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Abstract: Roots play important roles in determining crop development under drought. Under
such conditions, the molecular mechanisms underlying key responses and interactions with the
rhizosphere in crop roots remain limited compared with model species such as Arabidopsis. This article
reviews the molecular mechanisms of the morphological, physiological, and metabolic responses to
drought stress in typical crop roots, along with the regulation of soil nutrients and microorganisms
to these responses. Firstly, we summarize how root growth and architecture are regulated by
essential genes and metabolic processes under water-deficit conditions. Secondly, the functions
of the fundamental plant hormone, abscisic acid, on regulating crop root growth under drought
are highlighted. Moreover, we discuss how the responses of crop roots to altered water status are
impacted by nutrients, and vice versa. Finally, this article explores current knowledge of the feedback
between plant and soil microbial responses to drought and the manipulation of rhizosphere microbes
for improving the resilience of crop production to water stress. Through these insights, we conclude
that to gain a more comprehensive understanding of drought adaption mechanisms in crop roots,
future studies should have a network view, linking key responses of roots with environmental factors.
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1. Introduction

Drought stress is one of the most serious abiotic stresses affecting plant growth and
crop productivity [1,2]. In recent years, crop production has become water-limited and
will be more affected in the future due to climate change worldwide [3,4]. Under such
circumstances, the ability to survive under drought stress is critical for the growth and
survival of crop species [5,6]. Therefore, research into how crops respond to exposure to
soil water deficit is essential for producing high-yield and drought-tolerant crops.

Among the plant organs that are affected by water-deficit stress, the root is the first
organ that emerges from the seed and contacts the rhizosphere [7–9]. Water and nutrients
are absorbed by roots and then transported to the rest of the plant [8,10]. Shortage of soil
water content leads to water deficiency in the plant rhizosphere. When sensing water
deficits, crop roots transmit stress signals to the rest of the plant and cause developmental,
physiological, and metabolic changes in adaptation to the drought stress. The study of crop
root responses to drought stress is important for clarifying how crops can maintain growth
under water-deficit conditions and provides candidate genes for genetic manipulation to
improve crop traits, drought tolerance, and ultimately, grain yield. Therefore, the establish-
ment of the root system is essential for the development and survival of crops, especially

Int. J. Mol. Sci. 2022, 23, 9310. https://doi.org/10.3390/ijms23169310 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23169310
https://doi.org/10.3390/ijms23169310
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6956-0485
https://doi.org/10.3390/ijms23169310
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23169310?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 9310 2 of 26

when the seedling is exposed to drought [9,11], which can be critical for productivity and
grain yield in an agricultural sense [12,13].

The responses of plant roots to water-deficit stress have been the focus of research in
recent decades [6,11,14,15]. When exposed to drought, the metabolism and physiological
processes in plants are disturbed [6,16]. As the organ first sensing water deficiency, roots
sense the stress soon after the exposure and generate specific responses to the stress.
Physiologically, the plant–water relations are changed, leading to a shift in some metabolic
pathways. The allocation of photosynthate in roots and the rhizosphere is inhibited under
severe drought conditions. Thus, the inhibition of root growth will in turn reduce water and
nutrient uptake, ultimately influencing both biomass accumulation and grain yield. Under
water-deficit conditions, a well-developed root system architecture (RSA) can enhance the
drought tolerance of crops and improve the utilization of resources, thereby increasing
the yield and quality of crops. With optimized RSA, crops can strengthen their traits,
including depth and root number, to better absorb deeper soil water resources to improve
their drought tolerance [17–20]. Therefore, RSA characteristics have become important
considerations for crop breeders [21,22]. Plant hormones play important roles in roots
through interactions between hormones and with metabolites. Abscisic acid (ABA) serves
as a root-generated signal to regulate the opening of stomata and wilting of leaves in the
upper parts of crops to resist water-deficit stress, providing a theoretical basis for improving
water-use efficiency (WUE) by regulating water deficiency status in the rhizosphere [23–25].
It is one of the most studied plant hormones in recent years, especially for its regulatory
roles in roots [26,27] and interactions with other hormones [28–30]. Meanwhile, studies
have shown that crop root response to drought is regulated by nutrients. For example, the
application of nutrients such as nitrogen under water-deficit conditions can improve the
responses of roots to drought and change RSA for increased drought tolerance [31]. Crop
responses to water-deficit stress are also affected by rhizosphere microorganisms. Changes
in root exudation will alter the abundance, composition, and activities of rhizosphere
microorganisms, as well as the feedback between crops and soil microbes. Root exudation
may also enhance the activities of nutrients and water uptake from roots (Figure 1).

A large number of studies have been conducted to investigate the mechanisms that
underlie the morphological, physiological, and metabolic responses to drought stress in
roots [32–37]. Importantly, several systematic reviews have also been published to docu-
ment how plant roots respond to drought [9,15,38,39]. To date, however, a comprehensive
understanding of the mechanisms underlying root responses to drought and the inter-
actions between roots and the surrounding environment (particularly interactions with
nutrients and soil microbiomes and how these interactions regulate the root responses to
water-deficit stress) in major crops has been mainly focused on one or two model crops, and
the number of reviews targeting crops with respect to this topic remains limited compared
with the number of reviews on Arabidopsis. In this review, we highlight recent advances that
address the following aspects: (1) morphological changes in the growth and architecture of
crop roots in response to drought stress; (2) metabolic mechanisms regulating the adaption
to drought stress in crop root cells; (3) regulatory roles of ABA and interactions between
ABA and other plant hormones in crop roots; (4) how roots sense and respond to drought
stress, as regulated by the availability of nutrients; and (5) drought-induced regulation of
rhizosphere microbes with crop roots. With the background of climate change and water
resource limitations across the world’s agricultural areas, a better understanding of these
mechanisms and processes could contribute to the establishment of ideal RSA adaptation
to drought by exploring key genes for the drought tolerance of roots. At the same time,
through the regulation of water and nutrient resources as well as rhizosphere microbes
in the root area of the field, it is possible to reduce fertilization and irrigation and thus
improve the efficiency of resource utilization in order to achieve the goal of sustainable
crop production by producing water-saving, drought-tolerant, and high-yield crops under
drought conditions.
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Figure 1. A framework showing drought effects on root physiological and metabolic processes and
their interactions with nutrients and microbiomes in soil. Severe drought causes physiological and
metabolic disruptions (see below for details). On the one hand, these disruptions influence nutrient
uptake and metabolisms in plants, and vice versa. This feedback, in turn, affects biomass accumu-
lation and grain yield. On the other hand, the inhibition of root litter and exudation production
alters soil microbial traits (e.g., abundance, composition, and activity). These soil microorganisms
may interact with roots in the rhizosphere, promoting plant growth via mycorrhizae colonization,
osmoprotection, antioxidant production, etc. Under drought stress, soil microbes also affect nutrient
availability through mineralization, and nutrients influence microbial growth via participation in
their cell composition and functioning. Blue circles represent water resources in soil; yellow circles
represent nutrient resources in soil; brown circles represent microorganisms in soil.

2. Crop Root Growth and Architecture in Response to Drought Stress
2.1. Root Growth

Under drought conditions, root length, diameter, surface area, tissue density, biomass,
and number of branches are affected [40–42]. However, roots have strategies to maintain
functions and grow toward a more mesic environment to maintain water uptake under cir-
cumstances where soil water availability is limited and overall growth is inhibited [43–46].
Therefore, even though water-deficit stress negatively affects overall root traits in many
circumstances (i.e., root biomass, root length, root number, etc.), certain parts of the root
system can maintain growth to form a relatively well-developed root system under drought
conditions for acquiring potential water resources from a deeper soil layer to ensure water
supply and improve the adaptation of crops to drought stress. To achieve such an ideal
root system, the primary root, the very first root tissue that emerges from the seed and
makes contact with the environment, can maintain growth, relative to shoot growth, by
maintaining cell elongation in the apical regions of several crops, including maize, soybean,
and cotton, under relatively low water content conditions (−1.0~−1.6 MPa media water
potentials) [37,47–49]. The underlying mechanisms of primary root maintenance include
accumulation of osmolytes, hormone regulations, cell-wall modification, and specialized
regulation of antioxidative systems [35,37,49–57]. However, specific molecular regulations
involved in this process in crops require further investigation. As the other part of root
systems, lateral roots constitute the major portion of the root system [58]. Because of the
contact of numerous branched lateral roots with the soil, lateral roots are essential for
water acquisition [59,60]. In many cases, lateral root growth is limited under water-deficit
conditions [41,61,62]. However, the formation of lateral roots can be promoted under
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water-deficit conditions by stimulating the growth of a certain composition of the root
system [63–65].

With the morphological findings of adjusted root growth characteristics under drought,
more-recent studies on crop roots under water-deficit conditions have mainly focused on
how the transitions of whole root system characteristics are regulated by certain genes or
molecular mechanisms. Among these mechanisms, root hydrotropism, lateral root growth,
and deeper rooting are three essential aspects of root growth and root system formation
that have been focused on with molecular approaches in recent years (Figure 2).
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Figure 2. Morphological changes occurring in crop roots under drought stress. Drought stress
prevents root growth while triggering regulatory mechanisms to change root morphology. Regulatory
genes are activated to modify the root traits for better root structure architecture (RSA) under drought
stress. Optimized RSA could maintain or promote root growth under such conditions. ARF7, AUXIN
RESPONSE FACTOR 7 gene; DRO1, DEEPER ROOTING 1 gene; MIZ1, MIZU KUSSEI 1 gene.

As a gene that is essential for hydrotropism to regulate the angle of roots [66,67], MIZU
KUSSEI1 (MIZ1) has been studied in Arabidopsis and found to regulate root hydrotropism
by encoding a protein associated with the cytoplasmic side of the endoplasmic reticulum
membrane. It interacts with the endoplasmic reticulum Ca2+–ATPase (AtECA1) and modu-
lates hydrotropism-related Ca2+ transport [66,68–70]. MIZ1 has also been found to interact
with ABA signaling [71,72] and relate to root gravitropism [73]. In crops, the MIZ1 gene
OsMIZ1 has been cloned and characterized in rice roots. OsMIZ1 expression levels were
upregulated significantly in the roots of drought-tolerant rice lines but decreased in the
roots of susceptible genotypes [74]. However, it has not been investigated in other major
crops apart from a brief mention in a preliminary maize study [75].

Another key gene for root formation regulation is AUXIN RESPONSE FACTOR 7
(ARF7), which mainly regulates the initiation of lateral roots through hydropatterning, the
process of root branching into areas with higher water content [76,77]. ARF7 is SUMOylated
(modified by small ubiquitin-like modifier (SUMO)) in the area phase of the root and
repressed by IAA3 (indole-3-acetic acid) [77,78]. Repressed ARF7 prevents the expression of
lateral root initiation genes, and therefore, lateral roots are formatted in the moisture phase
that triggers hydropatterning [77]. In crops, ARF7 has been identified in Sorghum (SbARF7)
with high expression levels in roots in contrast with leaves under drought conditions [79].
However, the roles of ARF7 in regulating lateral root growth in other crops under such
conditions have not been completely uncovered.

As for genes regulating the maintenance of root growth, DEEPER ROOTING 1 (DRO1),
a quantitative trait locus controlling root growth angle, has been identified and mainly stud-
ied in rice for its role in forming deeper roots under drought conditions [80,81]. The alleles
of DRO1 and its homologs can increase the gravitropism of rice roots, which contributes
to drought stress avoidance [82,83]. Even though the whole picture of DRO1 regulation
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in root formation is not clear at present, it possibly contributes to the establishment of an
auxin gradient in the root tips since it is negatively regulated by auxin [84,85]. In genotypic
variety studies, the DRO1 gene was found to be significantly correlated with the drought
tolerance of rice genotypes as well as the activities of antioxidative enzymes [86]. An allele
mining study revealed that DRO1 expression was upregulated under drought conditions in
various rice genotypes [87]. These findings could be useful for breeding programs identify-
ing drought-tolerant rice lines. Other than rice, DRO1 homologs have been identified and
studied in several plant families recently, including Arabidopsis and Prunus, with evidence
of promoting deeper rooting and lateral root angle [88]. However, even though orthologs
of DRO1 have been found in a variety of crops, including maize and tomato [88], it has not
been well-studied in other crop roots for potential comparison with current findings in rice
for possible general mechanisms of DRO1 regulation in crop roots.

Additionally, several other genes and proteins have been shown to influence root
growth or formation under drought conditions, but with less knowledge about their molec-
ular regulatory mechanisms. The overexpression of plant-specific transcription factors
NAM, ATAF1/2, and CUC2 (NACs) was found to regulate root growth by increasing lateral
root length and number in transgenic Arabidopsis lines [89] and some of the NAC family
transcription factors specifically expressed in soybean roots under water-deficit condi-
tions [90,91]. NACs also participate in the modification of root architecture by changing
root diameter and root numbers under drought stress in rice [32,42]. In rice, REPETI-
TIVE PRO-RICH PROTEIN (RePRP), an intrinsically disordered protein functioning as
a flexible stress modulator, can interact with the cytoskeleton to regulate root formation
in rice in adaptation to water-deficit stress [92]. In maize, overexpression of ZmVPP1, a
gene encoding vacuolar-type H+ pyrophosphatase, a unique electrogenic proton pump
in plants, conferring drought-inducible expression in drought-tolerant maize genotypes,
exhibits improved tolerance in a transgenic line, which is most likely due to enhanced root
development. The transfer of ZmVPP1 into drought-sensitive lines can effectively promote
their drought tolerance in the seedling stage [93].

As summarized above, the ability to maintain root growth as soil water content
declines is reported in various types of crop roots. This is an important characteristic of
plant roots when resources are insufficient under drought conditions. From the studies
mentioned above, it is notable that among these key genes regulating root growth and
tropisms under water-deficit conditions with a clear mechanistic explanation, very few
studies have been fully conducted in crops compared with the more completed studies on
the model species, Arabidopsis, or in a specific crop species (e.g., DRO1 in rice), even though
the genes have been identified in other crops. This is a key perspective that should garner
more attention in crop research for uncovering the molecular regulatory mechanisms of
how crop roots respond to drought stress. In addition, the roles of these genes in different
root types also need further clarification since the responses of different root types (e.g.,
primary root or lateral root) vary substantially under drought conditions.

2.2. Root System Architecture

For crops, the eventual purpose of regulating root growth characteristics is to optimize
the RSA, which is a more complex strategy in response to drought stress (Figure 2). RSA
consists of the architecture of primary and lateral roots, where lateral root architecture is a
key factor of water and nutrient uptake from soil. Lateral root growth and branching are
determined by the availability of water around the perimeter axis of the root [76,94] and are
regulated by various genes, as summarized above. Root tropisms, including hydrotropism
and xerotropism, are also key aspects of RSA by orientating root growth (mainly in lateral
roots) under water-deficit conditions. Hydrotropism, regulated by ARF7 or MIZ1 as
summarized above, may sense and orientate root growth towards soil water resources in
any direction [95]. Xerotropism could enhance the ability of roots to grow downwards to
avoid dry soil layers, orientated by gravitropism under water-deficit conditions [38], which
can be regulated by ABA-induced auxin reduction to inhibit lateral root formation [94]
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on the aerial gaps in the soil. The plant modifies the RSA actively in response to different
environmental stimuli [96,97]. Under such environmental conditions, including drought,
better RSA can improve the utilization of limited resources and thus improve the yield and
quality of crops. Therefore, recent studies have started to investigate the regulation of RSA
under drought conditions. Typically, RSA is determined by root density, root distribution,
and the anatomical characteristics of root structure. In crops, it has been reported that
soybean genotypes with deeper, longer, denser, and narrower roots have better adaptation
to drought [20]. Venuprasad et al. [98] reported that by analyzing the correlation of rice
yield and the genotypic and phenotypic parameters of roots, it was found that genotypes
with thicker and deeper roots produced more biomass and grain yield, which improved the
production of rice under drought. When studying the adaptation of rice root morphological
traits in the drought environment, Henry et al. [99] found that rice lines that have deeper
and denser roots in 30–45 cm soil layers presented better drought tolerance. Therefore,
deeper rooting improves the drought tolerance of rice, which can contribute to better crop
productivity. Lopes and Reynolds [17] also found a positive correlation between the depth
of wheat roots and yields under water-deficit conditions. By utilizing the relationship
between root depth and crop drought tolerance, breeding projects in India and Australia
chose deep-rooting wheat lines in order to maximize the uptake of summer rainwater
stored deep in the soil. The RSA characteristics of drought-tolerant maize varieties having
greater root lengths and lateral root numbers resulted in the production of more seeds,
which significantly differed from drought-sensitive lines [19]. However, Zhan et al. [63]
studied the relationship between maize root branches and drought tolerance and found
that fewer lateral root branches are beneficial to improve the drought tolerance of maize.
By reducing root density, maize roots can reduce the consumption of limited resources in
total metabolism and provide more energy for the elongation of roots toward deeper soil
layers, thus increasing the uptake and utilization of deep soil water resources via the root
system. More interestingly, breeding selection found some wheat varieties used hybrid
strategies to deal with root architecture. The overall trend of these root systems is to go
deeper and have denser lateral roots in the deeper layers, while in the top layers, root
density is low. This ideal RSA could both absorb water resources from deep soil layers and
reduce the redundant consumption of limited resources under water-deficit conditions [18].
From the perspective of molecular breeding, obtaining drought-tolerant phenotype traits
of crop roots is the foundation of identifying the key regulatory genes for optimized RSA
and controlling the root architecture and functional characteristics of crops by allowing
manipulation of key genes for breeding drought-tolerant and water-saving crop lines.

To easily obtain these phenotypes, advanced image technologies improve the accessi-
bility of phenotyping the growth and distribution of root systems with more accurate 3D
structures and spatial connection relationships of the crop root system in the rhizosphere.
These technologies include X-ray computed tomography (XCT) [100], magnetic resonance
imaging (MRI) [101], and laser ablation tomography (LAT) [102]. However, there are still
many challenges on how to establish an ideal root system configuration through the study
of root structure response to drought due to the complexity of the environment.

3. Regulation of Cellular Metabolism in Response to Drought Stress in Crop Roots

Based on the findings on root growth and architecture responses to drought stress,
different aspects of cellular metabolic mechanisms involved in such responses have been
the focus of various research. This section mainly focuses on three primary metabolism
areas—osmotic regulation, cell-wall modification, and antioxidative mechanisms—based
on their functions in regulating crop roots in response to drought stress, for which many
studies have been conducted.

3.1. Osmotic Adjustment

Osmotic adjustment is one of the major mechanisms in response to drought stress
regulating plant–water relations and maintaining root growth by regulating root cell



Int. J. Mol. Sci. 2022, 23, 9310 7 of 26

expansion [50,51,103,104]. Cell expansion in roots is highly dependent on water availability
and osmotic adjustment, which contribute to the maintenance of turgor in cells. When the
water potential of the environment reduces, osmotic adjustment starts to regulate osmotic
water potential in certain parts of the root system to maintain turgor for growth when
shoot and leaf growth are repressed. The regulation of osmotic adjustment could affect the
growth of different plant tissues, thus ensuring contact of the root system with possible
water resources [48,50,64] (Figure 3).
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to drought stress in crop roots. Drought stress limits root growth while triggering the regulatory
mechanisms of an osmoprotectant. Regulatory genes are activated to accumulate osmolytes and
modify cell-wall components for extensibility. The regulated cellular osmotic status and cell walls
assist the expansion of root cells and, therefore, maintain growth of crop roots under drought stress.
EXPs, EXPANSIN genes; P5CR, pyrroline-5-carboxylate reductase gene; P5CS, pyrroline-5-carboxylate
synthetase gene; SUS, sucrose synthase gene; TCH4, xyloglucan:xyloglucosyl transferase gene.

To regulate osmotic adjustment, osmolyte accumulation has been recorded in crop
roots under water-deficit conditions. Typically increased osmolytes include carbohy-
drates, normally soluble sugars [37,50,105,106], and the amino acid proline [34,37,51,107].
Additionally, studies have shown that transcripts of several key genes involved in su-
crose metabolism (sucrose synthase gene (SUS)) and proline metabolism (pyrroline-5-
carboxylate synthase gene (P5CS); pyrroline-5-carboxylate reductase gene, (P5CR)) were
increased in abundance in water-stressed roots of crops, including soybean, maize, and
wheat [92,108–110]. The accumulation of compatible solutes, including proline, participates
in protecting the plants from the detrimental effects of drought. This is achieved not only
by osmotic adjustment, but also by the detoxification of reactive oxygen species (ROS), pro-
tection of membrane integrity, stabilization of enzymes and/or proteins, and interactions
with plant hormones [107,111,112]. Accumulation of proline specifically in cotton roots has
been identified under water-deficit conditions [113]. Transgenic studies have shown that
overexpression of the Arabidopsis EDT1/HDG11 gene, a transcription factor that improves
drought tolerance in Arabidopsis, tobacco, tall fescue, and rice, can enhance tolerance to
drought stress in transgenic cotton with well-developed root systems through increased
accumulation of solutes such as proline and soluble sugars, and thus increased the yield of
cotton in the field [33]. Overexpression of Rice NAC Gene (SNAC1) in a cotton transgenic
line can also increase the proline content, resulting in enhanced development of roots [114].
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3.2. Cell-Wall Modification

As an important process of root growth and development, the regulation of cell-wall
components and expansion are essential for adaptation to drought stress in crop roots.
The expansion of plant cells is controlled by a combination of turgor pressure and the
mechanical properties of the cell wall. As the roots grow, the development of the cell wall
is modified by the availability of soil water to ensure the extensibility for further expansion.
The root can continue to grow under water-deficit conditions with loosened cell walls and
maintained turgor pressure in cells by regulators such as expansins (Figure 3). During
the continuous expansion of plant roots under water-deficit conditions, expansins are
considered key regulators of cell-wall extension during root growth, especially for growth
maintenance [53,115]. As a classic group of cell-wall-remodeling agents, expansins are
known to change the mechanical properties of the cell wall by disrupting noncovalent
bonds in cell-wall polymers and creating local mechanical alterations in the cell wall [116].
Specifically, EXPANSIN A1 has been identified as a cell-wall modifier during lateral root
initiation in Arabidopsis [117]. Increased abundance of expansin genes has been identified
in maize primary roots [54] and rice lateral roots [118] under drought conditions.

Xyloglucan:xyloglucosyl transferase (XET) is a key enzyme in cell-wall modification
that cleaves the (1,4)-β-d-glucan backbone of xyloglucans and transfers the bound portion
of the initial substrate xyloglucan onto the end of another polysaccharide, which can be
xyloglucan, xyloglucan-derived, or alternatively, xyloglucan-non-derived [119,120]. It
contributes to cell-wall loosening and thus is utilized in restructuring and remodeling plant
cell walls. In maize primary roots, XETs have been found to be increased in the apical root
tip (0–5 mm) and were associated with ABA under water-deficit conditions [52]. Expression
of the XET gene in cotton, TCH4, was also found to be highly increased in root tissues of
drought-tolerant lines compared with sensitive lines under drought conditions [121].

Regarding the modification of cell-wall thickness, Henry et al. [122] reported that
hydration thickening of cell walls in endodermis cells can increase to different extents
among rice genotypes. Drought-resistant lines can store more water in their endodermis
cells in response to water deficits. Rincon et al. [123] found that the endodermis appears
to be a limiting barrier to water conductance, with dimensions relative to the exodermis
varying among soybean genotypes. This indicates that the hydration thickening of cell
walls can potentially affect root hydraulic conductivity. However, such relations were not
found in Arabidopsis natural mutants [124]. Therefore, the relationship between hydration
thickening of cell walls and root hydraulic conductivity may be unique to legume roots
and requires further experiments.

Additionally, transcriptomic and proteomic studies display increased abundance of
transcripts and enzymes related to cell-wall modification and cell-wall extension in roots of
wheat [125] and cotton [126,127] genotypes that have better adaption to drought.

3.3. Antioxidants

Oxidative stress has a major impact on plant cells under drought conditions, as has
been reported in multiple studies on crops. At the cellular level, ROS accumulate upon expo-
sure to water-deficit stress and damage cellular homeostasis, causing protein denaturation,
lipid peroxidation in cellular membranes, DNA or RNA damage, negative effects on antiox-
idative enzyme activities, and ultimately cell death [128,129]. Thus, the plant uses multiple
antioxidants, including enzymes [130–132] and non-enzymatic metabolites [133–135] to
resist oxidative damage (Figure 4).
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Figure 4. The antioxidative system under drought conditions in crop roots. Drought stress lim-
its root growth while generating oxidative stress. Antioxidative mechanisms, including enzymes
and non-enzymatic metabolites, respond to the oxidative stress by regulating the expression of
a wide range of related genes. The activated antioxidative system scavenges the oxidative radi-
cals and restores cellular homeostasis. APX, ascorbate peroxidase; CAT, catalase; DHAR, dehy-
droascorbate reductase; SOD, superoxide dismutase; G6PDH, glucose-6-phosphate dehydrogenase;
GALDH, L-galactose dehydrogenase gene; GCS, gamma-glutamylcysteine synthetase gene; GPX,
glutathione peroxidase; GR, glutathione reductase; GSHS, glutathione synthase gene; GST, glu-
tathione S-transferase; GULO, L-gulonolactone oxidase gene; SULTR, sulfate transporter; VTE4,
gamma-tocopherol methyltransferase gene.

The antioxidative functions of these enzymes and metabolites have been demon-
strated widely in crop roots under drought conditions. In maize primary roots under
severe water-deficit stress, transcriptomics and proteomics studies have identified increases
in the abundance of several antioxidative enzymes and their transcripts in the growth
zone, including catalase (CAT) and superoxide dismutase (SOD) [108,136]. Ascorbate and
glutathione contents also increase in maize roots under water-deficit conditions [34,137]. In
a comparative study of the antioxidative system in maize and wheat roots under drought,
the antioxidants displayed differential accumulations in the two species. Antioxidative
enzymes, including ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR),
and glutathione reductase (GR), as well as ascorbate and glutathione compounds, accu-
mulated in maize roots under drought. In contrast, wheat root specifically possessed
more activity of CAT compared with maize [138]. Another comparative study indicated
that alternative antioxidative strategies underlie the responses of primary root growth to
water stress between cotton and maize and that cotton employs a more enzyme-dependent
and less glutathione-involved strategy in the elongation zone of primary roots [37]. A
cytosolicglyceraldehyde-3-phosphate dehydrogenase, TaGAPC2, critical for glycolytic and
gluconeogenesis metabolism, positively responded to water-deficit stress via ROS scav-
enging, and the encoding gene TaGAPC2 was highly expressed in the root of wheat under
water-deficit conditions [139]. In rice, the ERF (Ethylene Responsive Factor)-family tran-
scription factor OsLG3 was found to be expressed at higher levels in roots compared with
other tissues. This transcription factor positively regulated drought tolerance by inducing
the antioxidative system via upregulating the expressions of antioxidative enzyme genes
under drought [36]. Several other studies regarding genotypic variations in root responses
under water-deficit conditions identified the enhancement of antioxidative enzymes in
drought-tolerant lines of multiple crops, including wheat [110,140,141], cotton [113,142],
and barley [143].
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Overall, osmotic adjustment maintains cellular water balance and homeostasis in crop
root tissues, which reduces the damage caused by water losses and maintains the turgor
of root cells. It is a prerequisite for the loosened cell walls to expand with modifications
from associated proteins. Simultaneously, antioxidants scavenge ROS radicals, which are
generated with unbalanced cellular homeostasis. Together, these mechanisms increased
the accessibility of crop roots to water resources with maintained or enhanced root growth
(Figure 5). However, some studies have indicated that the changes in these mechanisms
may vary among different crops (e.g., antioxidative mechanism in maize, wheat, and
cotton). Future research should focus more on the uniqueness of these mechanisms as well
as explore the specialized interaction network of these mechanisms in the roots of certain
crop species under drought conditions.
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Figure 5. Overview of physiological and metabolic processes for growth maintenance of crop roots
under drought stress. When exposed to drought, plant roots start to modify osmotic regulation to
maintain turgor for continued root growth. Simultaneously, root morphological traits are changed
to adapt to the lowering water status. Meanwhile, oxidative stress is generated in root tissue when
cellular homeostasis becomes unbalanced. Under this circumstance, crop roots activate the antioxida-
tive system rebalance cellular homeostasis. Plant hormones also modulate osmotic regulation and
antioxidative mechanisms under drought conditions.

4. Roles of ABA in Crop Roots under Drought

Plant hormone regulation is another important and complicated mechanism modulat-
ing plant growth under drought conditions. This article mainly summarizes the regulation
of ABA, one of the key plant hormones with more-developed studies in regulating root
growth in response to water-deficit stress and its interactions with several other plant
hormones in crops.

4.1. Root-to-Shoot Communication

ABA is a well-known plant hormone that accumulates in water-stressed plant tissues,
including roots under water-deficit conditions [144,145]. ABA can be produced in roots
surrounded by dry soil and transported to the upper parts by transpiration. ABA is an
important signaling molecule for root–shoot communication and regulation of stomatal
closure [146], as well as root formation regulation. Since ABA signaling transduction is
a key signaling pathway in response to drought, ABA content in crops increases with
exposure to water deficits, which causes the closure of stomata on leaves to reduce water
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loss. ABA-activated kinases SnRK2s mediate the phosphorylation of the plasma membrane
NADPH oxidase RhohF, which generates O2− in the apoplastic space simultaneously. The
generated O2− can then form H2O2 as a signaling molecule to regulate stomata closure.
Activated SnRK2s could phosphorylate the ion channel SLAC1, which also mediates ABA-
induced stomatal closure and reduces transpirational water loss under drought [147].
Peptide CLE25 can sense water shortage in the root area and transmit the stress signal
long-distance to the leaves through the vascular bundle by binding protein receptors BAM1
and BAM3 to mediate the expression of NCED3, causing an increase in ABA content while
reducing the stomatal conductance and effectively improving root drought resistance [148].
When sensing the continuous drying of soil, more roots would generate chemical signals,
including ABA, to regulate the growth and development of the upper part of the plant
based on the water availability [149]. Although various plant hormones regulate this
process, ABA is the one that has more-convincing studies. Then, the physiological traits
(e.g., stomata conductance) of leaves are regulated to change the ratio of roots to leaves.
It has been reported that the concentration of ABA in xylem and the content of ABA in
roots have an approximately linear relationship, showing that xylem ABA concentration
can be a quantitative indicator of root-generated ABA, which reflects the sensing ability
of roots to soil conditions [23,24]. This type of root-generated signal could largely reduce
water loss though stomata adjustment before leaf tissue senses the water deficit. It could be
the first barrier of drought resistance in plants. As the stress continues, elder and lower
leaves start to wilt, which could be the second barrier of drought resistance in plants [25].
The root–shoot signaling sets a theoretical basis for improving WUE through sensing water
availability in the root area. Further study would provide more theoretical support for
further improvement in water management and WUE by ABA in the field.

4.2. ABA Functions in Crop Roots

Other than the root–shoot communication function, ABA participates in the regulation
of growth and development of the root cells. Roots display hydrotropism in response to
moisture gradients, which is the pivotal mechanism directing root growth for water acquisi-
tion. ABA is important for root hydrotropic responses by regulating the action of transition
and elongation zones where differential growth responses occur in the root apex [26]. This
type of hydrotropism relies on the PYR/PYL/RCAR-PP2Cs-SnRK2s pathway, which is
the core of ABA signaling transactions [26,150,151]. As a key gene regulating root growth
as discussed above, the MIZ1 gene interacts with ABA signaling in the cortex to mediate
root hydrotropism response [26,152]. In maize, ABA accumulation can contribute to the
maintenance of maize primary root growth under drought [153]. Particularly, ABA is asso-
ciated with growth maintenance in the apical region of the growth zone [154]. In soybean,
ABA accumulation also occurs in roots under water-deficit conditions and is enhanced in a
PgTIP1 transgenic line [27]. In wheat root, ABA regulates the premature differentiation of
root apical meristem under drought [155]. Several rice genotypes also exhibit enhancement
or stability in root length in response to ABA treatment [156]. ABA also regulates ROS
generation and thus directs the protection of plant tissues from oxidative damage under
stress conditions [157]. It can also interact with H2O2 to induce the activity of cytosolic
glucose-6-phosphate dehydrogenase, an important enzyme in the ascorbate–glutathione
cycle under drought in soybean roots [158]. Moreover, ABP9, encoding a bZIP transcription
factor from maize, may participate in the ABA signaling pathway by altering the expres-
sions of multiple stress-responsive genes in transgenic cotton lines, which improved the
root biomass and the survival rates of two ABP9 overexpression lines compared with the
wild-type under drought conditions [159].

4.3. Interactions between ABA and Other Hormones in Crop Roots

Multiple other plant hormones can interact with ABA to regulate the growth and
responses to drought stress of roots. It has been reported in Arabidopsis that ABA regulates
root growth under osmotic stress conditions via an interacting hormonal network with
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auxin and ethylene [29]. However, interactions of ABA and other hormones in crop roots
under drought conditions have not been developed as a complete network. Most studies
are limited to the interaction of ABA with one other hormone. ABA interacts with auxin
in the root tip of rice to modulate auxin transport, which enhances proton secretion for
maintaining root growth under water-deficit conditions [160]. In barley, ABA accumulation
can promote auxin response in roots, resulting in enhanced rhizosheath formation under
drought conditions [161]. Ethylene interacts with ABA in the primary root region of growth
maintenance in maize under water-deficit conditions. The accumulation of ABA limits the
production of excess ethylene to ensure the growth of primary roots [162]. During seed
germination, gibberellins (GA) and ABA are antagonistic in regulating the emergence of
the primary root [163]. In rice root systems, Lin et al. [164] reported that high levels of GA
can activate APC/CTE, a ubiquitin ligase complex, to promote the degradation of the rice
root growth regulation gene OsSHR1, thereby controlling the growth of the root. During
this process, application of moderate-level ABA could antagonize GA to maintain root
growth. In cotton roots, GA levels have been observed to decrease while ABA levels rise
under drought conditions [30]. Jasmonate (JA) could stabilize ABA levels in roots under
water-deficit conditions [165], and ABA level reduction is observed in JA-deficient plant
roots [28]. Recent studies on Arabidopsis suggested that PM H+ extrusion is crucial for
primary root growth and the hydrotropic response in roots, which is regulated by ABA [71]
and brassinosteroid [166,167]; this could be an interesting interaction to investigate in
crop roots.

As summarized above, ABA regulates root growth in various crops, and its functions
in signaling are essential for root–shoot communication under drought conditions. It is also
clear that, similar to the genes regulating root growth mentioned above, most molecular
mechanistic studies have not been well-developed in crops. Future studies should not
only aim to understand how internal or external ABA changes root traits as correlated
phenomena, but also focus on the molecular mechanisms of how ABA regulates specific
compounds in roots and how ABA interacts with other plant hormones under drought
conditions (Figure 5).

5. Nutrient Regulations on Crop Root Responses to Drought Stress

The physiological and metabolic responses of crop root system growth and architecture
to drought stress are regulated by nutrients. Although a recent review [168] demonstrated
the influence of water status on nitrogen regulation in Arabidopsis and rice at the whole-
plant level (for root traits, only root branching was mentioned), the understanding of how
water deficiency affects other nutrients (e.g., phosphorus, potassium, and sulfur) and how
this interaction contributes to root growth needs further summary. Here, we review studies
on the interaction of water deficiency with various nutrients and the effects on crop root
growth (Table 1).

5.1. Nitrogen

Studies have shown that nitrogen can enhance resistance to drought stress by chang-
ing root structures [31]. Under water-deficit conditions, appropriate nitrogen application
can affect the root development of cotton by increasing the root–shoot ratio, root density,
lipid peroxidation, and antioxidative enzyme activity [169–171]. High nitrogen applica-
tion can significantly promote construction of the root system and enlarge root thickness
and root system volume under drought conditions in both sensitive and tolerant wheat
cultivars [172]. One possible reason for the synergistic effect of nitrogen and water is that
nitrogen can change the hydrodynamic properties of root cell membranes by changing
the concentration of cellular nitrates (NO3

−), resulting in water potential gradients. Such
gradients increase water movement from soil into root cells [173,174]. This may also be
related to aquaporins, since aquaporins are differentially expressed in plant roots in re-
sponse to nitrogen availability. In rice, nitrogen supply can increase the expression of
root-specific aquaporin genes OsPIPs and OsTIPs. However, the expression of these genes
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does not decrease during nitrogen deprivation. These expressions are correlated with root
hydraulic conductivity [175]. Such a mechanism may be regulated by the NRT2.1 nitrate
transporter, as it was found to impact the transcript abundance of PIP aquaporins in Ara-
bidopsis that also correlated with root hydraulic conductivity [176]. It has also been reported
that, compared with nitrate, ammonium (NH4

+) can better improve the drought resistance
of rice seedlings. Due to the accumulation of ROS, drought-induced oxidation damage
in roots with NO3

− treatment was significantly higher than that with NH4
+ treatment.

Simultaneously, the activity of antioxidative enzymes was increased in roots with NH4
+

treatment [177]. In addition, drought-mediated deep-root effects (e.g., DRO gene-mediated)
increased water absorption while also increasing nitrogen absorption efficiency in a variety
of crops, including wheat and sorghum, resulting in the effect of water–nitrogen coupled
absorption [178–181].

5.2. Phosphorus

As another major macronutrient, phosphorus also plays significant roles in regulating
the growth of crop roots under drought. For soybean varieties, moderate phosphorus
application can improve yield, accumulation of phosphorus and nitrogen in roots, and
daily water consumption, while a high phosphorus fertilizer rate may decrease these traits,
indicating that there is an interaction between WUE and phosphorus application. Soy-
bean varieties with larger numbers of adventitious roots and lateral roots per unit length
have better phosphorus absorption ability [182]. In some other legume plants, genotypes
that have better adaptation to low-phosphorus environments tended to have a shallower
basal root angle in order to acquire phosphorus that was mostly concentrated in the top
layer of soil, whereas other genotypes that have better adaptation to late growth-stage
drought stress tended to form deeper roots for uptake of water resources existing in deeper
layers of soil. For the phosphorus-acquiring genotypes, the root system reduced the res-
piratory burden of root growth and changed root-hair formation to increase phosphorus
acquisition. Root architectural patterns in these genotypes enhanced topsoil foraging and
phosphorus acquisition but appeared to incur tradeoffs in water acquisition and spatial
competition [183]. As for wheat, deep placement of phosphorus fertilizer enhanced growth
by promoting deep root development [184]. Wheat also displayed different phosphorus ac-
quisition efficiencies across genotypes, which is associated with enhanced expression of the
phosphorus transporter TaPht1 genes. As a result, genotypes with higher phosphorus ac-
quisition efficiency presented higher biomass production and enhanced root development,
root–shoot ratio, and root efficiency for phosphorus uptake under phosphorus-deficient
conditions [185]. In cotton, the application of phosphorus fertilizer under water-deficit
conditions promoted phosphorus efficiency ratio, phosphorus absorption efficiency, and
phosphorus transfer efficiency in roots. Under such a condition, the biomass and the yield
of cotton were increased, showing an enhancement to drought resistance by phosphorus
fertilization [186]. These studies show that the amount of phosphorus resources in soil and
the absorption efficiency, especially under drought conditions, affect the growth traits and
RSA. This process also involves the balance between water and nutrients.

5.3. Potassium

As a key cation element in most plants, potassium increases cell membrane stabil-
ity, positively regulates osmotic adjustment, maintains the activity of aquaporins, and
enhances water uptake, which may contribute to the promotion of root growth [187]. Stud-
ies indicated that potassium deficiency may promote the activity of NADPH oxidase to
accumulate ROS content in legume root cells. This process is related to ABA accumulation,
and it may be relieved by potassium fertilization [187,188]. In maize, proper application
of potassium fertilizer may promote root growth by increasing the root surface area and
water uptake [189]. In rice, molecular evidence has shown that several genes are involved
in improving drought tolerance by promoting the acquisition and transport of potassium
in roots. The overexpression of OsAKT1, a potassium inward rectifying channel, increased
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potassium content in the root tissue, and thereby improved the drought tolerance of
rice [190]. A high-affinity potassium transporter gene, OsHAK1, was reported to be specifi-
cally expressed in roots under drought conditions and to promote potassium transport and
acquisition as well as grain yield of rice. It could also positively regulate the expression
of other drought-response genes, including OsAKT1 and OsTPKb, two genes that regulate
the homeostasis of potassium in cells [191]. Additionally, another rice gene, RAA1 (Root
Architecture Associated 1), participated in the auxin-mediated root development and could
be enhanced by HAK1. Transgenic RAA1 plants with inserted HAK1 enhancers displayed
promoted root system size and increased potassium, proline, and ABA contents under
drought conditions compared with wild-type [192]. These transgenic studies reported
positive effects of potassium transport genes on yields. Therefore, potassium transport
genes could be considered a key factor for promoting plant drought resistance through root
traits in molecular breeding.

5.4. Sulfur

Sulfur is another essential macronutrient for plant growth and development. Current
studies of sulfur in crop roots are relatively less-focused than the macronutrients described
above. Multiple compounds in the sulfur metabolic pathways, especially sulfur-containing
amino acids and their derivatives, are critical for plant health and growth [193,194]. Sulfur
metabolism not only plays a key role in the primary metabolism of plants, but also provides
the structural components of essential cellular molecules. Some of the metabolites in sulfur
metabolism pathways are important for plant acclimation to stressful environments [195].
The distribution of sulfate apparently shifts to maize roots, resulting in a significant increase
in thiols produced by the assimilation of sulfates in the roots, and drought may affect the
transcription of the membrane-anchored sulfate transport system in the root system [34]. A
major function of sulfur in response to water-deficit stress in roots lies in the production of
two sulfur-containing amino acids, cysteine and methionine, and their derivatives [196].
As mentioned above, glutathione, an important antioxidant, is derived from cysteine.
The importance of cysteine to drought stress resistance is mostly achieved through glu-
tathione functions. Along with its antioxidative function, glutathione is also involved in the
detoxification of heavy metals [197,198], transfer and storage of sulfur [199], regulation of
expression of defense-related genes [200], and protein activity [201] under stressed condi-
tions. However, the regulation of glutathione metabolism may be different in primary roots
of different crops (cotton and maize) in response to drought [37]. Similar to the relationship
between cysteine and glutathione, the importance of methionine in responses to water-
deficit stress is mostly achieved through a derivative, S-adenosylmethionine (SAM). SAM
is a multi-functional amino acid derivative. It plays important roles in regulating plant
development, stress responses, and metabolite accumulation [202,203]. SAM is one of the
precursors of ethylene, which is an important plant hormone that can interact with ABA to
regulate root growth, as mentioned above, as well as a precursor for polyamines, which
play an important role as osmoprotectants during drought [204]. Polyamine metabolism is
processed through the methionine salvage pathway (Yang cycle), which is regulated by the
availability of sulfur in the plant cell [205,206]. Additionally, polyamines can interact with
ABA [207] and ROS [208,209] under water-deficit conditions. Several studies on crop roots
found that SAM synthetase (SAMS) was induced by drought stress in soybean [210,211]
and wheat genotypes with better drought tolerance [212].

Roots play an integral role in the acquisition of water and nutrients in crops. This
role needs to find a balance between water and nutrients. According to the distribution of
nutrients and water in different soil layers, the crop root system can better obtain nutrients
and water by adjusting its formation and density to find a balance between water and
nutrient absorption and to improve the absorption efficiency. The studies discussed above
mainly explored the regulatory role of single nutrients in root growth under drought. More
attention should be focused on the coupling of multiple nutrients and their regulatory
effects on root growth under drought. Precisely quantifying the contribution of different
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nutrients to the drought resistance of crop roots needs to be studied. As a goal, we aim to
provide a more useful and efficient scientific basis for the integrated regulation of water
and nutrients in crop roots under drought conditions in the future.

Table 1. Interactions of roots and nutrients in crops under drought stress.

Species Nutrient Interaction References

Cotton nitrogen Nitrogen can enhance the root–shoot ratio, root density, lipid
peroxidation, and activity of antioxidative enzymes [169–171]

Cotton phosphorus Phosphorus fertilizer enhances stress resistance in cotton and
significantly increases biomass and yield [186]

Legume phosphorus Deeper roots for uptake of water resources existing in deeper
layer of soil rather than acquiring phosphorus [183]

Maize potassium Potassium fertilization may promote root growth by increasing
the root surface and water uptake [189]

Maize sulfur SAM synthetase is induced by drought stress [210,211]

Rice nitrogen DRO1 regulates nitrogen and water uptake, forming deeper
roots and improving grain productivity [181]

Rice nitrogen Aquaporin gene expression correlates with nitrogen supply
and deprivation [175]

Rice potassium Root-specific overexpression of a potassium inward rectifying
channel, OsAKT1, improves drought tolerance [190]

Rice potassium Root-specific expression of the potassium transporter OsHAK1
can promote potassium acquisition and grain yield [191]

Sorghum nitrogen Root diameter and root length density can improve water
uptake and positively regulate nitrogen uptake [178]

Soybean phosphorus Root traits can contribute to high nutrient uptake efficiency and
benefit yield [182]

Soybean sulfur SAM synthetase is induced by drought stress [212]

Wheat phosphorus Deep placement of phosphorus enhanced growth by promoting
deep root development [184]

Multiple crops nitrogen Growing roots seeking deeper water resources can assist with
nitrate uptake [179]

6. Crop–Microbial Interactions and Regulations in the Rhizosphere under
Water-Deficit Conditions

The rhizosphere is the area where strong interactions occur among crop roots, soil,
and microorganisms. Root system and rhizosphere microbes affect each other through
interactions (Figure 1). Changes in root growth and architecture affect the composition
and distribution of microbiomes, while, in turn, microbes in the rhizosphere significantly
impact the development and growth of root systems [213]. Recent findings suggest that
duration of drought substantially influences the composition and activity of plant root-
associated microbiomes [214–216]. Rhizosphere symbiotic microorganisms are beneficial
to the host crops by improving root architecture and absorption of water and nutrients.
Here, we are more focused on how rhizosphere microbes, including bacteria, rhizobia,
plant growth-promoting rhizobacteria (PGPRs), and arbuscular mycorrhizal fungi (AMF),
improve the drought resistance of roots and regulate RSA in crops.

Studies have shown that soil bacterial co-occurrence networks are less stable than
fungal networks in response to drought [217]. Further work displayed that drought-
induced shifts in bacterial composition was characterized by an almost universal increase
in monoderm bacteria and a decrease in diderm lineages [218]. These characteristics
indicate that rhizosphere microbes have different tolerances to drought stress, which, in
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turn, affects the connection between crop roots and the rhizosphere. Carbohydrates and
amino acids, the well-known components of root exudates that have been shown to support
the growth of rhizobacteria, are the likely candidates that could promote monoderm growth,
since these plant primary metabolites increased in response to water-deficit stress in crop
roots as mentioned above. Among various classes of compounds, it is interesting to
note that the glycolysis intermediate, glycerol-3-phosphate, which is used to produce
teichoic acid, a precursor necessary for peptidoglycan biosynthesis and cell-wall formation
of bacteria [219], accumulated at a significantly high level during water-deficit stress in
sorghum roots, plausibly enabling preferential root colonization by monoderm bacteria,
which then aided in drought tolerance [216].

Manipulation of the rhizosphere microbiota is an effective strategy to confer drought
tolerance and improve nitrogen use in management practice [218,220,221]. For example, the
monoderm genus Streptomyces offers potential contributions to improve plant fitness under
water-deficit stress. Along drought gradients, Fitzpatrick et al. [222] observed that plant
species with greater drought-induced increases in endosphere Streptomyces had greater
drought tolerance. In crops, the colonization of sorghum seedlings with Streptomyces
isolates increased the root growth under drought, but no obvious stimulating effect was
found in well-watered conditions [216]. Likewise, the root-associated bacterium Variovorax
paradoxus 5C-2, which contains the ACC deaminase that degrades the ethylene precursor
1-aminocyclopropane-1-carboxylic acid (ACC), which is also an important module in sulfur
metabolism [196], was reported to increase the growth, yield, and WUE of pea plants grown
in drying soil [223].

Other than bacteria, the abundance of AMF may also help the host plant increase
drought tolerance by enhancing antioxidant enzyme activity, which reduces oxidative
stress with various strategies as highlighted above, and thus improves WUE and biomass
accumulation [224]. AMF is also considered to increase the water arability of crops through
external hyphae and glomalin to increase crop resistance to drought stress [225]. Studies
also showed AMF could regulate RSA to promote the growth and development of a root
system in citrus and maize in arid soil [226,227]. However, the effects of AMF interaction
with other rhizosphere microorganisms on the RSA of crops (synergy or competition) under
different water-deficit conditions, and by which mechanisms these effects work, require
further study [213].

PGPRs affect RSA mainly through secreting abundant metabolites to regulate de-
velopmental signals in crop root systems. These effects regulate RSA by changing the
growth traits of primary roots, lateral roots, and root hair, which are the most important
components of the root system, as illustrated above. Studies have demonstrated that PGPRs
can promote or inhibit the elongation of the primary root. However, lateral roots and root
hair were significantly promoted by PGPRs, with increased biomass of the whole root
system of chickpeas [228]. In order to utilize PGPRs and their metabolites to regulate the
formation of ideal RSA in different crops and to promote the absorption and utilization of
the rhizosphere water resource, it is still necessary to systematically explore new signaling
substances for PGPRs to regulate RSA to reveal their underlying mechanisms, and to
promote the application of PGPRs in crop drought resistance [213].

In fact, as plant fitness is interconnected with the composition and activity of the
phytobiome [229], harnessing rhizosphere microbiomes under drought may have profound
consequences for crop yields, soil carbon sequestration, and nutrient cycling. Studies
have been designed to characterize microbially mediated strategies for enhancing water
and nutrient acquisition [218,221], a promising approach to improve food security in
undeveloped and developing countries and to develop sustainable agriculture in developed
nations by reducing intensive fertilization and irrigation. However, most of these findings
are lab-based without sufficient evidence related to rhizospheres in the field. Future studies
on plant–soil microbial interactions in the rhizosphere under water-deficit conditions
should focus on finding how microbes and roots interact in response to drought in real
natural conditions and how to apply rhizosphere microbiomes in the field [230]. Studies
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should be further expanded to the complex of crop, root, rhizosphere, microbiome, and
soil [231]. We expect to demonstrate the regulatory mechanism of rhizosphere microbes to
the responses of crop roots to water-deficit stress by integrated technologies, including in
situ field isotope abundance measurement, zymography, computed tomography (CT) scan
of the root–soil layer, isotope-ratio mass spectrometry, root secretion metabolomics, and
microbiomics. Thus, we can develop better strategies for improving the resistance of crop
roots to drought stress as well as water and nutrient use efficiency through regulation by
rhizosphere microorganisms.

7. Conclusions and Perspectives

In summary, this article reviewed both classic and recent research efforts regarding
root responses to drought in crops, particularly emphasizing molecular mechanisms to
regulate root growth in response to water-deficit stress and interactions with nutrients and
soil microbiota. In an era of continuous climate change worldwide, the importance of root
response to drought stress has been acknowledged and has been studied with different
focuses and technologies. Traditional approaches to root trait screening and metabolism
analysis are still important to evaluate drought tolerance and develop breeding strategies for
certain crops. With the advances in cytology, biochemistry, and molecular biology, research
on the molecular mechanisms of crop root responses to water-deficit stress has made
rapid progress. A large number of related genes have been identified and manipulated,
while many important regulatory pathways have been discovered [232]. “Omics” studies
(including genomics, transcriptomics, proteomics, metabolomics, and phenomics) provide
more-efficient methods for identifying key factors in roots that are essential for plant growth
and fitness under gradually severe drought conditions [35,37,125]. Advanced molecular
manipulation technologies are also utilized to improve crop adaptation in water-stressed
environments [26,81]. It is anticipated that researchers will be able to apply molecular
findings to breeding methodologies and technologies aimed at improving the drought
resistance of crop roots. In recent years, based on the development of biomarkers using a
few important genes to assist breeding, integrated multi-omics has also provided a platform
for developing a crop whole-genome selection model using an AI-optimized algorithm.
Additionally, haploid breeding and targeted gene editing technologies provide the basis
for selecting multiple traits and imposing multiple genetic loci with low effects at the same
time. Thus, the accuracy and efficiency of crop breeding can be improved [232].

The responses of major crop roots to drought stress involve complex biological pro-
cesses. Moreover, current research mainly focuses on the effects of a single stress factor to
crop roots, while roots can be suffering multiple stress factors, including water, nutrients,
and microbes, in actual field conditions. Therefore, how to sense and respond to different
stress factors and whether there are any commonalities among the responses to various
stress factors that can be integrated for analysis remain key aspects in current studies.
Future studies need to focus on connecting gene expression, protein regulation, metabolite
accumulation, and nutrient fertilization with growth traits and phenotypes of the crop
roots under water-deficit conditions to build up a network including responses in multiple
aspects (e.g., plant hormone crosstalk, water and nutrient interactions, and plant–soil mi-
crobial feedback) for a more comprehensive understanding of the mechanisms of drought
tolerance in crop roots. This network can give a guide on the important traits for improving
root adaptation to drought stress, which can be enhanced by breeding strategies. In the
near future, it is expected that the drought resistance of major crop roots (e.g., maize, rice,
wheat, soybean and cotton) will improve with integrated technologies. Development of a
series of new germplasms and genotypes with better tolerance to water-deficit conditions
and future climate change as products of advanced breeding strategies is also anticipated.
Together, studies focusing on uncovering the mechanisms of crop roots in response to
drought stress in the rhizosphere will improve our knowledge of plant stress physiol-
ogy and provide insight for breeding strategies and agronomy to produce high-yield and
drought-tolerant crops.
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et al. Another building block in the plant cell wall: Barley xyloglucan xyloglucosyl transferases link covalently xyloglucan and
anionic oligosaccharides derived from pectin. Plant J. 2020, 104, 752–767. [CrossRef]

121. Singh, R.; Pandey, N.; Kumar, A.; Shirke, P.A. Physiological performance and differential expression profiling of genes associated
with drought tolerance in root tissue of four contrasting varieties of two Gossypium species. Protoplasma 2016, 253, 163–174.
[CrossRef]

122. Henry, A.; Cal, A.J.; Batoto, T.C.; Torres, R.O.; Serraj, R. Root attributes affecting water uptake of rice (Oryza sativa) under drought.
J. Exp. Bot. 2012, 63, 4751–4763. [CrossRef]

123. Rincon, C.A.; Raper, C.D., Jr.; Patterson, R.P. Genotypic differences in root anatomy affecting water movement through roots of
soybean. Int. J. Plant Sci. 2003, 164, 543–551. [CrossRef]

124. Sutka, M.; Li, G.; Boudet, J.; Boursiac, Y.; Doumas, P.; Maurel, C. Natural variation of root hydraulics in Arabidopsis grown in
normal and salt-stressed conditions. Plant Physiol. 2011, 155, 1264–1276. [CrossRef] [PubMed]

125. Faghani, E.; Gharechahi, J.; Komatsu, S.; Mirzaei, M.; Khavarinejad, R.A.; Najafi, F.; Farsad, L.K.; Salekdeh, G.H. Comparative
physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J. Proteom. 2015, 114, 1–15.
[CrossRef] [PubMed]

126. Payton, P.; Kottapalli, K.R.; Kebede, H.; Mahan, J.R.; Wright, R.J.; Allen, R.D. Examining the drought stress transcriptome in
cotton leaf and root tissue. Biotechnol. Lett. 2011, 33, 821–828. [PubMed]

127. Ranjan, A.; Pandey, N.; Lakhwani, D.; Dubey, N.K.; Pathre, U.V.; Sawant, S.V. Comparative transcriptomic analysis of roots of
contrasting Gossypium herbaceum genotypes revealing adaptation to drought. BMC Genom. 2012, 13, 680. [CrossRef]

http://doi.org/10.1186/1746-4811-9-8
http://www.ncbi.nlm.nih.gov/pubmed/23514198
http://www.ncbi.nlm.nih.gov/pubmed/26729797
http://doi.org/10.1093/jxb/erv074
http://doi.org/10.1007/BF00395973
http://doi.org/10.1093/jxb/erh269
http://www.ncbi.nlm.nih.gov/pubmed/15475377
http://doi.org/10.1104/pp.104.040808
http://www.ncbi.nlm.nih.gov/pubmed/15247404
http://doi.org/10.1111/j.1744-7909.2008.00736.x
http://doi.org/10.1186/1471-2229-8-32
http://www.ncbi.nlm.nih.gov/pubmed/18387193
http://doi.org/10.1186/s12864-016-2378-y
http://doi.org/10.1016/j.plantsci.2018.03.036
http://doi.org/10.1104/pp.105.3.981
http://doi.org/10.1016/j.envexpbot.2005.12.006
http://doi.org/10.1038/35030000
http://www.ncbi.nlm.nih.gov/pubmed/11014181
http://doi.org/10.1104/pp.107.1.87
http://www.ncbi.nlm.nih.gov/pubmed/11536663
http://doi.org/10.1073/pnas.1820882116
http://doi.org/10.1007/s00438-004-1066-9
http://www.ncbi.nlm.nih.gov/pubmed/15480789
http://doi.org/10.1042/bj2820821
http://www.ncbi.nlm.nih.gov/pubmed/1554366
http://doi.org/10.1111/tpj.14964
http://doi.org/10.1007/s00709-015-0800-y
http://doi.org/10.1093/jxb/ers150
http://doi.org/10.1086/375377
http://doi.org/10.1104/pp.110.163113
http://www.ncbi.nlm.nih.gov/pubmed/21212301
http://doi.org/10.1016/j.jprot.2014.10.018
http://www.ncbi.nlm.nih.gov/pubmed/25449836
http://www.ncbi.nlm.nih.gov/pubmed/21188619
http://doi.org/10.1186/1471-2164-13-680


Int. J. Mol. Sci. 2022, 23, 9310 23 of 26

128. Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol.
1998, 49, 249–279. [CrossRef]

129. Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9,
490–498. [CrossRef] [PubMed]

130. Scandalios, J.G. Molecular genetics of superoxide dismutases in plants. In Oxidative Stress and the Molecular Biology of Antioxidant
Defenses; Scandalios, J.G., Ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1997; pp. 527–568.

131. Smirnoff, N. Ascorbic acid: Metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 2000, 3, 229–235.
[CrossRef]
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