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Abstract. We recently found that the brain cytosolic 
microtubule-associated protein 1C (MAP 1C) is a 
microtubule-activated ATPase, capable of translocating 
microtubules in vitro in the direction corresponding to 
retrograde transport. (Paschal, B. M., H. S. Shpetner, 
and R. B. Vallee. 1987b. J. Cell Biol. 105:1273-1282; 
Paschal, B. M., and R. B. Vallee. 1987. Nature 
[Lond.]. 330:181-183.). Biochemical analysis of this 
protein (op. cit.) as well as scanning transmission 
electron microscopy revealed that MAP 1C is a brain 
cytoplasmic form of the ciliary and flagellar ATPase 
dynein (Vallee, R. B., J. S. Wall, B. M. Paschal, and 
H. S. Shpetner. 1988. Nature [Lond.]. 332:561-563). 
We have now characterized the ATPase activity of the 
brain enzyme in detail. We found that microtubule ac- 
tivation required polymeric tubulin and saturated with 
increasing tubulin concentration. The maximum activ- 
ity at saturating tubulin (Vmax) varied from 186 to 239 
nmol/min per mg. At low ionic strength, the Km for 
microtubules was 0.16 mg/ml tubulin, substantially 

lower than that previously reported for axonemal 
dynein. The microtubule-stimulated activity was ex- 
tremely sensitive to changes in ionic strength and sulf- 
hydryl oxidation state, both of which primarily 
affected the microtubule concentrations required for 
half-maximal activation. In a number of respects the 
brain dynein was enzymatically similar to both axone- 
mal and egg dyneins. Thus, the ATPase required diva- 
lent cations, calcium stimulating activity less effec- 
tively than magnesium. The MgATPase was inhibited 
by metavanadate (Ki = 5-10 ttM for the microtubule- 
stimulated activity), 1 mM NEM, and 1 mM EHNA. 
In contrast to other dyneins, the brain enzyme hydro- 
lyzed CTP, TTP, and GTP at higher rates than ATP. 
Thus, the enzymological properties of the brain cyto- 
plasmic dynein are clearly related to those of other 
dyneins, though the brain enzyme is unique in its sub- 
strate specificity and in its high sensitivity to stimula- 
tion by microtubules. 

R 
ECENTLY we found that the microtubule-associated 

protein 1C (MAP 1C) t, purified from calf brain white 
matter extracts, behaved as a mechanochemical en- 

zyme. MAP 1C was specifically dissociated from microtu- 
bules by ATE promoted gliding of microtubules along glass 
coverslips, and had an ATPase activity that was stimulated 
by microtubules (Paschal et al., 1987b). MAP 1C exhibited 
a sedimentation rate (20 S) and electrophoretic mobility 
similar to some forms of the ciliary and flagellar enzyme 
dynein. Direct analysis by scanning transmission electron 
microscopy revealed that, in fact, MAP 1C had the morphol- 
ogy and mass of a two-headed dynein particle (Vallee et al., 
1988). In addition, ultraviolet irradiation in the presence of 
vanadate cleaved the protein into two fragments of about 
the same size as those produced from flagellar dynein (Pas- 
chal et al., 1987b). MAP 1C translocated microtubules 
in the direction corresponding to retrograde transport 
(Paschal and Vallee, 1987), which was also the same as that 
deduced for flageUar dyneins from studies of disintegrating 

1. Abbreviations used in this paper: AMP-PNP, 5'-Adenylyl imidodiphos- 
phate; EHNA, erythro-9-(2-hydroxyl-3-nonyl) adenine; MAP, microtubule 
associated protein; NEM, N-ethylmaleimide. 

axonemes (Sale and Satir, 1977). Thus, we concluded that 
MAP 1C was, in fact, a brain cytoplasmic form of the ciliary 
and flagellar enzyme, with a likely role in retrograde intra- 
cellular transport. 

To study the interaction between microtubules and this 
novel form of dynein, and to evaluate further its relationship 
to other forms of dynein, we undertook a detailed character- 
ization of its ATPase. We report that the brain dynein ATPase 
was extremely sensitive to microtubules, which behaved as 
specific, saturable activators of the enzyme. We also found 
that the pharmacological characteristics of the brain enzyme 
were generally as expected for dynein. However, the brain 
enzyme could be distinguished from other dyneins, both by 
its substrate specificity, and by the low levels of microtubules 
required for stimulation of its ATPase. 

Materials and Methods 

Protein Purifications 
Brain cytoplasmic dynein (MAP 1(2) was purified by ATP extraction of calf 
brain white matter microtubules, followed by sucrose density gradient cen- 
trifugation (5-20%) in Tris-KCl buffer (20 mM Tris HCI, pH 7.6, 50 mM 
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KCI, 5 mM MgSO4, 0.5 mM EDTA; Paschal et al., 1987b). Dithiothreitol 
(DTT) was not included in the sucrose gradient buffer, unless noted other- 
wise (see Results). Alternatively, for one experiment (Fig. 6 and Table V) 
brain dynein was purified by chromatography on Bio-Gel A-5m in 
10 mM sodium phosphate (pH 6.9), 100 mM sodium glutamate, 1 mM 
MgSO4, and 1 mM EGTA (P/G buffer), rather than by sucrose density 
gradient centrifugation. Tubulin was purified by DEAE-Sephadex chroma- 
tography of reversibly assembled microtubule protein (Vallee, 1986a), and 
stored as 5-6 mg/ml stock solutions in PEM buffer (100 mM Pipes (pH 6.6), 
1 mM MgSO4, 1 mM EGTA) containing 0.1 mM GTP at -80°C. MAP- 
free microtubules were assembled with the aid of taxol, and washed and 
resuspended (Collins and Vallee, 1986a) in either Tris-KCI or P/G buffer 
without additional taxol. 

Biochemical Methods 

ATPase activities were assayed at 37°C by measurement of phosphate 
release from [7-32P]-ATP (Collins and Vallee, 1986a). Assays were per- 
formed for 30 min in a total volume of 50 p.I containing 1 mM MgATP. The 
volume of dynein sample (20-40 p.g/ml) plus microtubules was 30-40 pl, 
both contained in Tris-KCI buffer, unless otherwise indicated. The activity 
of microtubules in the absence of MAP IC varied from 0.09 to 0.16 
nmol/min per mg. In some experiments (Fig. 5 and Table IV), phosphate 
release was measured colorimetrically (Ames, 1966). Other assay condi- 
tions are specified in the text and figure legends. 

Dynein binding to microtubules was assayed in P/G buffer by incubating 
the two protein components at 23°C for 15 min. The mixture was cen- 
trifuged at 37°C for 30 rain at 18,000 rpm in a Sorvall SS-34 rotor (Dupont, 
Newtown, CT), and the microtubules were then resuspended in P/G buffer. 
Nucleotide or salt was added to aliquots of the resuspended microtubules, 
and the mixtures were incubated and centrifuged as before. Samples of the 
supematants were analyzed by SDS-gel electrophoresis and the amount of 
dynein present was determined by densitometry using a Kontes Fibre Optic 
Scanner (model No. 800). 

Protein concentrations were determined using the methods of either 
Lowry et al. (1951) or Smith et al. (1985). Gel electrophoresis was per- 
formed on 7% polyacrylamide SDS gels according to Laemmli (1970). Gels 
were stained with Coomassie Blue R-250. Vanadate concentrations were as- 
sayed according to Vogel (1961). 

Biochemical Reagents 

Taxol was obtained as a gift from Dr. Matthew Suffness (National Cancer 
Institute, Bethesda, Maryland) and stored as a 10 mM stock solution in 
DMSO at -800C. EHNA was obtained from the Burroughs-Wellcome 
Company (Research Triangle Park, NC), and NaVO3 from Fluka (Switzer- 
land). Other nucleotides and protease inhibitors were obtained from Sigma 
Chemical Co. (St. Louis, MO). 

Results 

Microtubule Activation of the Brain Cytoplasmic 
Dynein ATPase 

In our initial report on the brain dynein we observed fourfold 
activation of its MgATPase by microtubules (Paschal et al., 
1987b). To characterize this effect more thoroughly, we mea- 
sured the MgATPase activity as a function of microtubule 
concentration (Fig. 1 A, upper curve). In the experiment 
shown, the MgATPase activity appeared to saturate at a tubu- 
lin concentration of "~1 mg/ml. The highest activity ob- 
served was 185 nmol phosphate released/min per mg pro- 
tein, 5.7-fold higher than the basal activity (32 nmol/min per 
mg). The double-reciprocal plot of  the data shown here was 
linear (Fig. 1 b, lower curve). Extrapolation to the y- and 
x-axes indicated that the maximum activity at saturating 
tubulin (Vmax) and Km for tubulin (Kmt) were 186 nmol/min 
per mg and 0.16 mg/ml, respectively. We found that activa- 
tion depended specifically on tubulin assembly, while un- 
polymerized tubulin stimulated the activity only slightly 
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Figure 1. ATPase activity of brain cytoplasmic dynein as a function 
of microtubule concentration at low and high ionic strength. Activi- 
ties were assayed in Tris-KCI buffer containing (a) 32 mM (I) and 
62 mM (o) KCI. Saturation of the activity can be seen clearly in 
the lower ionic strength sample. (b) Double-reciprocal plots of the 
low (m) and high (n) KCI data shown in (a). At low and high salt, 
respectively, the extrapolated values for Kmt were 0.16 and 5.91 mg/ 
mi tubulin, and 186 and 239 nmol/min per mg for V,~x. Because 
of the scale of the graph, only four points of the high salt plot are 
shown, although the linear fit is to all the data. The correlation co- 
efficients for the low and high salt plots (all data points) were 0.997 
and 0.991, respectively. The activities at 0 mg/ml tubulin were sub- 
tracted before calculating the reciprocal activities. Error  bars indi- 
cate the range of  duplicate points. 

(12%; Table I). Thus, microtubules behaved as specific, 
saturable activators of the dynein MgATPase. 

We found that microtubule activation was strongly in- 
hibited by ionic strength, and was abolished at KCI concen- 
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Table I. Effect of Microtubule Assembly State on 
A TPase Activity 

Tubulin Taxol ATPase activity Fold stimulation 

nmol/min per mg 

- - 61 + 7 1.0 
+ - 75 + 2 1.2 
+ + 188 __+ 4 3.1 

ATPase activity of purified brain cytoplasmic dynein was assayed alone, and 
in the presence of DEAE-purified tubulin (1,2 mg/ml), with or without taxol 
(40 pM) to induce microtubule assembly. In a separate experiment, taxol alone 
had no significant effect on ATPase activity. Errors indicate range of duplicate 
points, 

trations of 200 mM and higher (Fig. 2). This effect was also 
seen with the sea urchin egg 10 S ATPase described by this 
laboratory (Collins and Vallee, 1986a), and we have noted 
it on the ATPase activity of crude preparations of calf brain 
kinesin (Paschal, B. M., and R. B. Vallee, unpublished ob- 
servations). To understand the basis for this effect, we exam- 
ined the dependence of ATPase activity on microtubule con- 
centration at two different salt concentrations (32 vs. 62 mM 
KC1; Fig. 1 a). Double reciprocal plots (Fig. 1 b) indicated 
that while the Vmax was relatively unaffected by the increase 
in ionic strength (186 vs. 239 nmol/min per mg), gmt was 
37-fold higher at the higher salt concentration (5.91 vs. 0.16 
mg/ml). Thus, the primary effect of increasing the ionic 
strength was to decrease the apparent affinity of the dynein 
for microtubules, rather than the turnover rate of the 
microtubule-bound form of the enzyme (see Discussion). In 
the absence of microtubules, some stimulation of the basal 
activity was observed at elevated salt concentrations (ap- 
proximately twofold at 0.35 M KC1). 

Effect of  Oxidation State on ATPase Activity 

In the routine preparation of brain cytoplasmic dynein we 
found no apparent need for reducing agents to preserve ATP- 
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Figure 2. Effect of KC1 concentration on basal and microtubule- 
stimulated ATPase activities of brain cytoplasmic dynein at 0 (D) 
or 1.1 mg/ml (B) microtubules. Error reported as in Fig. 1. 

Table II. Effect of DTTon ATPase Activity 

ATPase activity 
Fold stimulation 

Preparative procedure (-)-Tubulin (+)-Tubulin by microtubules 

nmol/min per mg 

Purified without 1 mM 
DTT 53 + 6 179 +_ 4 3.4 

Purified in 1 mM DTT 81 + 1 74 ___ 5 0.9 
Purified in 1 mM DTT, 

dialyzed into DTT- 
free buffer 45 158 + 11 3.5 

Brain cytoplasmic dynein was purified from ATP extracts of calf brain white 
matter microtubules (see Materials and Methods) by sucrose density centrifu- 
gation in the presence or absence of I mM DTT, as indicated. Tubulin concen- 
tration was 1 mglml. Error reported as in Table I. 

ase activity. Nonetheless, when we purified the enzyme on 
sucrose gradients containing 1 mM DTT, we observed 
changes in the extent of microtubule stimulation (Table II). 
In the experiment shown, no microtubule activation was seen 
in the DTT-containing sample. We also noted that the basal 
activity was somewhat elevated. In five experiments the mag- 
nitude of the effect of DTT on microtubule activation was 
variable, but the fold-activation was always reduced relative 
to the sample prepared in the DTT-free buffer by at least 
45 %. The effect of DTT could be reversed by overnight dial- 
ysis against DTT-free buffer (Table II). 

Preparations of dynein purified in DTT did exhibit some 
microtubule stimulation (Fig. 3), though only a gradual in- 
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Figure 3. Microtubule dependence of ATPase activity of brain cyto- 
plasmic dynein purified in 1 mM DTT. The double reciprocal plot 
of the data was curved. Low and high K~t states of the ATPase 
were initially approximated by straight line fits to those reciprocal 
data points obtained at high and low tubulin concentrations, respec- 
tively. Successively better approximations were then obtained by 
subtracting the contribution of each state from the data (cf. Segel, 
1975, see references 68-71). The curve in the figure was generated 
from the final approximations of Kmt (7.30 and 0.04 mg/ml tubu- 
lin) and Vmax (187 and 14 nmol/min per mg total protein) for each 
state. Error reported as in Fig. 1. 
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crease in activity was seen with microtubule concentration 
(cf. Figs. 1 a [upper curve], and 3). The double-reciprocal 
plot of the data was curved (not shown). The data could be 
fit by a curve (see legend to Fig. 3) specifying that most 
(93 %) of the ATPase was present in a high Kin, state (Kin, = 
7.30 mg/ml; Vm~ = 187 nmol/min per mg total protein) 
with a small fraction (7%) in a low Kin, state (Kin, = 0.04 
mg/ml; Vmax = 14 nmol/min per mg total protein). Thus, 
the Kin, of the major component was over 40-fold higher 
than that of the preparation purified without DTT (Fig. 1 b) 
at the same ionic strength. 

Substrate Specificity 

To evaluate the relationship of brain cytoplasmic dynein to 
other microtubule-associated ATPases, we examined its cat- 
ion and nucleotide specificities. The brain enzyme required 
divalent cations for full activity (Table III). Dialysis against 
EDTA-containing buffer reduced the microtubule-activated 
ATPase 85-90 %, relative to undialyzed preparations. Addi- 
tion of Mg ÷÷ or Ca ÷+ to 5 mM stimulated the activity by 
11.5- or 4.8-fold, respectively. The basal ATPase activity of 
the dynein was also reduced in the absence of divalent cat- 
ions. The Km for ATP hydrolysis in the presence of Mg +÷ 
was 15 laM (Fig. 4). 

Previously it was found that other nucleoside triphosphates 
besides ATP did not support in vitro translocation of micro- 
tubules by brain dynein (Paschal and Vallee, 1987). We 
found, however, that it could hydrolyze MgGTP, MgCTP, 
and MgTTP at high rates, though only slight microtubule ac- 
tivation was seen (Table IV). All four nucleotide hydrolase 
activities were present in nearly constant ratios across the 
dynein peak from a sucrose density gradient (Fig. 5), strong- 
ly suggesting that they were associated with the dynein itself, 
rather than a contaminating nucleotidase. 

Microtubule-binding Characteristics 

In a previous study (Paschal et al., 1987b) we noted that al- 
though kinesin and several other polypeptides were dissoci- 
ated from microtubules by both GTP and ATP, brain cyto- 
plasmic dynein was specifically eluted by ATP. To explore 
further the nucleotide dependence of microtubule binding, 
we assayed several triphosphates for their ability to dissoci- 
ate rigor complexes composed of purified dynein and MAP- 
free microtubules. Rigor complexes were incubated with 
nucleotide, the microtubules were pelleted, and the amount 
of dynein present in the supernatants was determined by gel 
electrophoresis (Fig. 6 and Table V). 

Fig. 6 shows that microtubule binding of the brain dynein 

Table 11I. Divalent Cation Specificity 

ATPase activity 

Divalent cation ( - )  Tubulin (+) Tubulin 

nrnot/min per mg 

- -  9 + 1  1 6 ± i  
Mg ÷+ 22 -[- 5 188 ± 13 
Ca ++ 21 + 6 78 ± 11 

Brain cytoplasm dynein was dialyzed overnight at 1:500 vol against two 
changes of divalent-cation free Tris/KCl buffer. The concentration of divalent 
cation was 5 mM and tubulin was at 2.6 mg/ml. Error reported as in Table I. 
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Figure 4. Double reciprocal plot of dependence of brain cytoplas- 
mic dynein ATPase activity on ATP concentration. Microtubule 
concentration was 1.8 mg/ml. Assay time was limited to ~<4 min to 
limit depletion of substrate. Error reported as in Fig. 1. 

was strongly inhibited by ATP. Quantitative analysis of bind- 
ing is shown in Table I. In the presence of 5 mM MgATP, 
77 % of the protein was dissociated. When rigor complexes 
were incubated with 5 mM MgATP + 5 mM MgAMP-PNP, 
dissociation proceeded to virtually the same (78 %) extent as 
with MgATP alone; thus AMP-PNP did not induce the en- 
zyme to bind to microtubules in the presence of dissociating 
triphosphate, as has been reported for kinesin (Vale et al., 
1985a). 5 mM MgAMP-PNP alone dissociated 24% of the 
microtubule-bound dynein (Table V). GTP had little appar- 
ent effect on binding, confirming our earlier finding that the 
protein is insensitive to dissociation by this nucleotide once 
microtubules have been purified (Paschal et al., 1987b). 

We also examined the effect of salt on dynein binding, in 
view of the effect of ionic strength on ATPase activity (Figs. 
1 and 2) and the salt sensitivity of microtubule binding by 
other MAPs. NaC1 at 0.25 M dissociated some (47%) but 
not all of the bound dynein, although previous work has indi- 
cated that the other MAPs are completely dissociated from 
microtubules at this salt concentration (Vallee, 1982). 

Table IV. Substrate Specificity 

Hydrolysis rate 
Fold-stimulation 

Nucleotide ( - )  Tubulin (+) Tubulin by microtubules 

nmol/min/mg 

MgATP 74 ± 12 187 + 8 2.5 
MgGTP 205 + 2 265 + 13 1.3 
MgCTP 623 ___ 20 623 + 89 1.0 
MgTTP 387 + 12 516 + 15 1.3 

Rates of nucleotide hydrolysis by brain cytoplasmic dynein were assayed by 
colorimetric measurement of phosphate release (Ames, 1966). Tubulin concen- 
tration = 2.1 mg/ml. Error reported as in Table I. 
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Figure 5. Copurification of brain cytoplasmic dynein nucleotidase 
activities. ATPase (B), GTPase (o), CTPase (o), and TTPase ([]) 
activities were assayed through the dynein region of a 5-20% su- 
crose density gradient of ATP-extracted microtubules (cf. Figs. 5 
and 9 in Paschal et al., 1987a). Maximum activities differed (Table 
IV) but have been normalized to 100% for comparison of the differ- 
ent nucleotide hydrolysis profiles. Maximum ATPase, GTPase, 
CTPase, and TTPase activities were 61, 323, 755, and 609 nmol/ 
min per mg, respectively. 

Table V. Dissociation of Brain Cytoplasmic Dynein 
from Microtubules 

Dyneia dissociated 
Effector (percentage of total) 

None 4 

MgATP (5 mM) 77 

MgATP (5 mM) + 78 
MgAMP-PNP (5 mM) 

MgAMP-PNP (5 mM) 24 

MgGTP (5 mM) 14 

NaC1 (0.25 M) 47 

Brain cytoplasmic dynein was purified from an ATP extract of calf brain 
microtubules by chromatography on Bio-Gel A5-m and incubated with taxol- 
stabilized microtubules composed of DEAE-purified tubulin (0.35 mg/ml). 
The dynein-microtubule complexes were washed once and resuspended in P/G 
buffer. Nucleotide or salt was added as indicated, and free and bound dynein 
were separated by centrifugation. The amount of dynein in the supernatant was 
determined by densitometry of electrophoretic gels; the fraction dissociated 
was calculated by dividing the amount in the supernatant from the total dynein 
present in an uncentrifuged sample. 

Pharmacology 
To characterize further the ATPase of brain cytoplasmic 
dynein, we assayed its response to several ATPase inhibitors 
(Fig. 7 and Table VI). Both the basal and microtubule-acti- 
vated MgATPases were inhibited by metavanadate (NaVO3; 
Fig. 7), which inhibits other forms of dynein (Gibbons et al., 
1978; Hisanaga and Sakai, 1983). Half-inhibition of the 
microtubule-stimulated activity occurred at 5-10 IxM NaVO3 
(Fig. 7). The basal activity appeared somewhat less sensi- 
tive. At low ionic strength 1 mM EHNA inhibited the basal 
and microtubule-stimulated activities by 12 and 24%, re- 
spectively. At higher ionic strength (0.6 M KC1) the basal ac- 
tivity was inhibited 85 % by 1 mM EHNA (Table VI), which 
has been reported to specifically inhibit dynein-like ATPases 
under these conditions (Penningroth et al., 1985). Neither 

Figure 6. Microtubule binding of brain cytoplasmic dynein. The 
dynein was purified by chromatography on Bio-Gel A-5m, in- 
cubated with taxol-stabilized microtubules composed of DEAE- 
purified tubulin, and centrifuged to separate bound and free pro- 
tein. (Lane 1) Mixture of microtubules and dynein. (Lanes 2 and 
3) Supernatant and pellet, no nucleotide. (Lanes 4 and 5) Superna- 
tant and pellet after addition of 5 mM ATE (Lanes 6 and 7) Super- 
natant and pellet obtained from centrifugation of the dynein alone. 
The efficiency of binding in the absence of nucleotide appears lower 
in this experiment than in that described in Table V, because the 
dynein-microtubule complex was precentrifuged in the latter ex- 
periment to remove unbound dynein. 74 indicates the position of 
the 74,000-D subunit of the brain dynein molecule described previ- 
ously (Paschal et al., 1987a). It is only faintly visible at the gel load- 
ing used here. (Tub) Tubulin. 
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Figure 7. Inhibition of basal and microtubule-stimulated ATPase ac- 
tivity of brain cytoplasmic dynein by metavanadate (NaVO3). 0 mg/ 
ml ([]) or 1.3 mg/ml (I)  tubulin. 
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Table VI. Pharmacological Characterization 

ATPase activity 

Inhibitor (-)-Tub (+)-Tub 

percentage of control 

1 mM EHNA* 88 + 2 76 ___ 4 
1 mM EHNA (0.6 M KCI)~ 15 + 5 N . D .  
0.1 m M N E M §  77 + 1 73 + 2 
1 . 0 m M N E M §  33 + 1 33 + 2 
0.1 mM Ouabain 117 ± 1 118 ± 6 
2.0 mM NaN3 111 ± 15 100 _+ l 
10.0 IxM Oligomycin 107 ± 1 100 ± 2 
0.2% Triton X-100 91 ± 3 90 + 1 

ATPase activity of brain cytoplasmic dynein was performed in 1 mM ATP, un- 
less noted otherwise. 
* [ATP] = 0.1 mM. 

[ATP] = 0.1 mM; [KCI] = 0.6 M. 
§ Samples of dynein were incubated with NEM for 10 min at room tempera- 
ture at the concentration shown. DTT was then added to 20 mM, and the sam- 
ples kept on ice until assay. Control samples contained 20 mM DTT without 
NEM. Error reported as in Table I. 
N. D., not determined. 

the basal nor the microtubule-stimulated activities were in- 
hibited by oligomycin (10 IxM), ouabain (0.1 mM), or NaN3 
(2 mM), inhibitors of membrane bound ATPases. Treatment 
of the brain enzyme with 1 mM NEM reduced the basal and 
microtubule-stimulated activities each by 67 %. Triton X-100 
(0.2%) had no effect on activity, although it has been re- 
ported to stimulate the activities of other forms of dynein 
(Gibbons and Fronk, 1979; Asai and Wilson, 1985). 

Discussion 

Microtubule Activation 

In a previous study (Paschal et al., 1987b) we found that the 
ATPase of brain cytoplasmic dynein was stimulated by mi- 
crotubules. We now report that microtubules behave as spe- 
cific, saturable, activators of the ATPase activity (Table I and 
Fig. 1 a). Activation was strongly affected by ionic strength 
and by the presence of reducing agent during purification. 
Both effects were reflected in large (30- to 40-fold) increases 
in Km,. 

The most likely explanation for the increased Kmt at 
higher ionic strengths is a reduction in the affinity of the en- 
zyme for microtubules. We found that binding of the enzyme 
to microtubules in the absence of nucleotide decreased with 
increasing ionic strength (Table V), indicating that this inter- 
action also contains a significant ionic component. We note 
that the Km for actin of the skeletal muscle heavy meromyo- 
sin (HMM) ATPase is increased at higher ionic strength 
(Eisenberg and Moos, 1968), and that this effect has been 
correlated with a reduction in the affinity of HMM for actin 
in the presence of nucleotide (Wagner and Weeds, 1979; 
Chalovich and Eisenberg, 1982). Johnson (1985) has noted 
that similarities exist between the mechanisms by which axo- 
nemal dynein and myosin hydrolyze ATP; it is possible that 
binding to microtubules or actin, respectively, involves simi- 
lar interactions. 

It is less apparent why brain dynein should exhibit a higher 
value for Km~ when purified in the presence of 1 mM DTT. 

We have not noted any structural differences between the oxi- 
dized and reduced forms of the enzyme: STEM analysis of 
brain dynein indicated that it was neither aggregated nor 
denatured in the oxidized form (Vallee et al., 1988), and its 
sedimentation behavior did not depend on the presence of 
reducing agent (unpublished observations). Further studies 
are needed to elucidate'the basis for the effect of DTT on 
microtubule activation. 

Relationship of Brain Cytoplasmic Dynein to 
Other Forms of Dynein 

In this section we compare the brain enzyme with other 
forms of dynein. In addition to ciliary and flagellar dynein, 
sea urchin egg cytosol has been found to contain an ATPase 
activity with dynein-like properties (Weisenberg and Taylor, 
1967; Pratt, 1980; Scholey et al., 1984; Pratt, 1986). Its 
function remains uncertain, since precursors for both cyto- 
plasmic (Kuriyama, 1977; Vallee and Bloom, 1983) and 
ciliary microtubules (Auclair and Siegel, 1966) are stock- 
piled in the egg, and it has been difficult to determine to 
which functional class this form of dynein belongs. The egg 
enzyme has been referred to as either 'cytoplasmic' or 'egg' 
dynein. We will use the latter term exclusively, because there 
is a strong possibility that this enzyme will, in fact, prove 
to be functionally distinct from the brain cytoplasmic form 
of dynein described here. 

Relative Sensitivity to Microtubules 

The basal activity of brain cytoplasmic dynein (•30-60 
nmol/min per mg) was lower than that of either axonemal or 
egg dynein. The maximum microtubule-stimulated ATPase 
activity (~185-239 nmol/min per mg) was close to the low 
end of the range of basal activities reported for axonemal 
dynein (0.4 to 1.5 ~tmol/min per mg; Gibbons, 1966; Pfister 
and Witman, 1984; Porter and Johnson, 1983), and well 
within the range of basal activity reported for egg dynein 
(150-600 nmol/min per mg; Pratt, 1980; Asai and Wilson, 
1985). Microtubule activation of egg dynein has not been in- 
vestigated in detail, though it was found to be insensitive to 
microtubules under conditions where the 10S sea urchin egg 
microtubule-activated ATPase was strongly stimulated (Col- 
lins and Vallee, 1986a). 

Like the brain enzyme described here, the MgATPase of 
Tetrahymena 22S ciliary dynein has been reported to be acti- 
vated by microtubules (Omoto and Johnson, 1986). MgATP- 
ase activity was reported to increase with tubulin concentra- 
tion up to 50 mg/ml without saturating, indicating that the 
Kmt was at least 25 mg/ml, considerably above the range of 
values we report here for brain cytoplasmic dynein. In view 
of the effects of ionic strength and reducing conditions on the 
Kmt of the brain enzyme (Figs. 1-3), it is possible that the 
difference in sensitivity to microtubules is due to differences 
in purification and/or assay conditions. Alternatively, there 
may be intrinsic differences in the properties of the two en- 
zymes, e.g., in their relative affinities for microtubules or the 
individual kinetic constants of the ATPase pathway. Further 
work on the mechanistic basis for the difference in sensitivity 
to microtubules will be needed to resolve this issue. 

Sea urchin axonemal dynein, isolated under appropriate 
conditions, has been referred to as having 'latent activity' in 
that reassociation with axonemes restored activity. This may 
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reflect activation by axonemal microtubules, though in view 
of the complexity of the axoneme, other mechanisms for the 
restoration of activity are also possible. The ATPase of 'la- 
tent activity dynein' can also be stimulated by nonionic deter- 
gents, aging, KCI, and other treatments (Gibbons and Fronk, 
1979). Sea urchin egg dynein can also be activated by non- 
ionic detergent (Asai and Wilson, 1985) and KCI (Collins 
and Vallee, 1986a). In contrast to these results, the brain 
dynein characterized here was not activated by nonionic de- 
tergent (Table VI) or aging (our unpublished observations). 
Some stimulation of the basal ATPase activity was observed 
at elevated KCI (Fig. 2), though this was far less pronounced 
than for the other forms of dynein. Thus, the brain enzyme 
did not exhibit many of the forms of 'latency' exhibited 
by other dyneins, although it was readily stimulated by 
microtubules. 

Pharmacology and Substrate Specificity 
The pharmacology and substrate specificity of brain dynein 
were similar in many, though not all respects, to the reported 
behavior of both axonemal and egg forms of the enzyme. The 
ATPase activity of the brain enzyme required divalent cat- 
ions, the activity being higher in the presence of magnesium 
than calcium (Table III; cf. Gibbons, 1966; Gibbons and 
Fronk, 1979; Pratt et al., 1984). The KATp of the brain en- 
zyme was 15 IxM, within the reported range of values for 
both axonemal (Gibbons and Fronk, 1979; Warner and Mit- 
chell, 1980; Pfister et al., 1985) and egg (Hisanaga and 
Sakai, 1983) dyneins. The brain enzyme was sensitive to 
metavanadate; half-inhibition of the microtubule-stimulated 
activity occurred at concentrations of 5-10 p.M, similar to the 
range of values reported for egg dynein (1-20 p.M; Hisanaga 
and Sakai, 1983; Asai and Wilson, 1985; Hollenbeck et al., 
1984) but higher than that reported for axonemal dynein (<1 
laM; Gibbons et al., 1978; Kobayashi et al., 1978; Pfister et 
al., 1984). 1 mM EHNA inhibited the brain enzyme by 85% 
(Table VII) at high ionic strength and a 10-fold molar excess 
over ATP, conditions under which EHNA has been reported 
to inhibit the axonemal and egg dynein ATPases specifically 
(Penningroth et al., 1985). At lower ionic strength inhibition 
was less effective, perhaps due to the hydrophobic structure 
of this inhibitor (Penningroth, 1986). The brain enzyme was 
markedly inhibited by treatment with 1 mM NEM (Table 
VI), as are the other forms of dynein (Hisanaga and Sakai, 
1983; Shimizu and Kimura, 1974). Like other dyneins (Pratt 
et al., 1984), the brain form was not inhibited by azide, oua- 
bain, or oligomycin, although slight activation by ouabain at 
0.1 mM was observed, as has been reported for egg dynein 
(Pratt, 1980). 

The brain enzyme differed most strikingly from the other 
forms of dynein in its nucleotide specificity. It hydrolyzed 
GTP, CTP, and TTP at rates higher than ATP, although hy- 
drolysis of these nucleotides was not stimulated appreciably 
by microtubules under these conditions (Table IV). Microtu- 
bule translocation by the brain cytoplasmic dynein was sup- 
ported by MgATP, but not by MgCTP, MgGTP, MgUTP, 
MglTP, or MgTTP (Paschal and Vallee, 1987), suggesting 
that hydrolysis of nucleotides other than MgATP by the brain 
dynein is coupled inefficiently or not at all to force produc- 
tion. The broad nucleotide specificity of brain cytoplasmic 
dynein may prove useful in discriminating this enzyme from 
others. 

Relationship of the Brain Cytoplasmic Dynein 
to other Microtubule-associated ATPases 

We found that the enzymatic behavior of brain cytoplasmic 
dynein differed significantly from that reported for kinesin. 
Kinesin was considerably less sensitive to inhibition by vana- 
date and NEM (Kuznetsov and Gelfand, 1986; Cohn et al., 
1987; cf. Fig. 7 and Table VI), was dissociated from microtu- 
bules by GTP (Paschal et al., 1987b; cf. Table V), and was 
induced to bind microtubules by AMP-PNP (Vale et al., 
1985a; cf. Table V). The basal activity of kinesin in the ab- 
sence of microtubules was considerably higher in the pres- 
ence of calcium than magnesium (Kuznetsov and Gelfand, 
1986; cf. Table III), and kinesin hydrolyzed ATP somewhat 
more effectively than other nucleotides (Kuznetsov and Gel- 
land, 1986; cf. Table IV). Brain dynein could also be distin- 
guished from the 10S microtubule-activated ATPase of sea 
urchin egg cytosol (Collins and Vallee, 1986a) by its insensi- 
tivity to 100 ~tM vanadate and its affinity for microtubules 
in the presence of ATP. It is noteworthy that brain dynein, 
kinesin, and the 10S ATPase all have been reported to exhibit 
values of Kmt below 1.5 mg/ml tubulin (Fig. 1; Kuzentsov 
and Gelfand, 1986; Collins and Vallee, 1986b). 

Lye et al. (1987) have reported the purification of a 20S 
ATPase from Caenorhabditis elegans that resembled brain 
cytoplasmic dynein in its electrophoretic mobility, its sensi- 
tivity to vanadate and NEM, and its susceptibility to pho- 
tocleavage in the presence of vanadate. However, it was 
reported to translocate microtubules in the opposite direction 
(anterograde) from the brain enzyme and its ATPase was 
found to be stimulated by Triton X-100, unlike the brain en- 
zyme (Table VI). Microtubule activation was not reported. 
Further work will be needed to evaluate the relationship of 
this enzyme to brain dynein. 

In earlier studies, reversibly assembled brain microtubules 
were reported to contain ATPase activity (Burns and Pollard, 
1974; Gaskin et ai., 1974; Gelfand et al., 1978; White et al., 
1980; Murphy et al., 1983; Fujii et al., 1983). It is possible 
that, in some cases, the activity identified was due to that of 
brain dynein. However, GTP was routinely used in microtu- 
bule purification, and this should have greatly reduced the 
content of dynein in the microtubule preparations (Paschal 
et al., 1987b). Pallini et al. (1983) did find that cycled brain 
microtubules contained a nucleotidase that hydrolyzed CTP 
4-5 times more effectively than ATP and sedimented at 20S. 
The ATPase activity was very low (7 nmol/min per rag), but 
was partially inhibited by 1 mM EHNA and 20 ~M vanadate. 
This enzyme could be related to that described here. 

Relationship Between Motile and Enzymatic Activities 
The microtubule-activated ATPase of the brain cytoplasmic 
dynein exhibited a pharmacological profile similar to that of 
its in vitro microtubule translocating activity (Paschal and 
Vallee, 1987). Thus, both activities were inhibited by EHNA, 
NEM and vanadate, but not by oligomycin, azide, ouabain 
(Fig. 7 and Table VI; Paschal and Vallee, 1987) or Triton 
X-100 (Table VI; Paschal B. M., and R. B. Vallee, unpub- 
lished observations). Microtubule stimulation was also abol- 
ished at KCI concentrations above 200 mM, presumably due 
to a decrease in the affinity of the dynein for microtubules 
(see above). We have also found that microtubule gliding is 
abolished at KCI concentrations above 150 mM (Shpetner, 
H. S., and R. B. Vallee, unpublished observations). 
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Motility appeared to be more sensitive to some inhibitors 
than ATP hydrolysis. Thus, 1 mM EHNA and 0.1 mM NEM 
both blocked motility completely, although they inhibited the 
microtubule stimulated MgATPase by 24 and 27 %, respec- 
tively, in the same assay buffer used in the motility assays 
(Table VI). The ATPase activities of both sea urchin egg 
kinesin (Cohn et al., 1987) and the high molecular weight 
microtubule translocator from C. elegans (Lye et al., 1987) 
were also found to be less sensitive to inhibitors than their 
respective motile activities. 

Despite the effect of sulfydryl oxidation state on ATPase 
activity (Table II and Fig. 3), the presence of 1 mM DTT dur- 
ing purification of the dynein had no apparent effect on mi- 
crotubule gliding (unpublished observations), although the 
relative rates of gliding have not been examined in detail. 
These findings suggest that the microtubule gliding assay 
might be relatively unaffected by changes in the sensitivity 
of the ATPase to microtubule activation. In this regard it is 
noteworthy that axonemal dynein promotes in vitro microtu- 
bule gliding at rates three to four times faster than the brain 
cytoplasmic dynein described here (Paschal et al., 1987a; 
Vale and Toyoshima, 1988), since axonemal dynein has both 
a substantially higher ATPase activity and a much lower ap- 
parent affinity for microtubules than brain cytoplasmic dy- 
nein (see above). This apparent discrepancy may be due to 
cooperative binding of the microtubules in the gliding assay 
to the coverslip-bound dynein, though further work will be 
needed to elucidate this point. 

In summary, the enzymatic properties of brain cytoplas- 
mic dynein are in many, but not all respects similar to those 
of other dyneins. Because the MgATPase of the brain en- 
zyme can be significantly activated at low microtubule con- 
centrations, it should provide an excellent model system by 
which the mechanism of force generation by dyneins can be 
further investigated. 
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