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miR-7 Suppresses Tumor Progression by Directly
Targeting MAP3K9 in Pancreatic Cancer
Jun Xia,1,5 Tong Cao,2,5 Cong Ma,2,5 Ying Shi,1 Yu Sun,1 Z. Peter Wang,1,3,4 and Jia Ma1

1Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui 233030, China; 2Research Center of Clinical

Laboratory Science, Bengbu Medical College, Anhui 233030, China; 3Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University,

Wenzhou, Zhejiang 325027, China; 4Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
Extensive research has suggested that miR-7 plays a critical role
in cancer progression. However, the biological function of
miR-7 in pancreatic cancer (PC) progression is poorly under-
stood. Therefore, in the present study, we investigated the func-
tion of miR-7 and its molecular mechanism in PC progression.
We used multiple methods, such as MTT, FACS, Transwell
assay, RT-PCR, western blotting, and transfection to investi-
gate the role of miR-7 in PC cells. We found that miR-7 sup-
pressed cell growth, migration, and invasion but induced
apoptosis in PC cells. Moreover, overexpression of miR-7
repressed tumor growth in mice, suggesting that miR-7 could
exert its tumor-suppressive function in PC. Mechanistically,
we validated that MAP3K9 is a direct target of miR-7, which
significantly enhanced PC cell proliferation and inhibited cell
apoptosis partly through activation of the MEK/ERK pathway
and NF-kB pathway. Moreover, rescue experiments also
showed that miR-7 suppressed PC cell proliferation and
induced PC cell apoptosis by directly targeting MAP3K9, lead-
ing to inhibition of the MEK/ERK and NF-kB pathways. Taken
together, these results suggest that miR-7/MAP3K9 is critically
involved in PC progression and that miR-7 may be a potential
target for PC treatment.
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INTRODUCTION
The incidence of pancreatic cancer (PC) has increased globally in the
past decades.1–3 About 55,440 new cases of PC are estimated in the
USA in 2018, including 29,200 new cases in males and 26,240 female
patients.4 As a highly fatal malignance, PC has the lowest survival of
human cancers; the 5-year relative survival rate only reaches 8%.4

Thus, it is pivotal to clarify the underlying molecular mechanism of
pancreatic carcinogenesis and to find novel treatments for PC.

Extensive research in recent years has indicated that miR-7 plays an
important role in cancer progression. Studies have demonstrated
that miR-7 functions as a tumor suppressor in cancer development
and progression. For example, miR-7 suppresses cell growth and in-
duces cell apoptosis by targeting oncogenic Yin Yang 1 (YY1) in colo-
rectal cancer.5 Moreover, corticotropin-releasing hormone receptor 2
and urocortin-2 (CRHR2/Ucn2) signaling is involved in negative
regulation of the miR-7/YY1/Fas circuitry to increase the sensitivity
of colorectal cancer cells to Fas- and FasL-mediated apoptosis.6 In
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addition, downregulated expression of miR-7 was observed in glioma
samples and correlated with tumor grades.7,8 Furthermore, the
methylation status of miR-7 is associated with upregulation of MAF
bZIP transcription factor G (MAFG), leading to CDDP (cisplatin)
resistance and a worse prognosis in ovarian cancer patients.9 Suppres-
sion of tumor metastasis by miR-7 was also found to be due to
epidermal growth factor receptor (EGFR) inhibition and AKT/ERK
(extracellular signal-regulated kinase) inactivation in ovarian cancer
cells.10 However, miR-7 has been classified as an oncogene in some
types of human cancers. For instance, serum miR-7 expression was
obviously higher in epithelial ovarian cancer patients than in healthy
control, which correlates with lymph node metastases and Federation
of Gynecology and Obstetrics (FIGO) stages III–IV.11 Consistently,
ectopic expression of miR-7 strengthened the migration and invasion
capacities of ovarian cells,11 indicating that miR-7 could exert its anti-
tumor activity in ovarian cancer. Hence, the function of miR-7 in hu-
man cancers has not been clearly elucidated and should be intensively
investigated.

MLKs (mixed-lineage kinases) were identified as a family of serine/
threonine protein kinases that serve upstream of MAPKs (mitogen-
activated protein kinases) to activate the JNK (Jun N-terminal kinase)
pathway, p38 MAPKs,12 and the MEK (MAPK kinase)/ERK
pathway.13 Some evidence shows that MLKs such as MLK3 and
MLK4 may contribute to an oncogenic role in several human can-
cers.14,15 MLK1, also named MAP3K9 (mitogen-activated protein
kinase kinase kinase 9), has been classified as an oncoprotein.16 Spe-
cifically, inhibition of MAP3K9 retarded PC cell necroptosis induced
by the second mitochondrial activator of caspases (Smac) mimetic
BV6.16 Recently, miR-148a17 and miR-34a18 exerted their tumor sup-
pressor functions via inhibition of MAP3K9 in cutaneous squamous
cell carcinoma and neroblastoma, respectively. Although these
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reports have shown the function of MAP3K9 in cancer, the molecular
mechanism of MAP3K9-mediated tumor progression is poorly un-
derstood, and extensive research is necessary to explore the molecular
basis of MAP3K9 in PC.

In the present study, we investigated the biological functions of miR-7
in PC in vitro and in vivo. We also validated whether miR-7 directly
targeted MAP3K9 to inhibit PC progression. We found that miR-7
exhibited a tumor-suppressive function by directly targeting
MAP3K9 in PC cells. Moreover, we found that MAP3K9 enhanced
cell growth partly through regulation of its downstream pathways,
the MEK/ERK and NF-kB (nuclear factor kB) pathways. Our results
revealed that the miR-7/MAP3K9 axis might play a pivotal role in PC
progression.

RESULTS
Overexpression of miR-7 Suppresses Cell Proliferation and

Induces Cell Apoptosis

To dissect the biological function of miR-7, we planned to upregulate
or downregulate the expression ofmiR-7 in PC cells and thenmeasure
the cellular progression after miR-7 changes. We first assessed the
basal levels of miR-7 expression by real-time RT-PCR in different
PC cell lines. Our results showed that BxPC-3 cells exhibited the high-
est expression of miR-7, whereas PANC-1 and PaTu-8988 cells had
lower expression of miR-7 (Figure 1A). Thus, miR-7 inhibitors were
transfected into BxPC-3 cells to reduce miR-7 expression, whereas
miR-7 mimics were transfected into PANC-1 and PaTu-8988 cells
to augment miR-7 expression for the subsequently assays. We
found that miR-7 inhibitors significantly reduced the miR-7 level in
BxPC-3 cells and that miR-7 mimic treatment increased the expres-
sion of miR-7 in PANC-1 and PaTu-8988 cells (Figure S1A).

To ascertain whether cell proliferation is regulated by miR-7, we per-
formed an MTT (3-4,5-dimethylthiazol-2,5-diphenyltetrazolium
bromide) assay in PC cells after miR-7 changes. Our MTT assay re-
sults showed that miR-7 inhibitors increased the cell proliferation
of BxPC-3 cells, whereas miR-7 mimic transfection decreased the
cell proliferation of PANC-1 and PaTu-8988 cells (Figure 1B).
Next, cell apoptosis was measured in PC cells after miR-7 modifica-
tion. We observed that apoptosis was induced by miR-7 mimic
transfection in PANC-1 and PaTu-8988 cells but inhibited by miR-
7 inhibitor transfection in BxPC-3 cells (Figures 1C–1E). Specifically,
miR-7 inhibitors significantly decreased the percentage of apoptosis
cells, including early apoptosis cells and total apoptosis cells, for
BxPC-3 cells (Figure 1C). However, miR-7 mimics obviously
increased early apoptosis cells and total apoptosis cells for PANC-1
and PaTu-8988 cells (Figures 1D and 1E).
Figure 1. miR-7 Inhibited Cell Proliferation and Induced Cell Apoptosis in PC C

(A) The comparative expression of miR-7 was measured by real-time RT-PCR in PC cells

miR-7 mimic treatment in PANC-1 cells and PaTu-8988 cells for 72 hr. Error bar: SE.

treatment for 48 hr in BxPC-3 cells. Error bar: SE. ***p < 0.001 versus control. (D) Cell a

bar: SE. **p < 0.01 versus control; ***p < 0.001 versus control. (E) Cell apoptosis was det

0.05 versus control; ***p < 0.001 versus control.
Overexpression of miR-7 Suppresses Cell Migration and

Invasion

To characterize whether miR-7 could influence cell migration, we
conducted a wound healing assay in PC cells after miR-7 modifica-
tion. From the wound healing assay results, we saw that miR-7 inhib-
itors promoted cell migration in BxPC-3 cells, but miR-7 mimics
retarded cell migration in PANC-1 and PaTu-8988 cells (Figure 2A).
A transwell assay was applied for measuring cell migration and inva-
sion in PC cells after miR-7 changes. We found that miR-7 inhibitors
boosted the migration and invasion capacity in BxPC-3 cells, whereas
miR-7 mimics exerted the opposite effects on cell migration and in-
vasion capacity (Figures 2B and 2C; Figure S1B). These results reveal
that miR-7 retards cell migration and invasion in PC cells.

miR-7 Overexpression Represses Tumor Growth In Vivo

To further elucidate the role of miR-7 in vivo, we investigated the
effect of miR-7 ectopic expression on the growth of PC xenografts
in nude mice. Stable overexpression of pre-miR-7 caused remark-
ably inhibition effects on tumor growth compared with the control
group (Figure 2D). The tumor sizes and tumor weights were obvi-
ously less in the pre-miR-7 group compared with the control group
(Figures 2E and 2F). We further examined miR-7 expression in tu-
mor masses after the mice were sacrificed and the tumors were har-
vested. The results showed remarkably higher expression of miR-7
in the stable overexpression pre-miR-7 group (Figure 2G). This
finding indicates that overexpression of miR-7 inhibits tumor
growth in mice.

MAP3K9 Is a Direct Target of miR-7

To screen out a direct target of miR-7, different miRNA target predic-
tion tools were employed.MAP3K9was identified as a target of miR-7
by 5 prediction tools, including miRTAR, miRDB, TargetScan,
miRanda, and DIANA (Figure 3A). Only one binding site was pre-
dicted between the MAP3K9 30 UTR sequence and the conserved
seed sequence of miR-7 by TargetScan and miRDB (Figure 3B). We
constructed the wild-type pmirGLO-MAP3K9-30 UTR vector and
the mutant-type pmirGLO-MAP3K9-mut-30 UTR vector (containing
4 base mutations in themiR-7 binding sites) for our study (Figure 3B).

MAP3K9 mRNA and protein levels were detected in PC cells with
transfection of miR-7 mimics or miR-7 inhibitors. miR-7 mimics
decreased MAP3K9 mRNA and protein expression in PANC-1 and
PaTu-8988 cells, whereas miR-7 inhibitors increased MAP3K9
expression in BxPC-3 cells (Figures 3C–3E). Consistent with these re-
sults, MAP3K9 protein expression, measured by western blotting, was
also remarkably reduced in PANC-1 xenografts with ectopic expres-
sion of pre-miR-7 (Figure 3F).
ells

. (B) An MTT assay was performed after miR-7 inhibitor treatment in BxPC-3 cells or

***p < 0.001 versus control. (C) Cell apoptosis was measured after miR-7 inhibitor

poptosis was detected after miR-7 mimic treatment for 48 hr in PANC-1 cells. Error

ermined after miR-7mimic treatment for 48 hr in PaTu-8988 cells. Error bar: SE. **p <
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Figure 2. miR-7 Inhibited Cell Migration in PC Cells and Repressed Tumor Growth In Vivo

(A) Wound healing assays were performed after miR-7 inhibitor treatment in BxPC-3 cells or miR-7 mimic treatment in PANC-1 cells and PaTu-8988 cells for 16 hr. NC,

negative control. (B) Transwell migration assays were conducted after miR-7 inhibitor treatment in BxPC-3 cells or miR-7 mimic treatment in PANC-1 cells and PaTu-8988

(legend continued on next page)
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To evaluate the direct binding interaction between miR-7 and the
MAP3K9 30 UTR, a dual luciferase reporter assay was used in 293T
cells. miR-7 mimics dramatically reduced luciferase activity in the
wild-type MAP3K9 30 UTR group. However, the suppression effects
on the luciferase reporter activity were not observed in the mutant-
type MAP3K9 30 UTR group (Figure 3G). All results imply that
MAP3K9 is a direct target of miR-7.

MAP3K9 Promotes Cell Proliferation and Inhibits Apoptosis

Partly through Activation of the MEK/ERK Pathway and the

NF-kB Pathway

Because miR-7 exerted tumor suppression effects and negatively
regulated MAP3K9 expression in PC, we subsequently took an in-
terest in exploring the oncogenic roles of MAP3K9 in PC. Both the
ectopic expression and small interfering RNA (siRNA)-generated
knockdown of MAP3K9 were used in BxPC-3 cells, PANC-1 cells,
and PaTu-8988 cells, respectively, for our following study. A west-
ern blot assay was performed to evaluate the knockdown
efficacy of MAP3K9 siRNA and showed that MAP3K9 siRNAs
inhibit the expression of MAP3K9 in PANC-1 cell lines (Fig-
ure S1C). The MAP3K9-Homo-853 siRNA sequence exhibiting
the highest knockdown efficacy was selected for subsequent
studies. Moreover, our qRT-PCR and western blot results
demonstrated that MAP3K9 cDNA transfection increased its
expression in BxPC-3 cells, whereas MAP3K9 siRNA transfection
decreased the level of MAP3K9 in PANC-1 and PaTu-8988 cells
(Figures 4A–4C).

Because MAP3K9 is a member of the MAPKKK (MAPK kinase ki-
nase) family, we further explored the association between MAP3K9
expression with MAPK and NF-kB signaling. As shown in Figures
4B and 4C, MAP3K9 overexpression caused upregulated expres-
sion of pMEK1/2, pERK1/2, and NF-kB in BxPC-3 cells, paralleled
by downregulated expression of pMEK1/2, pERK1/2, and NF-kB
after MAP3K9 siRNA treatment in PANC-1 and PaTu-8988 cells.
These finding indicate that MAP3K9 governs its downstream tar-
gets, the MEK/ERK signaling pathway and the NF-kB signaling
pathway.

The results of the MTT assay showed that upregulation of MAP3K9
promoted cell proliferation in BxPC-3 cells, whereas downregulation
of MAP3K9 inhibited cell growth in PANC-1 cells and PaTu-8988
cells (Figure 5A). From the apoptosis assay by Annexin V-fluorescein
isothiocyanate (FITC) and PI staining, MAP3K9 overexpression led
to a decreased percentage of apoptotic cells for BxPC-3 cells; on the
contrary, MAP3K9 knockdown caused an increased percentage of
apoptotic cells (Figures 5B–5D). In summary, the results reveal that
MAP3K9 exerts its tumorigenic effect on cell growth and apoptosis
in PC cells.
cells for 24 hr. (C) Quantitative results are illustrated for the transwell migration assays. Er

of miR-7 repressed tumor growth in mice. Nudemice were inoculated with lentivirus-tran

sacrificed 6 weeks after inoculation. (E) The volume of tumors was measured in mice.

Error bar: SE. *p < 0.01 versus control. (G) A real-time RT-PCR assay was used to me
MAP3K9 Overexpression Rescues miR-7-Mediated Cell Growth

Inhibition and Apoptosis Induction

Rescue experiments were also performed to confirm whether miR-7
exerts its tumor-suppressive effect via inhibition of MAP3K9 in PC
cells. MAP3K9 knockdown diminished the cell growth-promoting ef-
fects of miR-7 downregulation in BxPC-3 cells (Figure 6A). Re-
expression of MAP3K9 neutralized the growth inhibition effects of
miR-7 overexpression in PANC-1 cells and PaTu-8988 cells (Fig-
ure 6A). Consistently, MAP3K9 re-expression weakened the
apoptosis induction effects of miR-7 mimics in PANC-1 and
PaTu-8988 cells, whereas MAP3K9 siRNA attenuated the cell
apoptosis inhibition effects of miR-7 inhibitors in BxPC-3 cells (Fig-
ures 6B–6D). More importantly, re-expression of MAP3K9 partially
restored the downregulated protein expression of pMEK1/2,
pERK1/2, and NF-kB by miR-7 overexpression in PANC-1 and
PaTu-8988 cells (Figure 6E). These results suggest that miR-7 sup-
presses cell proliferation and induces cell apoptosis partially by target-
ing MAP3K9.

DISCUSSION
In recent years, some studies have demonstrated that miR-7 fulfills
the antitumor function in pancreatic tumorigenesis.19,20 In line
with this, miR-7 suppresses PC proliferation and mobility because
of repressing autophagy to reduce the glucose provision to glycolysis
metabolism through upregulation of LKB1-AMPK (AMP-activated
protein kinase)-mTOR (mammalian target of rapamycin) signaling.20

A similar report has shown that miR-7 contributes a positive role of
suppressing PC progression through downregulation of the inter-
leukin-2 (IL-2) oncoprotein in PC.21 However, an opposite view
has been suggested; namely, that the expression of miR-7 is increased
by the activation of MAPK signaling in PC cells,22 according to higher
expression of MAPK-associated miR-7 in serum in PC patients
compared with autoimmune pancreatitis.23 These reports suggest
that the function of miR-7 in the progression of PC and its underlying
mechanism remain to be extensively elucidated. According to our
present study, miR-7 significantly suppressed PC cell growth and
mobility and induced cell apoptosis in vitro. In support of these find-
ings, overexpression of miR-7 retarded tumor growth in the PC xeno-
graft model. Our results revealed that miR-7 functions as a tumor
suppressor in PC, suggesting that miR-7 might be a potential target
for PC treatment.

Impressively, we found that miR-7 directly targetedMAP3K9, leading
to regulation of MAP3K9 downstream genes in PC cells. It has been
reported thatMAP3K9mutations can be observed in different human
cancers, including salivary gland malignancy,24 lung cancer,25 colon
cancer,26 and metastatic melanoma.27 Gain-of-function mutations
inMAP3K9 have been founded in lung cancer samples, and depletion
of mutated MAP3K9 suppresses cell proliferation and generates
ror bar: SE. **p < 0.01 versus control; ***p < 0.001 versus control. (D) Overexpression

sduced PANC-1 cells with empty vector (EV) or stably overexpressed pre-miR-7 and

Error bar: SE. *p < 0.01 versus control. (F) Tumor weights were measured in mice.

asure miR-7 in mouse tumor masses. Error bar: SE. ***p < 0.001 versus control.
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Figure 3. MAP3K9 Is a Target of miR-7

(A) Five public algorithms, including TargetScan, PicTar, miRDB, TargetScan, and miRanda, were used to predict that MAP3K9 might be a potential target of miR-7. (B) The

direct physical interaction betweenmiR-7 and theMAP3K9 30 UTR andmutation of the putativemiR-7-binding site on theMAP3K9 30 UTR. (C) A real-time RT-PCR assay was

performed to detect the mRNA level of MAP3K9 after miR-7 inhibitor treatment in BxPC-3 cells or miR-7mimic treatment in PANC-1 cells and PaTu-8988 cells. Error bar: SE.

(legend continued on next page)
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specific killing of lung cancer cells.25 However, MAP3K9mutations in
its kinase domain have been proposed to inhibit its kinase activity and
the phosphorylation level of downstreamMAP kinases, andMAP3K9
siRNA leads to chemoresistance in melanoma cells,27 which suggests
that MAP3K9 may play contrary roles in lung cancer and melanoma.
Moreover, it has been reported that MAP3K9 knockout has no effects
on mouse phenotype, suggesting that MAP3K9 is not essential for
survival in mice.28 These conflicting results show that the carcino-
genic role of MAP3K9 needs to be studied further. To explore the
role of MAP3K9 in PC, we investigated the function of MAP3K9 in
cell growth and apoptosis in PC cells. Our results suggest that
MAP3K9 plays an oncogenic role in PC.

Furthermore, MLKs have been reported to phosphorylate MEK and
activate the MEK/ERK pathway.13 Consistently, miR-7 has been sug-
gested to inactivate ERK1/2 by downregulating EGFR to inhibit cell
metastasis in ovarian cancer.10 These results imply that miR-7 might
target the MAP3K9/MEK/ERK pathway, leading to suppression of
cell proliferation and induction of cell apoptosis in PC cells. The
MEK/ERK pathway is a canonical pathway of carcinogenesis
drivers29–31 and shows cross-talk with the NF-kB pathway.32 As
shown in our results, MAP3K9 activates the MEK/ERK and NF-kB
pathways, and miR-7 inhibits PC cell growth by directly targeting
MAP3K9, subsequently leading to inactive MEK/ERK and NF-kB
pathways. As described in our previous study, curcumin depresses
cell growth and mobility through upregulation of miR-7 in PC.33

However, whether curcumin suppresses PC progression partly
through upregulation of miR-7 and downregulation of MAP3K9
andMEK/ERK needs to be investigated. In summary, our results pro-
vide a novel mechanism of miR-7-mediated suppressive effects on PC
tumorigenesis. This study also indicates that restoration of miR-7
expression and inhibition of MAP3K9 expression might be potential
strategies for PC treatment.

MATERIALS AND METHODS
Cell Lines and Cell Culture

Human PC cells, including BxPC-3, PANC-1, and Patu-8988 cells,
and HEK293T cells were obtained from American Type Culture
Collection (Manassas, VA, USA). These cells were cultured in
DMEM (Gibco, New York, USA) with 10% fetal bovine serum and
maintained in a water-jacketed incubator at 37�C with 5% CO2.
PANC-1 cells were infected with a lentivirus encoding precursor
miR-7 or an empty vector and selected with puromycin for 2 weeks
to establish stable miR-7-expressing cells.

Transfection of Oligonucleotide Sequences and Plasmids

Transfection of oligonucleotide sequences and plasmids was con-
ducted using Lipofectamine 2000 reagent (Invitrogen, Carlsbad,
CA, USA) following the manufacturer’s instructions. miR-7 mimic
**p < 0.01 versus control, ***p < 0.001 versus control. (D) Western blot analysis was c

BxPC-3 cells or miR-7 mimic treatment in PANC-1 cells and PaTu-8988 cells. (E) Quant

analysis was performed to measure the expression of MAP3K9 in mouse tumors masse

Luciferase reporter assays were performed to identify the binding of miR-7 to the MAP3
sequences were designed to be the same as the mature miR-7 se-
quences as follows: 50-TCG AAG ACT AGT GAT TTT GTT
GT-30. miR-7 inhibitor sequences were complementary to mature
miR-7 sequences as follows: 50-ACA ACA AAA TCA CTA GTC
TTCCA-30. TheMAP3K9 siRNA sequences were designed as follows:
MAP3K9-Homo-1403, 50-GUC CCU GGUAGAUGGAUAUTT-30

(sense) and 50-AUA UCC AUC UAC CAG GGA CTT-30 (antisense);
MAP3K9-Homo-853, 50-GGG AGC UGA ACA UCA UCA UTT-30

(sense) and 50-AUGAUGAUGUUGAGCUCC CTT-30 (antisense);
MAP3K9-Homo-2080, 50-CCG ACA GCG AUG AAA UUG UTT-30

(sense) and 50-ACA AUUUCAUCG CUGUCGGTT-30 (antisense).
All oligodeoxynucleotides mentioned above were purchased from
Shanghai GenePharma in China.

The precursor miR-7 sequence was synthesized and subcloned into
the lentiviral pCDH-CMV-GFP vector by GENEWIZ (Suzhow,
China). The retroviral vector pMIGR-MAP3K9 was subcloned
from pDONR221 MAP3K9, which was purchased from Addgene.
The MAP3K9 30 UTR sequence was amplified by PCR and subcloned
into the pmirGLO vector (Promega, WI, USA). The MAP3K9 30 UTR
mutation vector was constructed by PCR-directed mutagenesis.

RNA Extraction and Real-Time RT-PCR

Total RNA extraction and reverse transcription into cDNA have been
described before.34 miR-7 expression detection was performed using
the TaqMan miRNA assay kit (Applied Biosystems, USA), and U6
was used as a reference gene. The MAP3K9 mRNA level was deter-
mined using the SYBR Green real-time PCR kit (Takara, Dalian,
China), and GAPDH (glyceraldehyde 3-phosphate dehydrogenase)
was used as a control for normalization. The primers used for qPCR
were as follows: MAP3K9, 50-GAG TGC GGC AGG GAC GTA T-30

(sense) and 50-CCC CAT AGC TCC ACA CAT CAC-30 (antisense);
GAPDH, 50-GGT GAA GGT CGG AGT CAA CG-30 (sense) and
50-TGG GTG GAA TCA TAT TGG AAC A-30 (antisense).

Western Blotting

Total protein was extracted using cold radioimmunoprecipitation
assay (RIPA) buffer with proteinase inhibitors and phosphatase in-
hibitors. The protein was quantified by BCA assay kit (Beyotime
Biotechnology, Beijing, China), separated on SDS-PAGE, and trans-
ferred to polyvinylidene fluoride (PVDF) membranes. Then, the
PVDF membranes were incubated with the indicated antibodies as
follows: MAP3K9 (Abcam), MEK1/2 (Abcam), pMEK1/2 (Abcam),
ERK1/2 (Cell Signaling Technology), pERK1/2 (CST), NF-kB (p65,
CST), and b-actin (Santa Cruz Biotechnology).

MTT Assay

PC cells were seeded in 6-well plates overnight and transfected with
miR-7 mimics or inhibitors and MAP3K9 cDNA or siRNA for
onducted to measure the expression of MAP3K9 after miR-7 inhibitor treatment in

itative results for (C). Error bar: SE. ***p < 0.001 versus control. (F) Left: western blot

s. Right: quantitative results for expression of MAP3K9 in mouse tumor masses. (G)

K9 30 UTR. WT, wild-type; Mut, mutation. Error bar: SE. ***p < 0.01 versus control.
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Figure 4. MAP3K9 Expression Associated with MAPK and NF-kB Signaling

(A) A real-time RT-PCR assay was performed to detect the mRNA level of MAP3K9 after transfection with MAP3K9 cDNA in BxPC-3 cells or transfection with MAP3K9 siRNA

in PANC-1 cells and PaTu-8988 cells. Error bar: SE. **p < 0.05 versus control; ***p < 0.001 versus control. (B) Western blot analysis was conducted to measure the

expression of MAP3K9, p-MEK1/2, p-ERK1/2, and NF-kB after miR-7 inhibitor treatment in BxPC-3 cells or miR-7 mimic treatment in PANC-1 cells and PaTu-8988 cells.

(C) Quantitative results for the western blot analysis in (B). Error bar: SE. ***p < 0.001 versus control.
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Figure 5. MAP3K9 Promoted Cell Proliferation and Inhibited Cell Apoptosis in PC Cells

(A) An MTT assay was performed after transfection with MAP3K9 cDNA in BxPC-3 cells or transfection with MAP3K9 siRNA in PANC-1 cells and PaTu-8988 cells. Error bar:

SE. *p < 0.05 versus control. (B) Apoptosis was measured in BxPC-3 cells after MAP3K9 overexpression. Error bar: SE. **p < 0.01; ***p < 0.001 versus control. (C) Apoptosis

was measured in PANC-1 cells after MAP3K9 knockdown. Error bar: SE. ***p < 0.001 versus control. (D) Apoptosis was measured in PaTu-8988 cells after MAP3K9

knockdown. Error bar: SE. **p < 0.01 versus control.
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48 hr. Then, PC cells were trypsinized and seeded in 96-well plates for
72 hr. Cell viability was detected by MTT assay as described
previously.34

Cell Apoptosis Assay

PC cells were treated with different transfections as mentioned above.
Then, the cells were collected and subjected to Annexin V-FITC/pro-
pidium iodide (PI) staining following themanufacturer’s instructions.
Cell apoptosis was analyzed by flow cytometry as described
previously.35

Wound Healing Assay

PC cells, after transfection treatment as mentioned above, were
seeded in 6-well plates and incubated overnight until the cells
achieved 95% confluency. The scratch wound was obtained by
scratching the surface cells of plates with a pipette tip, and the de-
tached cells were washed off with PBS. Then the remaining attached
cells in 6-well plates were incubated for 16 hr. The wound healing in
each well at 0 hr and 16 hr was photographed.

Transwell Migration and Invasion Assay

Cell migration and invasion detection was conducted by transwell
assay as described before.35 The cells were seeded into transwell
chambers with 8.0-mm pore membranes in 24-well plates (Corning).
For the invasion assay, however, the chambers were prepared by
coating with a thin layer of Matrigel (BD Biosciences) before the cells
were seeded. After incubation for 24 hr, the bottom-surfaced cells of
the chamber were stained with Giemsa solution, photographed, and
counted under a microscope.

30 UTR Assay

293T cells were plated in 24-well plates and cultured for 24 hr to reach
90% confluency. The cells were subsequently cotransfected with miR-
7 mimics and pmirGLO -MAP3K9 30 UTR or pmirGLO -MAP3K9
mut-30 UTR plasmids using Lipofectamine 2000 reagent. Then, a
dual-luciferase reporter assay system was used to detect luciferase ac-
tivities for analyzing the combination of the miR-7 and MAP3K9 30

UTR sequence.

In Vivo Experiments

The in vivo experiments were performed following the previous
description.35 The animal study was approved by Animal Care and
Use Committee of BengbuMedical College. To establish the PC xeno-
Figure 6. MAP3K9 Overexpression Rescued miR-7-Mediated Cell Growth Inhib

(A) Left: an MTT assay was conducted in BxPC-3 cells after both miR-7 and MAP3K9

#p < 0.05 versusmiR-7 knockdown orMAP3K9 knockdown alone. Center and right: anM

MAP3K9 overexpression. Both, miR-7mimics plusMAP3K9 cDNA transfection. *p < 0.0

alone. (B) Apoptosis was measured in BxPC-3 cells after both miR-7 and MAP3K9 knoc

control; ##p < 0.01 versus miR-7 knockdown or MAP3K9 knockdown alone. (C) Apop

Both, miR-7 mimics plus MAP3K9 cDNA transfection. Error bar: SE. **p < 0.01 versus co

overexpression alone. (D) Apoptosis was determined in PaTu-8988 cells after both mi

fection. Error bar: SE. **p < 0.01 versus control; ***p < 0.001 versus control; ##p < 0.01 v

was conducted to measure the expression of MAP3K9, p-MEK1/2, p-ERK1/2, and NF-

Both, miR-7 mimics plus MAP3K9 cDNA transfection.
grafts, 1 � 107 PC cells, including PANC-1 cells with stably overex-
pressed pre-miR-7 or control cells transduced with an empty vector,
were injected into 5-week-old male nudemice. 2 weeks after injection,
the size of the tumors was measured with calipers every week. The
mice were killed at 6 weeks, and the tumor masses were stripped to
measure the weights.

Statistical Analysis

The data were statistically analyzed by Student’s t test for comparing
two groups and ANOVA for comparing multiple groups using
GraphPad Prism 4.0 (GraphPad, La Jolla, CA). p < 0.05 was consid-
ered statistically significant.
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