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Abstract: Current findings on brain structural alterations in complex regional pain syndrome (CRPS)
are heterogenous and controversial. This study aimed to perform a systematic review and meta-
analysis to explore the significant gray matter volume (GMV) abnormalities between patients with
CRPS and healthy controls (HCs). A systematic search of the PubMed, Web of Science, and MEDLINE
databases was performed, updated through 27 January 2022. A total of five studies (93 CRPS patients
and 106 HCs) were included. Peak coordinates and effect sizes were extracted and meta-analyzed
by anisotropic effect size–signed differential mapping (AES-SDM). Heterogeneity, sensitivity, and
publication bias of the main results were checked by the Q test, jackknife analysis, and the Egger
test, respectively. Meta-regression analysis was performed to explore the potential impact of risk
factors on GMV alterations in patients with CRPS. The main analysis exhibited that patients with
CRPS had increased GMV in the left medial superior frontal gyrus (SFGmedial.L), left striatum,
and an undefined area (2, 0, −8) that may be in hypothalamus, as well as decreased GMV in
the corpus callosum (CC) (extending to right supplementary motor area (SMA.R), right median
cingulate/paracingulate gyri (MCC.R)), and an undefined area (extending to the right caudate nucleus
(CAU.R), and right thalamus (THA.R)). Meta-regression analysis showed a negative relationship
between increased GMV in the SFGmedial.L and disease duration, and the percentage of female
patients with CRPS. Brain structure abnormalities in the sensorimotor regions (e.g., SFGmedial.L,
SMA.R, CAU.R, MCC.R, and THA.R) may be susceptible in patients with CRPS. Additionally, sex
differences and disease duration may have a negative effect on the increased GMV in SFGmedial.L.

Keywords: complex regional pain syndrome; gray matter volume; voxel-based morphometry;
magnetic resonance imaging; meta-analysis

1. Introduction

Complex regional pain syndrome (CRPS), commonly caused by limb trauma, is a
chronic pain that is characterized by spontaneous and evoked regional pain in the ex-
tremities [1,2]. The prevalence of CRPS is about 5.4~26.2 per 100,000 person-years with a
female predominance [3,4]. One of the significant impairments in CRPS is pain-induced
neuroplasticity in the central nervous system (CNS). For instance, it was reported that
cognitive function impairments and abnormal body representation were showed in CRPS
patients without brain injury [5]. Resting-state functional magnetic resonance imaging
(Rs-fMRI) studies have shown that CRPS involves significant default-mode network (DMN)
alterations by comparing CRPS and non-CRPS patients [6,7]. Although multiple factors are
involved in the process of CRPS, insufficient understanding of the underlying mechanism
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leads to poor clinical intervention and management [8]. Thus, further study of CNS changes
is of great significance for targeted treatment and improving intervention efficiency.

Neuroimaging studies have focused on the brain structure alterations involved in
CRPS. Voxel-based morphometry (VBM) is one of the most important methods for mea-
suring gray matter volume (GMV) abnormalities [9,10]. According to the accumulating
VBM evidence, patients with CRPS show GMV abnormalities in specific brain regions
(e.g., cingulate cortex and amygdala) that play a key role in somatosensory and emotional
functions. [7]. In addition, a neuroimaging study reported that GM atrophy might be
limited in the emotion-related brain regions including the insula, ventromedial prefrontal
cortex (VMPFC), and nucleus accumbens (NAc) [11]. In the early stage of CRPS, patients
showed decreased GMV in cerebral areas that are involved in spatial body perception,
and somatosensory and limbic systems [12]. Although brain structure abnormalities have
been found to be closely related to the dysfunctions within CRPS, the findings on GMV
alterations in specific brain regions can be heterogenous and controversial. For instance,
it was reported that GMV in the dorsomedial prefrontal cortex of patients with CRPS
was higher than that of HCs [1], whereas Barad et al. found that patients with CRPS had
higher GMV in the right hypothalamus, left dorsal putamen, and left inferior temporal lobe,
as well as lower GMV in the left orbitofrontal cortex, left middle cingulate cortex, right
middle cingulate cortex, left posterior middle cingulate cortex, left dorsal insula, and left
anterior middle cingulate cortex at the same time [13]. Due to the limited research samples,
heterogeneous and unreliable findings may exist in CRPS studies [14]. Therefore, it is of
great necessity to perform a systematic review and meta-analysis exploring the reliable
GMV alterations in CRPS.

In this study, we aimed to conduct a voxel-wise meta-analysis including only
VBM studies to reduce potential bias and explore reliable GMV abnormalities between
CRPS patients and HCs, providing a valuable reference for future research and
clinical management.

2. Materials and Methods
2.1. Search Strategy and Study Selection

This systematic review and meta-analysis followed the PRISMA checklist (Supple-
mentary Table S1) [15], and the protocol was registered in PROSPERO (registration number
CRD42022307238) (https://www.crd.york.ac.uk/prospero/). A systematic search was
performed using the PubMed, Web of Science, and MEDLINE databases, updated through
27 January 2022, with the items as follows: (“complex regional pain syndromes” OR “CRPS”
OR “complex regional pain syndrome, type i” OR “complex regional pain syndrome type
ii”) AND (“gray matter” OR “gray matter volume” OR “VBM” OR “voxel-based morphom-
etry” OR “GMV” OR “GM”). The detailed search strategy is shown in Supplementary
Table S2. Additionally, references from review articles were searched manually.

Studies meeting all the following criteria were included: (1) the exploration of GMV
alterations between CRPS patients and HCs; (2) adult participants; (3) available coordinate
information (x, y, z) and effect size (t value or z score) reported in the standard coordinate
space, including Montreal Neurological Institute (MNI), or Talairach (TAL) coordinates;
(4) VBM method used to measure the GMV alteration. Studies meeting one of the following
criteria were excluded: (1) animal study; (2) VBM method not used; (3) not CRPS; (4) not
original study; (5) children participants; (6) not related to GMV.

2.2. Quality Assessment and Data Extraction

A quality assessment of the studies included was performed using a 12-point checklist
(Supplementary Table S3), which has commonly been used in neuroimaging meta-analysis
studies [16,17]. Both demographic and technical information were collected and presented
in this study. Available coordinate information (x, y, z) and effect size (t value or z score)
of the GMV alteration between CRPS patients and HCs were extracted for meta-analysis,
and the transformation between z score and t value was performed using the SDM website
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(https://www.sdmproject.com/utilities/?show=Statistics). All work was independently
accomplished by two reviewers (TM and ZYL), and any controversial assessments were
solved by the third reviewer (LFY).

2.3. Voxel-Wise Meta-Analysis

Significant GMV abnormality between CRPS patients and HCs was analyzed by
using AES-SDM version 5.15 (www.sdmproject.com), which has been widely used in brain
structure meta-analysis [18,19]. This process was reported in previous studies [20,21],
and is briefly described as follows: The significant coordinates and effect sizes of GMV
abnormality between CRPS patients and HCs for each dataset were extracted and recreated
as a new statistical map in the MNI space by using an anisotropic Gaussian kernel. Then,
the voxel-wise calculation of the random-effects mean of the dataset maps, weighted by
the sample size, intra-dataset variability, and between-dataset heterogeneity, was used to
generate a mean map. The SDM default thresholds (FWHM = 20 mm, p = 0.005, peak height
Z = 1, and cluster extent = 10 voxels) were used in this study. The 50 randomization test
was used to generate stable results [22]. No subgroup analysis was performed because of
limited datasets.

2.4. Heterogeneity, Sensitivity, and Publication Bias Assessment

The default Q maps of SDM were used to check the specific brain regions that present
between-study heterogeneity when compared with a global set of voxels. The p threshold,
peak height Z, and cluster extent in the random-effects model were set to 0.005, 1, and
10 voxels, respectively [21]. The robustness of the meta-analysis results was assessed by a
whole-brain, voxel-based jackknife sensitivity analysis, which was performed by repeating
the same steps as the main analysis after removing each study, one by one. Additionally,
the total repeated times of the main results in all or most analysis results were regarded as
reliable. Potential publication bias was checked by the Egger test with an SDM default. A
p-value less than 0.05 was regarded as having publication bias.

2.5. Meta-Regression Analysis

The linear model in SDM was selected to perform meta-regression. Conservative
thresholds (probability = 0.0005; peak height threshold = 1.000; extent threshold = 10) were
used to explore the relationship between risk factors (age, sexual difference, pain score
(VAS), and disease duration) and GMV alterations in CRPS.

3. Results
3.1. Characteristics of Studies Included

A total of 411 studies were found from three databases; 129 results were removed
because of duplication, 270 of the remaining 282 studies were removed after screening the
title and abstract, and 7 of the remaining 12 studies were removed after browsing the full
text, meaning 5 studies were included in this meta-analysis [1,11–14]. A detailed search
flow diagram is shown in Figure 1. No study was found from searching the references. In
the end, a total of 199 participants (93 CRPS patients and 106 HCs, 50 male and 149 female)
aged between 40.5 and 54.42 years old were included in this study. Demographic informa-
tion, including author, publication year, sample size, age, disease duration, tools for pain
severity assessment, and quality assessment of the study is shown in Table 1. Technical
information, including the main GMV abnormality findings in CRPS patients, magnetic
field, neuroimaging method, standard space, voxel size, and p-value, is shown in Table 2.
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Figure 1. The search flow diagram following PRISMA guidelines.

Table 1. Demographic information of five studies included.

Study Year
Participants (Female) Age, Year

Means (SD) Duration,
Month

Means (SD)

Pain Score
(Means)

12-Point
Checklist

(Score)CRPS HCs CRPS HCs

Barad et al. [13] 2014 15 (15) 15 (15) 44.0 (NA) 44.1 (NA) 44.67 (13.96) * VAS (7.25) 9.5
Domin et al. [14] 2021 24 (20) 33 (19) 50.75 (14) 54.42 (13.49) 48.12 (37) VAS (4.8) 11.0
Pleger et al. [1] 2014 20 (11) 20 (11) 41.8 (9.8) 41.6 (9.6) 11.95 (3.20) * NRS (5.3) 9.5

Shokouhi et al. [12] 2018 12 (10) 16 (10) 51.1 (12.7) 44.4 (11.6) 5.9 (2.9) BPI (3.8) 10.5
Geha et al. [11] 2008 22 (19) 22 (19) 40.7 (2.3) 40.5 (2.3) 37.42 (7.90) * VAS (5.76) 10.0

*: Calculated with the provided data of study included; VAS: Visual Analog Scale; NRS: Numeric Rating Scale;
BPI: Brief Pain Inventory questionnaire; NA: not available.

Table 2. Technical information of five studies included.

Study Year Method Space Magnetic
Field (T)

Voxel Size
(mm3)

Main Findings of GMV
Abnormality in CRPS p-Value

Barad et al. [13] 2014 VBM MNI 3.0 1.5 × 1.5 × 1.5

Lesser: L orbitofrontal
cortex, L mid-cingulate
cortex, R mid-cingulate
cortex, L posterior
mid-cingulate cortex,
L dorsal insula, L anterior
mid-cingulate cortex
Greater: R hypothalamus,
L dorsal putamen,
L inferior temporal lobe

pFDR < 0.0005

Domin et al. [14] 2021 VBM MNI 3.0 1 × 1 × 1 Lesser: bilateral thalamus pFWE < 0.05

Pleger et al. [1] 2014 VBM MNI 1.5 1 × 1 × 1 Greater: dorsomedial
prefrontal cortex pFWE < 0.05

Shokouhi et al. [12] 2018 VBM MNI 3.0 1 × 1 × 1

Lesser: R supramarginal
gyrus, R fusiform gyrus,
R supplementary
motor area

pFWE < 0.05

Geha et al. [11] 2008 VBM MNI 3.0 1 × 1 × 1 Lesser: insula pCORR< 0.05

GMV: gray matter volume; VBM: voxel-based morphometry; MNI: Montreal Neurological Institute; FDR: false
discovery rate; FWE: family-wise error; CORR: corrected.
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3.2. Main Analysis of GMV Abnormality between CRPS Patients and HCs

Compared with HCs, patients with CRPS showed significantly and consistently
increased GMV in the medial left superior frontal gyrus (SFGmedial) (MNI: 2, 52, 20;
SDM-Z = 1.005; p < 0.001; voxels = 324; jackknife analysis: 3/5), left striatum (MNI: −22,
−4, −6; SDM-Z = 1.029; p < 0.001; voxels = 79; jackknife analysis: 4/5), and an unde-
fined area (MNI: 2, 0, −8; SDM-Z = 1.034; p < 0.001; voxels = 56; jackknife analysis: 3/5)
(Table 3; Figure 2), whereas decreased GMV in the CC (MNI: −2, −18, 26; SDM-Z = −1.769;
p < 0.001; voxels = 1601; jackknife analysis: 4/5) and an undefined area (MNI: −8, −18, 20;
SDM-Z = −1.693; p < 0.001; voxels = 312; jackknife analysis: 3/5) (Table 3; Figure 2) was
observed. Detailed jackknife analysis information is shown in Table 4.
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Figure 2. GMV abnormality between CRPS patients and HCs in main analysis. Significant increased
(red) GMV of SFGmedial.L (a), left striatum (b), and undefined area (2, 0, −8) (c), as well as decreased
(blue) GMV of CC (extending to SMA.R and MCC.R) (d), and undefined area (extending to CAU.R
and THA.R) (e) in CRPS patients compared to HCs.
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Table 3. Significant and consistent GMV abnormality in the main analysis.

Brain Areas MNI Coordinate SDM-Z p-Value Voxels Local Peaks Jackknife Analysis

CRPS > HCs

Left superior frontal
gyrus, medial 2, 52, 20 1.005 <0.001 324 Left superior frontal gyrus, medial

Right anterior cingulate/paracingulate gyri, BA 32 3/5

Left striatum −22, −4, −6 1.029 <0.001 79 Left striatum 4/5

Undefined 2, 0, −8 1.034 <0.001 56 Undefined (2, 0, −8)
Undefined (2, −4, −10) 3/5

CRPS < HCs

Corpus callosum −2, −18, 26 −1.769 <0.001 1601

Corpus callosum (−2, −18, 26)
Corpus callosum (−6, −12, 28)
Corpus callosum (−2, −12, 28)
Right supplementary motor area, BA 4
Right median cingulate/paracingulate gyri, BA 23
Right median cingulate/paracingulate gyri

4/5

Undefined −8, −18, 20 −1.693 <0.001 312

Undefined (−8, −18, 20)
Undefined (−8, −12, 20)
Corpus callosum (−4, −20, 20)
Corpus callosum (0, −18, 22)
Undefined (−6, −8, 18)
Undefined (0, −4, 20)
Right caudate nucleus
Undefined (12, −8, 18)
Undefined (2, −12, 12)
Right thalamus
Right anterior thalamic projections

3/5

BA: Brodmann area.
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Table 4. Jackknife analysis of main analysis results.

Study
CRPS > HCs (GMV) CRPS < HCs (GMV)

Left Superior Frontal
Gyrus, Medial Left Striatum Undefined

(2, 0, −8)
Corpus

Callosum
Undefined

(−8, −18, 20)

Barad Yes No No Yes No
Domin No Yes No No No
Geha Yes Yes Yes Yes Yes
Pleger No Yes Yes Yes Yes

Shokouhi Yes Yes Yes Yes Yes
Total 3/5 4/5 3/5 4/5 3/5

3.3. Heterogeneity and Publication Bias Assessment

No heterogeneity was found between specific brain regions and the global set of voxels
(Q positive = 0.299, p > 0.05; Q negative = 0.951, p > 0.05) (Supplementary Table S4, Figure 3).
The Egger test showed no publication bias in the SFGmedial (bias: −0.30, t: −0.13, df: 3,
p > 0.05), left striatum (bias: 1.50, t: 1.17, df: 3, p > 0.05), and CC (bias: −0.39, t: −1.45, df: 3,
p > 0.05), as well as in two undefined areas ((2, 0, −8) (bias: 7.41, t: 1.93, df: 3, p > 0.05), (−8,
−18, 20) (bias: 1.36, t: 0.32, df: 3, p > 0.05)). Funnel plots are shown in Figure 4.
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Figure 3. Forest plots of heterogeneity of main results. Heterogeneity assessment of the main results
showed no heterogeneity in both positive peaks (a) and negative peaks (b) (p > 0.05).

3.4. Meta-Regression Analysis

By performing a meta-regression analysis, the disease duration (month) (r = 0.5089,
p < 0.0005) and the percentage of female patients (r = 0.9602, p < 0.0005) showed a negative
relationship with the increased GMV of the SFGmedial.L in CRPS patients (Figure 5),
whereas the age and pain score (VAS) showed no significant relationship with CRPS.
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well as the percentage of female patients. Both disease duration (r = 0.5089, p < 0.0005) (a,b) and the
percentage of female patients (r = 0.9602, p < 0.0005) (c,d) showed a negative relationship with the
increased (red) GMV in SFGmedial.L.
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4. Discussion

In this study, a systematic review and meta-analysis of GMV abnormalities was first
performed within CRPS patients. The main analysis indicated that increased GMV in
the SFGmedial.L, left striatum, and an undefined area (2, 0, −8) was shown in CRPS
patients, whereas decreased GMV was found in the CC area (extending to the SMA.R and
MCC.R) and an undefined area (extending to the CAU.R and THA.R). In addition, the meta-
regression analysis suggested that disease duration and the percentage of female patients
might have a negative effect on the increased GMV in the SFGmedial.L in CRPS patients.

Interestingly, our meta-analysis results found higher GMV in the SFGmedial.L in
CRPS patients than HCs, which demonstrated a negative relationship with the disease
duration and percentage of female patients. Previous systematic review and meta-analysis
studies reported significant gray matter (GM) deficits in the SFG in several neuropsycho-
logical disorders [23,24]. It is well known that the SFG in humans plays a crucial role
in cognitive function, especially in the working memory (WM) [25,26]. The SFGmedial
is associated with various neuropsychological disorders, including schizophrenia (SCZ),
obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD),
and bipolar disorder [27–29]. Combined with the evidence that long-term chronic pain
stimulation can also induce a series of emotional disorders (e.g., anxiety, depression) [30,31]
and the female predominance in CRPS, we speculated that the increased GMV in the SFG-
medial may be a functional compensation in patients with CRPS, which may be attenuated
by the disease duration and female ratio. Our meta-analysis also showed a larger GMV
in the left striatum, which was regarded as one of the most important nuclei in regulating
motor function [32]. It has also been reported that the increased GMV of the left striatum is
significantly involved in the process of essential tremor and functional movement disor-
ders [33,34]. Taken together, we can hypothesize that the possible mechanism of persistent
pain stimulation from the extremities impairs the motor function in patients with CRPS.
According to the neuroimaging evidence, we found that the undefined area (2, 0, −8) may
be in the hypothalamic area [35,36]. Interestingly, the clinical and neuroimaging studies
showed the altered neurotransmitter system involved in the hypothalamus and functional
connectivity alterations between the hypothalamus and distal nuclei may be an incentive
for pain-related aversions (e.g., fatigue and emotional alterations), as well as a biomarker for
migraine occurrence [37]. Therefore, the brain structure alteration within the hypothalamus
may be a potential mechanism for CRPS-related clinical or neurophysiological symptoms.

In our study, the GMV of the SMA.R and THA.R was significantly decreased, which
was consistent with the previous meta-analyses of neuropathic pain [38,39]. Krainik et al.
identified the important role of the SMA in motor development in patients undergoing
medial frontal lobectomy [40]. Motor skill impairment has also been found in healthy
adults receiving SMA.R-guided transcranial magnetic stimulation (nTMS) [41]. Taken
together, these findings suggest CRPS may induce the motor dysfunction of patients by
impairing the brain structure in the SMA.R. Interestingly, patients with hypoactivation
of the SMA showed the same motor dysfunction as medial frontal lobectomy patients,
which suggested the possible functional compensation of greater GMV in the SFGmedial to
withstand motor dysfunction [40]. Furthermore, our study also found decreased GMV in
the THA.R, which may play a dual role in both sensory and motor dysfunction in CRPS
patients. For instance, the THA was generally considered to be a very important relay of
peripheral sensory information to the cortex [42]. It also plays a key role in generating and
monitoring movement by establishing direct contact with the movement-related cortex (e.g.,
SMA) [43]; the motor THA has also been an important target in treating tremors [44]. In
addition, GM atrophy in the CAU was consistent with a previous neuroimaging study in the
elderly with slower walking speeds [45]. The clinical and animal studies also identified the
crucial role of the CAU in both posture and motor function maintenance [46]. Anatomical
evidence revealed CAU lesions were significantly involved in motor apraxia [47]. The CRPS
patients also showed a lower GMV in the MCC.R in our study, which is involved in the
process of first-episode schizophrenia [48]. Interestingly, previous systematic reviews and



Brain Sci. 2022, 12, 1115 10 of 12

meta-analyses of chronic migraine and fibromyalgia showed significantly decreased GMV
in the bilateral anterior cingulate/paracingulate cortex (ACC) [49,50], which is involved in
bipolar disorder [51]. Therefore, we may hypothesize that different types of chronic pain
can impair the different subregions of the cingulate/paracingulate cortex to induce various
psychological disorders.

This meta-regression analysis showed the female percentage of CRPS patients might
negatively affect the increased GMV in the SFGmedial, which was consistent with the fact
that female patients were more prone to CRPS (female:male = 4:1) [52]. Additionally, the
disease duration negatively correlated with an increased GMV in the SFGmedial, suggesting
long-term pain stimulation might induce worse impairments in the brain structure. Taken
together, the potential effects of sex differences and disease duration should be considered
in future CRPS studies. Furthermore, it was suggested to explore other risks (e.g., age
and pain severity score) of the disease to further expand these datasets. It must also be
pointed out that the sociodemographic factors, prior interventions (e.g., medication), prior
behavioral health history/comorbidities (prevalence of anxiety/depression), and other
potential confounding variables that were unavailable in the included studies might also
have an effect on the brain structural alterations in patients with CRPS.

5. Limitations

This study had some limitations, which are declared as follows: Firstly, the study
only extracted the available peak coordinate information, which is a common drawback
in neuroimaging meta-analyses. Secondly, only five studies from three databases were
included and, because of this, a subgroup analysis of CRPS (type I and type II) could not
be performed. Thirdly, the meta-regression results should be treated cautiously due to the
small size of the datasets, as well as the risk factors that were suggested for comprehensive
exploration with larger datasets. Fourthly, the reliability of the heterogeneity, sensitivity,
and publication bias assessment may be limited, which can be enhanced by including more
studies in the future. Fifthly, the lesser studies included attenuated the reliability of the
main findings in this study.

6. Conclusions

In conclusion, patients with CRPS may be susceptible to GMV impairments in senso-
rimotor cerebral areas. The increased GMV of the SFGmedial may carry out a functional
compensation due to motor function deficits. In the process of CRPS, the SFGmedial and
THA may play dual roles in motor and neuropsychological disorders, whereas the SMA,
CAU, and MCC affect motor and emotional dysfunction. In short, our study provided a
reference for a better understanding and exploration of CRPS.
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