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LETTER TO THE EDITOR

Hypophosphatemia and sudden infant death syndrome (SIDS)—is ATP
the link?
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In their recent letter Van Kempen and co-workers
presented an intriguing hypothesis linking hypopho-
sphatemia and sudden infant death syndrome
(SIDS) (1), founded on the work by Siren and Siren
on the critical diaphragm failure being the cause of
SIDS incidences (2,3). Van Kempen and co-
workers argued that both etiology and symptoms
of SIDS can be explained by low concentrations in
erythrocytes of phosphate metabolites, mainly
2,3-biphosphoglycerate (2,3-BPG, also known as
2,3-diphosphoglycerate, 2,3-DPG), which in effect
would impair muscle function (especially dia-
phragm) and lead to respiratory failure as Siren
and Siren originally stated. We find the hypothesis
interesting and definitely worth further investiga-
tion; however, we would assign the main role to
ATP, not to 2,3-BPG.
First of all, 2,3-BPGbindsweakly to fetalhemoglobin

in comparison to adult hemoglobin (4). Analyses of
oxygen equilibrium curves in infants indeed showed a
correlation between P50 and 2,3-BPG concentration
(5), but it was the so-called ‘functioningDPG fraction’,
that is, amultiplicationof total red cell 2,3-BPGcontent
and the percentage of adult hemoglobin. Fetal hemo-
globin is being replaced by adult hemoglobinwithin the
first few months of the infant’s life. However, its con-
centration does not seem to correlate with the log-
normal distribution of age in SIDS incidents. Further-
more, the concentration of 2,3-BPG is tightly regulated
assynthesisanddegradationareseparatedandcatalyzed
by different enzymes (6). This process is one of the

slowest in the whole metabolic system of the red blood
cell (7). As a result, changes in the concentration of
2,3-BPG in erythrocytes in response to external stimuli
(forexample,highaltitudeoracidosis (8,9))usually take
several hours. Even more, in case of exchange transfu-
sion with acid-citrate-dextrose (ACD) preserved blood
in infants, adjustment of 2,3-BPG concentrations
occurs over days not hours (10). It is hard to envision
a sudden drop in the concentration of 2,3-BPG, but if it
indeedoccurs itwill influencebloodoxygenaffinityonly
inolder infantswhosebloodisalreadycomposedmainly
of adult hemoglobin. That said, the hypothesis on the
affected oxygen transport in SIDS is supported by the
correlations between the levels of fetal hemoglobin and
incidences of SIDS (11,12). However, we would like
to extend the work of Van Kempen and co-workers by
pointing in the direction of the major player in the
regulation of oxygen delivery—ATP.
In recent years a substantial body of evidence has

accumulated for the hypothesis that erythrocytes
themselves are the vascular controller adjusting blood
flow on the basis of the local oxygen needs (reviewed
in (13)). That regulation is executed mainly by an O2

saturation-dependent ATP release. However, the
ATP signaling is not limited to vessel walls—it affects
all rheological properties of blood. As shown recently,
viscosity of blood is affected by cell-deformation-
dependent ATP release (14). In contrast to
2,3-BPG, the metabolism of ATP is fast (7), and
similarly rapid is also its release (15). Therefore,
effects of ATP on blood flow are also relatively quick.
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In other words, in blood, ATP signaling has an
immediate mode of action.
ATP deficiency impairs the contractile properties

of the diaphragm in patients with acute respiratory
failure (16). Also, phosphate depletion is frequently
associated with chronic obstructive pulmonary
disease (17). Both observations inspired Van Kempen
and co-workers to establish a link between hypopho-
sphatemia and SIDS. However, given the role of ATP
in regulation of blood flow, it is ATP not 2,3-BPG
that seems to play the major role in the observed
effects. Furthermore, the common bacterial toxin
hypothesis of SIDS (18), supported by both patho-
logical findings and epidemiological risk factors (19),
can be easily merged with the hypophosphatemia
hypothesis. Inflammatory mediators trigger strong
ATP release outside of the cells and down-modulate
levels of ecto-ATP/ADPases (CD39) (20), interfering
with the delicate balance of phosphate concentrations
in the organism. Similar conclusions on the critical
role of ATP have been reached by Deixler (21), who
founded her hypothesis on the analysis of SIDS risk
factors. Siren and Siren (2) implicated impaired ATP
metabolism in critical diaphragm failure pointing out
reduction in the mitochondrial function (including
ATP-generating capacity) in systemic infections via
increase in mitochondrial free radical generation (22).
To conclude, 2,3-BPG plays an important role as a

major allosteric effector of adult hemoglobin, but its
concentration neither affects oxygen affinity of fetal
hemoglobin nor changes rapidly to be a mediator in
sudden infant death syndrome incidences. The
substantial body of evidence for impaired ATP
metabolism being a causative factor in infection-
induced muscle dysfunction indicates that ATP is
the most plausible link between hypophosphatemia
and SIDS.
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