	years	later	remain	obscure,	with	possibilities	including	
infection	and/or	local	trauma.	In	the	rheumatic	phase,	autoantibody	maturation	occurs	locally	in	the	inflamed	synovial	tissue.	B-	cell	SHM	
involving	crosstalk	of	pathogenic	B	cells	and	pathogenic	peripheral	T	helper	cells	occurs	in	ectopic	germinal	centres	[63].	Strikingly,	SHM	
results	in	characteristic	glycosylation	of	the	antibodies	variable	domain.	This	unusual	form	of	SHM	does	not	result	in	affinity	maturation	
but	instead	drives	epitope	shifting	and	cross-	reactivity	of	ACPA	[110,115],	ultimately	resulting	in	more	tissue	damage	and	increased	disease	
severity	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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[75].	This	allele	and	especially	C1858T	homozygosity	cause	
an	elevated	risk	of	developing	RA,	earlier	disease	onset	and	
more	aggressive	disease,	with	RF	positivity	conferring	in-
creased	odds.	R620W	PTPN22	was	reported	to	drive	blunted	
BCR	signalling	and	reduced	B-	cell	apoptosis,	 resulting	 in	
increased	escape	of	poly-		and	autoreactive	B	cells	from	cen-
tral	and	peripheral	tolerance	in	humans	and	mouse	models	
[76–	78].	PTPN22	is	most	highly	expressed	in	neutrophils,	
with	R620W	reported	 to	promote	 transendothelial	migra-
tion	and	ROS	production	in	human	neutrophils	[79],	while	
in	a	mouse	model	Ptpn22	deficiency	caused	decreased	pro-	
inflammatory	responses	to	IC	stimulation	without	affecting	
neutrophil	recruitment	to	inflammatory	sites	[80].	PTPN22	
was	 moreover	 shown	 to	 physically	 interact	 with	 and	 in-
hibit	PAD4	in	a	phosphatase-	independent	fashion.	Indeed,	
R620W	PTPN22	promoted	enhanced	citrullination	which	
resulted	in	increased	NET	production	by	neutrophils	and	in	
defective	Th2	and	Th17	cytokine	production	by	peripheral	
blood-	derived	mononuclear	cells	[81,82].

LIFESTYLE: SMOKING

The	 major	 environmental	 factor	 associated	 with	 develop-
ing	RA	is	smoking,	which	in	combination	with	the	HLA-	DR	
SE	confers	a	significantly	increased	susceptibility	to	ACPA-	
positive	 RA	 according	 to	 epidemiological	 studies	 (e.g.,	
[83,84]).	This	suggests	that	smoking	may	provide	an	external	
trigger	for	those	already	carrying	genetic	risk	factors	to	de-
velop	RA,	and	identifies	the	lung	as	an	important	mucosal	
site	 in	 RA	 development	 (Figure	 2).	 Indeed	 smokers'	 lung	
biopsies	were	characterized	by	upregulated	PAD2/4	expres-
sion	 and	 increased	 protein	 citrullination	 [85,86].	 Recently,	
enhanced	 carbamylation	 and	 anti-	CarP	 (see	 below)	 were	
also	found	in	smokers	and	smoke-	exposed	laboratory	mice	
[87,88],	directly	implying	neutrophils.	Interestingly,	neutro-
phils	isolated	from	smokers	were	moreover	shown	to	be	more	
prone	to	NET	production	in	a	nicotine-	dependent	fashion.	In	
experimental	mice,	too,	nicotine	promoted	NET	production	
and	caused	more	severe	disease	scores	in	CIA	[89,90].

DYSBIOSIS:  EXAMPLE 
PERIODONTITIS

Links	between	the	disruption	of	the	beneficial	relationship	
between	commensal	bacteria	and	the	host	at	mucosal	sur-
faces	were	documented	in	inflammation,	with	dysbiosis	of	
the	oral	microbiota	and	periodontitis	most	clearly	associ-
ated	with	RA	pathogenesis	[91]	(Figure	2).	A	statistically	
significant	association	between	RA	and	periodontitis	was	
shown	 in	 a	 number	 of	 clinical	 studies,	 with	 RA	 patients	
with	 severe	 periodontitis	 suffering	 from	 more	 severe	 RA	

[92].	 Associations	 between	 ACPA	 and	 severity	 of	 peri-
odontitis	 in	RA	and	pre-	RA	patients	were	also	described	
[93,94].	 A	 possible	 explanation	 for	 this	 observation	 rests	
with	two	key	periodontal	pathogens.	Porphyromonas gingi-
valis	expresses	a	bacterial	deiminase,	PPAD,	which	citrul-
linates	C-	terminal	arginines	of	bacterial	and	host	origin	in	
a	calcium-	independent	fashion,	potentially	contributing	to	
the	breaking	of	tolerance	[95].	In	the	context	of	CIA	in	the	
mouse,	P. gingivalis	PPAD	activity	could	increase	inflam-
matory	arthritis	[96,97].	Notably,	P. gingivalis	also	affects	
the	 cytokine	 response	 of	 gingival	 epithelial	 cells,	 driving	
recruitment	of	Th17	cells	and	neutrophils	via	CCL20	and	
CXCL8.	P. gingivalis	was	further	shown	to	trigger	release	
of	 non-	bactericidal	 NET	 production	 by	 neutrophils,	 en-
couraging	 microbial	 growth	 and	 increasing	 citrullinated	
antigens	 in	 the	 periodontal	 space	 [98,99].	 In	 a	 separate	
mechanism,	 Aggregatibacter actinomycetemcomitans	 was	
shown	to	use	its	pore-	forming	leucotoxins	to	induce	hyper-
citrullination	and	NET	formation	by	neutrophils,	which	in	
turn	increased	ACPA	in	the	periodontal	space	[100].

AUTOANTIBODIES

As	laid	out	above,	the	earliest	and	perhaps	most	conspicu-
ous	feature	of	RA	are	autoantibodies,	which	can	be	present	
years	or	even	decades	prior	to	onset	of	clinical	symptoms	
(pre-	RA),	with	epitope	spreading	and	expansion	of	autoan-
tibodies	occurring	prior	to	the	onset	of	clinical	disease.

Rheumatoid factor

Rheumatoid	factor	refers	to	antibodies	directed	against	the	
Fc	region	of	IgG	and	was	described	in	the	1940s.	Despite	
its	high	prevalence	in	RA	(up	to	80%	of	patients)	and	posi-
tive	association	with	more	severe	disease	progression,	RF	
is	not	restricted	to	RA,	making	it	an	unreliable	diagnostic	
marker	(reviewed	in	Ref.	[1]).	RF	can	undergo	class	switch-
ing,	with	IgM	and	IgA	RF	most	commonly	observed	in	RA.	
RF	moreover	undergoes	somatic	hypermutation	and	affin-
ity	maturation	in	RA.	By	recognizing	IgG,	RF	is	perfectly	
suited	 to	 forming	 large	ICs,	and	to	promoting	deposition	
of	complement	to	improve	clearance	of	excess	antibodies,	
the	 likely	 function	of	natural	RF	 [101].	However,	 as	 laid	
out	above,	ICs	also	play	a	key	role	in	promoting	persistent	
inflammation	including	via	neutrophils.

Anti- citrullinated protein antibodies

Anti-	citrullinated	 protein	 antibodies	 represent	 a	 second	
class	 of	 highly	 prevalent	 autoantibodies	 found	 in	 RA.	
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ACPAs	are	present	in	the	serum	of	80–	90%	of	patients	with	
established	RA	and	in	up	to	20%	of	their	first-	degree	rela-
tives	[102].	For	diagnostic	purposes,	presence	of	ACPA	in	
the	serum	is	detected	by	using	cyclic	citrullinated	peptide	
(CCP2/CCP3)	assays,	where	synthetic	CCPs	are	used	that	
were	optimized	for	optimal	ACPA	capture.	Serum	ACPA	
react	 with	 peptides	 derived	 from	 a	 range	 of	 citrullinated	
protein	 antigens	 that	 are	 found	 in	 the	 rheumatic	 joints,	
including	fibrin	vimentin,	α-	enolase	and	histones	[62,103–	
106],	with	a	high	degree	of	 cross-	reactivity	between	sub-
strates	observed	for	 individual	monoclonal	ACPAs	[107].	
Interestingly,	 it	 was	 recently	 suggested	 that	 improved	
screening	might	detect	autoantibodies	in	seronegative	RA	
patients	 that	 do	 not	 cross-	react	 well	 with	 the	 CCPs	 used	
in	 current	 clinical	 testing	 [108].	 Although	 the	 presence	
of	ACPA	in	a	person	without	clinical	symptoms	does	not	
predict	that	they	will	be	developing	RA,	contrasting	with	
RF,	the	presence	of	ACPA	is	highly	specific	to	RA,	making	
them	a	useful	diagnostic	tool.	ACPA	is	moreover	indicative	
of	more	severe	disease	progression	[109].	In	RA,	ACPA	as-
sociate	with	RF	and	the	HLA	SE,	as	laid	out	above.

Anti-	citrullinated	 protein	 antibodies	 undergo	 class	
switching,	 extensive	 somatic	 hypermutation	 as	 well	 as	
conspicuous	 variable	 region	 glycosylation	 and	 epitope	
spreading,	leading	to	cross-	reactive	antibodies	(Figure	2).	
However,	 affinity	 maturation	 is	 limited	 and	 even	 serum	
IgG	ACPA	is	characterized	by	low	binding	affinity	for	ci-
trullinated	 protein	 [110–	115].	 Interestingly,	 despite	 the	
short	 half-	life	 of	 5.9  days	 of	 IgM	 in	 RA	 [116],	 and	 the	
fact	that	long-	lived	IgM-	secreting	plasma	cells	are	not	de-
scribed	in	humans,	IgM	ACPA	continues	to	be	present	in	
the	serum	of	RA	patients,	or	can	occur	at	later	stages	in	
previously	 IgM	 ACPA-	negative	 patients	 [117,118].	 This	
suggests	 that	 new	 citrullinated	 antigen-	specific	 B	 cells	
continuously	generate	new	ACPA,	implying	the	continued	
generation	of	fresh	citrullinated	antigens,	for	example	due	
to	neutrophil-	mediated	production	of	NETs	[57,59,60].

Anti- CarP

Processes	 related	 to	 citrullination	 also	 lead	 to	 secondary	
modification	 of	 protein	 epitopes	 that	 are	 similarly	 anti-
genic.	Carbamylation,	also	known	as	homocitrullination,	
is	the	post-	translational	modification	of	lysine	to	homoc-
itrulline	(Figure	2).	Unlike	citrullination,	carbamylation	is	
a	chemical	modification	that	does	not	rely	on	an	enzyme,	
but	occurs	on	the	presence	of	cyanate	as	a	myeloperoxidase-	
dependent	oxidation	of	thiocyanate	which	is	abundant	in	
smokers	 [86].	 Carbamylated	 peptides	 were	 predicted	 to	
bind	 SE	 alleles	 [119].	 Anti-	CarP	 (carbamylated	 peptide)	
antibodies	are	directed	against	carbamylated	proteins	and	
frequently	 cross-	react	 with	 citrullinated	 proteins	 [119].	

Anti-	CarP	 are	 present	 in	 45%	 of	 RA	 patients	 including	
some	of	those	who	are	ACPA-	negative.	Like	ACPA,	anti-	
CarP	 antibodies	 are	 very	 specific	 to	 RA,	 present	 in	 the	
serum	 up	 to	 10  years	 before	 the	 onset	 of	 clinical	 symp-
toms,	and	are	associated	with	NETs	[58,120].

Anti- PAD antibodies

Neutrophils	 express	 three	 PAD	 enzymes,	 PAD2/3/4.	
Extracellular,	 active	 PAD	 was	 observed	 in	 cell-	free	 SF	
of	 RA	 patients	 [121].	 Neutrophil	 NETosis	 was	 found	 to	
result	in	release	of	free	PAD2/4	in	vitro,	raising	the	pos-
sibility	 that	dying	neutrophils	may	be	 the	source	of	 free	
PAD2/4	 [122].	However,	neutrophils	were	also	 found	 to	
spontaneously	secrete	or	expose	PAD2/4	[123],	providing	
an	alternative	explanation	for	the	citrullination	of	extra-
cellular	targets	in	the	rheumatic	joint.	Interestingly,	PADs	
themselves	also	serve	as	RA	autoantigens.	 Indeed,	~30%	
of	RA	patient,	but	not	control	sera,	were	found	to	be	anti-	
PAD4	positive,	with	anti-	PAD4	positivity	occurring	prior	
to	 (clinical)	 disease	 onset	 and	 being	 a	 marker	 of	 severe	
disease	 [124–	126].	 PAD4	 requires	 >100  μM	 Ca2+	 to	 dis-
play	any	catalytic	activity	in	vitro	and	mM	Ca2+	concen-
trations	for	optimal	activity.	This	vastly	exceeds	the	Ca2+	
concentration	of	the	resting	cell	[127],	but	can	be	achieved	
following	activation	and	opening	of	Ca2+	channels	[128].	
The	fact	that	histone	citrullination	occurs	physiologically	
to	 regulate	gene	expression	 [129]	moreover	 suggests	 the	
existence	 of	 additional	 mechanisms	 that	 allow	 PAD	 en-
zymes	to	be	active	at	lower	Ca2+.	Fascinatingly,	a	subset	
of	 cross-	reactive	 anti-	PAD3/4	 antibodies	 were	 shown	 to	
inducing	a	conformational	change	into	PAD4	when	bind-
ing	to	it,	rendering	it	hyperactive	by	which	vastly	reduced	
its	 Ca2+	 requirement	 to	 a	 physiological	 level	 [130,131].	
Presence	of	these	truly	pathogenic	anti-	PAD3/4	antibod-
ies	correlates	with	particularly	aggressive	disease.

CONCLUDING REMARKS

Despite	decades	of	research	into	RA,	the	trigger	that	precip-
itates	the	original	break	of	tolerance	and	the	nature	of	addi-
tional	events	that	initiate	clinical	disease	remain	obscure.	It	
is	clear,	however,	that	a	combination	of	genetic	predisposi-
tion,	lifestyle	choices	and	dysbiosis	can	all	contribute	to	cul-
minate	in	clinical	disease.	Citrullination,	much	of	it	likely	
to	be	neutrophil-	derived,	and	ACPA	lie	at	the	heart	of	the	
initial	break	of	tolerance,	and	subsequently,	a	vicious	circle	
between	neutrophils	and	B-	cell-	derived	autoantibodies/ICs	
plays	out.	Neutrophils	are	often	portrayed	as	uniquely	pro-	
inflammatory;	however,	this	is	likely	not	the	whole	truth.	
Not	only	do	neutrophils	clear	insoluble	ICs	from	biological	
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fluids,	 thereby	 reducing	 these	 highly	 pro-	inflammatory	
stimuli,	 but	 the	 same	 ICs	 also	 induce	 neutrophil	 apopto-
sis	[132–	134],	a	cell	death	that	promotes	the	resolution	of	
inflammation	[135].	A	separate	intriguing	notion	is	moreo-
ver	that	physiologically	citrullination	may	occur	in	order	to	
limit	excessive	inflammation.	Free	histones	are	extremely	
cytotoxic	[136];	however,	their	citrullination	in	NETs	ren-
ders	 them	 more	 susceptible	 to	 proteolytic	 degradation.	 It	
also	reduces	their	ability	to	stimulate	further	NET	produc-
tion	[137,138].	In	a	similar	way,	citrullination	may	confer	
the	host	with	a	degree	of	protection	from	the	highly	toxic	
antibacterial	peptide	LL37	[139,140].
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