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ABSTRACT

O ne of the challenges of genomic research after the
completion of the human genome project is to
assign a function to all the genes and to understand

their interactions and organizations. Among the various
techniques, the emergence of chromosome engineering tools
with the aim to manipulate large genomic regions in the
mouse model offers a powerful way to accelerate the
discovery of gene functions and provides more mouse models
to study normal and pathological developmental processes
associated with aneuploidy. The combination of gene
targeting in ES cells, recombinase technology, and other
techniques makes it possible to generate new chromosomes
carrying specific and defined deletions, duplications,
inversions, and translocations that are accelerating functional
analysis. This review presents the current status of
chromosome engineering techniques and discusses the
different applications as well as the implication of these new
techniques in future research to better understand the
function of chromosomal organization and structures.

Introduction

Recent strategies to produce mouse lines that contain large
genomic rearrangements represent a major advance to
accelerate functional genomics and to provide animal models
for developmental processes and human diseases such as
contiguous gene and gene dosage effect syndromes. The first
chromosomal rearrangements were obtained in the mouse
using X-ray irradiation [1] or chemicals [2]. However, the size
and position of the induced rearrangements cannot be
predetermined even though the use of specific selectable
markers and embryonic stem (ES) cells has improved the
irradiation strategy, making it possible to generate a series of
interstitial deletions at a given locus [3–6]. Homologous
recombination in ES cells using replacement vectors has
generated deletion of genomic fragments up to 30 kb [7,8],
but inducing large defined chromosomal rearrangements was
only achieved in the mid-1990s by taking advantages of the
Cre/loxP recombinase system [9–12] and defining the
chromosomal engineering strategy.

This technology led to the creation of new genetic tools for
functional analysis of the mouse genome. Generation of
deletions with engineered visible markers provides segmental
haploidy to study recessive mutations [10,13], whereas
inversions can serve as balancer chromosomes to prevent
crossing-over and to facilitate large-scale mutagenesis screens
for recessive lethal mutations [14,15]. The possibility of
manipulating large chromosome fragments or whole

chromosomes using microcell-mediated chromosome
transfer (MMCT) offers the opportunity to study the function
of large genes or clusters of genes and provides more and
more mouse models to study human pathologies such as
contiguous gene syndromes. In this review, we describe the
panel of techniques available for chromosome engineering in
the mouse, some of their applications for studying gene
function and genomic organization and for modeling human
diseases, and the implications for future research.

Chemical and Radiation-Induced Chromosome
Rearrangements

Historically, various types of rearrangements including
deletions, inversions, and reciprocal translocations were
obtained through irradiation or chemical mutagenesis. Such
chromosomal configurations are important tools for looking
at recessive lethal mutations in mice [16] or to obtain mouse
models of partial aneuploidy. For example, Ts65Dn is a well-
known model to study human trisomy 21 that recapitulates
several phenotypic features of people with Down syndrome
[17,18].
A major improvement of the radiation strategy was

developed to induce a panel of deletions at a defined region
[5]. Starting from the integration of a negative selection
marker such as the tk gene into a predetermined locus by
homologous recombination in a hybrid ES cell line, You et al.
[5,19] were able to select for the loss of the negative marker
after irradiation. The characterization of the deletions is then
achieved by taking advantage of genetic markers that are
polymorphic in the hybrid ES cells (Figure 1). Using this
approach, Schimenti et al. [3] generated three overlapping
deletion complexes spanning about 40 cM of mouse
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chromosome 5 (MMU5), allowing the systematic
characterization of the functional regions of this
chromosome by pairwise combination of the deletions
through mating and serving as a model of the Wolf-
Hirschhorn contiguous gene syndrome that resides in this
region [3,20].

Using Site-Specific Recombinase to Generate
Megabase Chromosome Rearrangements

In vitro. More defined rearrangements require the use of
the Cre/loxP technology in mouse ES cells [9–11]. By two
consecutive events one can target the loxP sites to predefined
loci in the genome by homologous recombination.
Expression of the Cre recombinase induces the desired
rearrangement through site-specific recombination between
the two loxP sites, depending on their relative position and
orientation (Figure 2). For small regions (less than 100 kb),
deletions and inversions can be easily generated, starting
from ES cells carrying two loxP sites inserted in a cis

configuration, that are treated with Cre recombinase [21,22].
However, the rearrangement occurs at a lower efficiency for
larger regions. Thus, targeting vectors containing the 59 or 39

part of a positive selection cassette with loxP located
downstream or upstream, respectively, were designed.
Expression of the Cre recombinase results in the desired
rearrangement through site-specific recombination between
the two loxP sites, enabling the selection of the recombined
allele through the restoration of the selection marker upon
rearrangement. Different markers such as Hprt [10] or the
resistance genes for neomycin [23], puromycin [24,25], or
hygromycin [26] were used. As an alternative, a tk negative
selection marker can be deleted in the rearranged locus [27–
30].
The efficiency of the in vitro technique, and hence its

feasibility, depends on the chromosomal context and more
dramatically on the design of the experiment [31–34]. Cre-
mediated recombination efficiency is dependent on different
factors such as the increasing distance between the loxP sites
for a cis configuration (10% to 0.1% efficiency), the level of
recombinase activity, and the region of interest that could
induce ES-cell lethality after deletion [10,31,32,35]
(unpublished data). Increasing the efficiency of the technique
by a factor of 10 can be achieved by using a GFP/Cre
expressing vector or classical co-transfection, followed by
fluorescent-activated cell sorting of GFPþ cells that also
express Cre [36,37].
Another dimension of the chromosomal engineering in

vitro is the induction of mitotic recombination in G2 phase
to produce selectable homozygous daughter cells from a
double heterozygous mother for genetic mosaics. Such a
powerful method can selectively produce ES-cell clones
carrying homozygous mutations for functional recessive
mutations screens in vitro, speeding up the analysis of a
gene’s function in cells [38,39].
Using the in vitro technique requires two targeting vectors

for each bordering loci that could contain different types of
selectable cassettes for inducing and selecting chromosomal
rearrangements in various types of ES cells. But in the case of
the restoration of the HPRT function, the use of Hprt-
deficient ES cells such as AB2.2 [10] or HM-1 [40] is required.
Nevertheless, this is a method of choice given the number of
ready-to-use targeting vectors for the Hprt selection system
available from the Mutagenic Insertion and Chromosome
Engineering Resource [41] (MICER; http://www.sanger.ac.uk/
micer/), the use of retroviral vectors to target the second loxP
site [42–44], and the panel of rearranged chromosomes that
has been engineered [15,41]. Furthermore, the presence of
coat color markers in those targeting vectors allows an easy
discrimination of mice carrying the recombined chromosome
[13].
The in vitro strategy was developed extensively to study

specific loci containing large genes or clusters of genes (see
Table 1) [10,21,22,25–28,45–56], to generate translocations or
deletions similar to those found in cancer [9,11,30–32,57–62],
or to create models of contiguous gene syndromes, such as
the Smith-Magenis [44,63–66], Prader-Willy [67], and
DiGeorge syndromes [43,68,69]. Similarly, new mouse models
of Down syndrome have been generated to study the impact
of a critical region identified in human Chromosome 21 [23].
Taken together, these data illustrate how large-scale
chromosomal engineering is a powerful tool to unravel genes

DOI: 10.1371/journal.pgen.0020086.g001

Figure 1. Generation and Characterization of Radiation-Induced Deletion

Complexes in Mouse ES Cells

(A) Insertion of a negative selectable marker (cassette Neo-tk: Hsv-
thymidine kinase/neomycin resistance) into a predetermined locus by
homologous recombination in F1 hybrid (129/SvJae x C57BL/6J) ES cells
(C57BL/6J chromosome represented with a black centromere; 129/SvJae
chromosome represented with a white centromere).
(B) Treatment of the neomycin-resistant targeted cells with radiation to
induce the deletions.
(C) Selection in medium containing 1,29-deoxy-29-fluoro-b-D-
arabinofuranosyl-5-iodouracil of the colonies having lost the tk gene.
(D) Characterization of the deletion breakpoints by amplification of the
DNA from these clones using primers corresponding to genetic
polymorphic markers (represented under the chromosome map by
letters a–j) flanking the site of the targeted integration. Deletions are
represented as solid boxes.
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with dosage effects and their contribution to aneuploid
syndromes in the mouse model.
Unraveling lethal mutations is difficult in classical

mutagenesis screens, unless a chromosome carrying an
inversion is used as a balancer chromosome [15]. The
production of inversions by chromosome engineering in the
mouseoffers theadvantageof controlling the sizeof the inverted
region and of generating inversions that will induce lethality in
homozygous state, such as those obtained on mouse
Chromosome 11 that disrupt theWnt3 gene [14,31,32,70] or on
Chromosome 4 [71]. Using such a balancer chromosome
approach associated with chemical mutagenesis, two
mutagenesis screens led to the characterization of, respectively,
59 recessive lethal mutations onmouse Chromosome 11, and 19
mutations on mouse Chromosome 4 [14,72].
In vivo. Cre-mediated recombination is widely used to

generate conditional mutagenesis for a gene of interest in a
tissue- or time-dependent manner [73]. Similarly, several
groups succeeded in generating in vivo large deletions,
duplications, inversions, and translocations (Table 1). This
can be carried out between two loxP sites in cis either inserted
in ES cells [22,74–76] or selected after classical crossing-over
between two original founder lines by the sequential targeted
recombination induced genomic rearrangement (STRING)
(Figure 3), [24,77,78]. Furthermore, the targeted meiotic
recombination (TAMERE) strategy allows to obtain both a
deletion and a duplication of a region of up to 150 kb,
starting from two loxP sites, in a trans configuration, with a
frequency that can vary from 1% to 10% (Figure 3) [12,79].
Similarly to in vitro, the recombination frequency decreases
in vivo for large regions. Nevertheless it is still effective for cis
configuration (0.3%–1%) separated by up to 28 Mb [78], but
seems to be not workable with loxP in trans distant from 3.9
Mb [34]. Thus, the STRING approach [78] offers an
interesting alternative to the MICER strategy, without the
need for extensive technological investments, but still
requires an efficient and large genotyping program.
In vivo chromosomal engineering during mitosis often

leads to mosaic individuals in the first progeny in which the
Cre transgene is combined with loxP sites in cis [74,80]. The
level of mosaicism found depends on a balance between the
size of the targeted region and Cre activity. For example,
Mersher et al. (2001) noticed 17% of mosaic mice for a 1.5-Mb
deletion using the ZP3-Cre line expressed in the oocytes, and
we found 26% of mice showing a mosaic profile for a 0.7-Mb
induced deletion using a CMV-Cre expressing line [81].
Genetic mosaicism could be an advantage for lineage analysis
as Cre-induced rearrangements can be used to label and trace
a cell population in vivo [82]. Thus, it is crucial to well
characterize the Cre transgenic lines, by analyzing the
expression of Cre mRNA, or the Cre activity by mating with a
mouse carrying a reporter gene such as the R26R [83] and
ACZL lines [84].
Large rearrangements can lead to early embryonic

lethality. Hence, absence of mice carrying the new engineered

From all these recombinant alleles, only those containing the
reconstituted mini-gene, however, will be retained during the selection
in vitro. Recombinant ES-cell clones should be extensively characterized
to verify the engineered chromosome (by Southern blot analysis, normal
and quantitative PCR, or FISH).
Del, deletion; Dup, duplication; Inv, inversion; Rec, one of the original
recombinant alleles.

DOI: 10.1371/journal.pgen.0020086.g002

Figure 2. The Different Types of Chromosomal Rearrangements

Produced by the Cre/loxP Recombinase System

Deletions, duplications, or inversions can be produced depending on the
relative orientation of the loxP sites, on their position on the homologous
chromosome (i.e., in cis or in trans), and on the cell cycle stage during
which the Cre-mediated recombination occurs (G1 or G2).
(A) Recombination between loxP sites (green arrowhead) integrated in
the same orientation in a cis configuration during the G1 phase can only
generate a deletion of the region of interest (red arrow); the same
configuration in the G2 phase can result in the creation of a deletion and
a duplication.
(B) The deletion and the corresponding duplication can also be obtained
from a trans configuration in both G1 and G2 phases. This represents the
best configuration to establish the deleted and duplicated chromosomes
in the mouse, with both chromosomes compensating for each other
with regard to genetic dosage, thus reducing the potential consequence
of haploinsufficiency.
(C and D) When the loxP sites are oriented in opposite directions in a cis
configuration, an equilibrium with two forms, inverted and non-inverted,
is obtained if the Cre is expressed in G1, while a more likely unstable
recombined pair of acentric and dicentric chromosomes is generated if
Cre reacts on loxP sites after the S phase or from a trans configuration.
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Table 1. Genomic Rearrangements Induced in the Mouse Genome by Chromosome Engineering

Region RefSeq Genes MGI MMU loxP in Event Link to Event (MGI) Size Reference

Notch1 NM_008714 Notch1 2 cis Del up to 7 cM [48]

HoxD cluster NA Hoxd 2 cis Del, Dup, Inv Del(2Hoxd1-Hoxd13)12Ddu, Del(2Hoxd1-Hoxd13)1Ddu,

Del(2Hoxd10)13Ddu, Del(2Hoxd10-Hoxd12)19Ddu,

Del(2Hoxd10-Hoxd13)10Ddu, Del(2Hoxd10-Hoxd13)7Ddu,

Del(2Hoxd11-Hoxd13)16Ddu, Del(2Hoxd11-Hoxd13)2Ddu,

Del(2Hoxd12-Hoxd13)5Ddu, Del(2Hoxd12-Hoxd13)6Ddu,

Del(2Hoxd13)3Ddu, Del(2Hoxd13)4Ddu, Del(2Hoxd8)23Ddu,

Del(2Hoxd8)24Ddu, Del(2Hoxd8,Hoxd9-Hoxd13)1Cx,

Del(2Hoxd8-Hoxd10)15Ddu, Del(2Hoxd8-Hoxd10)21Ddu,

Del(2Hoxd8-Hoxd13)11Ddu, Del(2Hoxd8-Hoxd13)9Ddu,

Del(2Hoxd8-Hoxd9)18Ddu, Del(2Hoxd8-Hoxd9)22Ddu,

Del(2Hoxd9)17Ddu, Del(2Hoxd9-Hoxd10)14Ddu,

Del(2Hoxd9-Hoxd12)20Ddu, Del(2Hoxd9-Hoxd13)8Ddu,

Del(2Hoxdi)25Ddu, Dp(2Hoxd8-Hoxd10)1Ddu,

|Dp(2Hoxd8-Hoxd9)2Ddu

5–100 kb [12,21,

22,45,

46,74,

86,87,

110]

Itga6-HoxD-Cd44 NM_008397,

NM_009851

Itga6, Cd44 2 cis Inv 3 Mb, 28 Mb [78]

Lphn2-Prkacb AK084598,

NM_011100

Lphn2, Prkacb 3 cis Del Del(3Lphn2-Prkacb)1Hgc 1.511 Mb [30]

D4Mit117,

D4Mit281-D4Mit51

NA D4Mit117,

D4Mit281,

D4Mit51

4 cis Inv In(D4Mit117;D4Mit281)1Brd, In(D4Mit281;D4Mit51)2Brd 1–5 cM [71]

TCRa/d NM_009539 Tcra 5 cis Inv 75 kb [55]

V1ra9-V1rb7 NM_053224,

NM_053228

V1ra9, V1rb7 6 cis Del 600 kb [54]

HoxA cluster NA Hoxa 6 cis Del 100 kb [77]

Snrpn-Ube3a NM_013670,

NM_173010

Snrpn, Ube3a 7 cis Del 250 kb [67]

Cdh1 NM_009864 Cdh1 8 cis Del 45 kb [75]

Mapkap3-Hyal1 NM_178907,

NM_008317

Mapkapk3,

Hyal1

9 cis Del 370 kb [57]

Egfr-Trp53 NM_207655,

NM_011640

Egfr, Trp53 11 cis Inv 30 cM [70]

Hoxb1-Hoxb9 NM_008266,

NM_008270

Hoxb1,

Hoxb9

11 cis Del 90 kb [47]

Hoxb9-Wnt3 NM_008270,

NM_009521

Hoxb9,

Wnt3

11 cis/

trans

Del, Dup,

Inv

4 cM [10]

Hoxb9-D11Mit59 NM_008270 Hoxb9,

D11Mit59

11 cis/

trans

Del, Dup,

Inv

1 Mb to 22 cM [32]

D11Mit198-Hsd17b1 NM_010475 D11Mit98,

Hsd17b1

11 cis Del 1 Mb to 8 Mb [42]

D11Mit142-Hsd17b1 NM_010475 D11Mit142,

Hsd17b1

11 cis Inv 30 cM [13]

Trp53-Wnt3 NM_011640,

NM_009521

Trp53, Wnt3 11 cis Inv In(11Trp53;11Wnt3)8Brd 24 cM [15]

D11Mit71-D11Mit69 D11Mit71,

D11Mit69

11 cis Del, Dup, Inv 2–60 cM [31]

Wnt3-D11Mit69 NM_009521 Wnt3 11 8 cM [70]

Nf1 NM_010897 Nf1 11 cis Del .500 kb [28]

Cops3-Zfp179 NM_011991,

NM_009548

Cops3, Zfp179 11 trans Del, Dup Del(11Cops3-Zfp179)1Jrl, Dp(11Cops3-Zfp179)1Jrl 3 Mb [64,65]

Cops3-4933439F18Rik NM_011991,

NM_145427

Cops3,

4933439F18Rik

11 cis Del Del(11Cops3-4933439F18Rik)2Jrl,

Del(11Cops3-4933439F18Rik)3Jrl,

Del(11Cops3-4933439F18Rik)4Jrl

590 kb

and 595 kb

[44]

Csf2-Irf1 NM_009969,

NM_008390

Csf2,

Irf1

11 cis Del Del(11Irf1-Csf2)1Rub 450 kb [29]

Uchl3-Lmo7 NM_01672,

BC082553

Uchl3,

Lmo7

14 cis Del 800 kb [56]

HoxC cluster Hoxc 15 cis Del 130 kb [25]

App NM_007471 App 16 cis Del Apptm2Cwe 200 kb [27]

Es2el-Ufd1l NM_022408,

NM_011672

Es2el, Ufd1l 16 trans Del, Dup Del(16Es2el-Ufd1l)217Bld 1.2 Mb [69]

Es2el-Sept5 NM_022408,

NM_213614

Es2el,

Sept5

16 trans Del, Dup 700kb [43]

Es2el-D16H22S680E NM_02240,

NM_138583

Es2el,

D16H22S680E

16 cis Del 500 kb [43]

D16H22S680E-Hira NM_138583,

NM_010435

D16H22S680E,

Hira

16 cis Del 1 Mb [43]
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chromosome in the in vivo approach could be caused by a
failure of Cre-mediated recombination but could also depend
on the lethal effect of the new genetic configuration [85]. To
address such questions, it is important to test for the presence
of the new chromosomal configuration in the carrier double-
transgenic animal [78]. An alternative would be to
compensate the deletion with a balanced duplication [85].
Unfortunately, an efficient strategy needs to be explored to
induce such trans recombination in vivo for large regions. An

additional way to overcome this problem is to trigger the
recombination in a time- and/or tissue-specific manner, but
only a few reports so far have described this option [31,61,62].
In vivo approaches to making deletions and inversions

were largely used to explore the function and regulation of
genes (Table 1). The best example for such studies is the
extensive work done over the last ten years by D. Duboule and
collaborators to analyze the molecular mechanisms that
modulate expression of Hox genes encoding transcription

Table 2. Resources Available Online for Chromosomal Engineering in Mice

Resources Web Links Aim

Mouse genome database http://www.ensembl.org

http://www.ncbi.nlm.nih.gov

http://www.informatics.jax.org

Genome database for eukaryotic genomes

Mutagenic Insertion and Chromo-

some Engineering Resource (MICER)

http://www.sanger.ac.uk/micer Database with vector sequences and information on using MICER

strategy for generating knockout mice, and for chromosome engineering

Mouse Transposon Insertion

Database (MTID)

http://mouse.ccgb.umn.edu/transposon/ Mouse line database carrying germline transposon insertions into

genes or chromosomal regions of interest

Cytogenic Models Resource http://www.jax.org/cyto/index.html Database of chromosome aberration stocks that provide primarily mouse

models for Down syndrome. It also includes stocks with selected reci-

procal translocations and a large number of Robertsonian chromosome stocks

Gene Trap Resource http://www.sanger.ac.uk/PostGenomics/genetrap

http://www.genetrap.org

Database for gene trap ES cell lines and making these lines available for

the purpose of generating reporter-tagged, loss-of-function mutations in mice

DelBank http://lena.jax.org/;jcs/Delbank.html Database of F1 hybrid Es cell lines that are designed to facilitate the

creation of chromosomal deletions in the mouse genome

Cre Transgenic Database http://www.mshri.on.ca/nagy/Cre-pub.html A database of Cre transgenic lines

International Mouse Strain

Resource (IMRS)

http://www.informatics.jax.org/imsr/index.jsp Searchable online database of mouse strains and stocks available

worldwide, including inbred, mutant, and genetically engineered mice

DOI: 10.1371/journal.pgen.0020086.t002

Table 1. Continued

Region RefSeq Genes MGI MMU loxP in Event Link to Event (MGI) Size Reference

Dgcr2-Arvcf NM_010048,

NM_033474

Dgcr2, Arvcf 16 trans Del, Dup 550 kb [24]

Cbr-Orf9 NM_007620,

NM_020622

Cbr1, ORF9 16 trans Del, Dup Del(16Cbr1-ORF9)1Rhr, Dp(16Cbr1-ORF9)1Rhr 3.9 Mb [23]

TNF-Lta-Ltb NM_013693,

NM_010735,

NM_008518

Tnf, Lta, Ltb 17 cis Del Ltb/Tnf/Ltatm1Dvk 10 kb [53]

Htr7-MPhosph1 NM_008315,

AY259532

Htr7, Mphosph1 19 cis Del Del(19Htr7-Mphosph1)2Hgc 845 kb [30]

Xist NR_001463 Xist X cis Del and

reinsertion

65 kb [49–51]

Dkc1 AJ416348 Dkc1 X cis Del 4 kb [52]

DXMit106-DXmit193 DXMit106,

DXMit193

X cis Del up to 1 cM [42]

Dystrophin NM_007868 Dmd X cis Del Dmdtm1Khan 2.4 Mb [26]

Mll1, Mllt3 XM_110671,

NM_027326

Mll1, Mllt3 4–9 Het TrL Mllt3T(4Mllt3;9Mll)1Thr NA [60]

Mll1, Mllt1 XM_110671,

NM_022328

Mll1, Mllt1 4–17 Het TrL Mllt1tm1Thr NA [62]

Cbfa2t1h, Runx1 NM_009822,

NM_009821

Cbfa2t1h,

Runx1

4–16 Het TrL Cbfa2t1htm1Buch NA [59]

Myc, IgH NM_010849,

M74139

Myc,Igh 15–12 Het TrL NA [11]

Dek, Nup214 NM_025900,

XM_358340

Dek, Nup214 13–2 Het TrL NA [9]

Del, deletion; Dup, duplication; Het, heterologous chromosome; Inv, inversion; MGI, named in the Mouse Genome Informatics database page; MMU, mouse chromosome; NA, not
applicable; TrL, translocation.
DOI: 10.1371/journal.pgen.0020086.t001
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factors controlling positional information along the trunk
and limb axes [22,45,46,76,86–88]. In particular, they have
combined the in vivo strategy with knock-in of a lacZ reporter
gene, to trace the consequences of the induced
rearrangements on the expression of the Hoxd genes during
embryonic development. Similar deletion approaches were
used to study cadherin 1 gene regulation [75]. Herault et al.
[89] extended this strategy by replacing the LacZ by the Cre to
provide a tool to specifically inactivate Hox genes in
progressively more extended domains of Hox expression. On
the whole, the in vivo strategy appears very attractive as it is
less expensive, doesn’t need the settling of a large breeding
program, and avoids a few complicated steps of cell culturing
thanks to the increasing availability of mouse or ES cell lines
containing loxP sites (Table 2).

The mosaic analysis with double markers [82] combines
chimeric fluorescent constructs and G2-induced mitotic
recombination in vivo. Such a strategy allows determination
of the consequence of mutation by visualization of double-
colored mutated cells, enabling high-resolution lineage
tracing in vivo to elucidate biological processes, such as cell
fate in the nervous system. The development of such a
strategy will lead to genetic mosaic analysis, bypassing the
problem of the lethality linked to some mutations by
exploring the mosaic condition.

Transchromosomal Lines

The Cre/loxP system allows the modeling of native
chromosomes while MMCT enables manipulation of large
fragments or whole chromosomes from various species and
particularly human with the making of transchromosomic
lines. This technique originally developed in the 1970s, is
based on the fusion of microcells, containing single or small
numbers of chromosomes, with whole cells in order to
transfer exogenous chromosome material into host cells (for
a review, see [90,91]). MMCT can be carried out with somatic
cells, embryonic carcinoma cells or ES cells as recipients.
Applications of MMCT are numerous, ranging from hunting
for tumor suppressor, DNA repair or senescence-inducing
genes, assessing genomic instability, imprinting and
chromatin modification, constructing and manipulating
artificial chromosomes for potential gene therapies to act as
vectors for specific genes or genomic regions, and expressing
proteins or studying aspects of chromosome behaviour in
mitosis and meiosis [92–95].
A further application is the creation of mouse lines that

carry fragments or whole human chromosomes as freely
segregating extra chromosomes. To achieve this,
transchromosomic mouse ES cells were injected into mouse
blastocysts to produce mouse chimeras. The first
transchromosomal animals were produced in the late 1990s

DOI: 10.1371/journal.pgen.0020086.g003

Figure 3. Strategies for In Vivo Cre-Mediated Recombination

(A) The general principle of TAMERE is based on two successive breedings in order to have in one male, named the trans-loxer, the Sycp1Cre
(Synaptonemal Complex protein 1) transgene and the two loxP sites in a trans configuration, inserted previously in the same orientation at each targeted
locus, that define the genetic interval. The Synaptonemal Complex protein 1 promoter drives Cre expression at prophase of meiosis in male
spermatocytes when chromatid pairs are closely aligned, in order to facilitate the chromatid exchange, leading to the formation of the deletion and the
duplication of the interval delimited by the two loxP sites. The last step consists in mating trans-loxer males with wild-type females to generate, in the
progeny, individuals carrying the deletion or the duplication of the targeted region.
(B) The STRING approach takes advantage of a classical crossing-over to bring the two loxP sites into a cis configuration to generate a deletion. Two
parental mice (F0) carrying loxP sites flanking a selected region are crossed. The F1 progeny containing the two loxP sites are then mated to wild-type
mice. The offspring are screened for meiotic crossing-over between both sites leading to mice carrying the loxP sites in a cis configuration. In the
subsequent cross, a ubiquitously expressed Cre transgene is introduced, generating the deletion that is established in the next F4 generation.
Del, deletion; Dup, duplication.
red arrow, region of interest; green arrow, loxP site.
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and carried different human chromosome fragments as freely
segregating extra chromosomes [96]. Using this technique,
models of Down syndrome were obtained in chimeric mice
with transchromosomal ES cells containing different parts of
human Chromosome 21 (Hsa21), ranging from ;50 to ;0.2
Mb [97.98]. But the chromosome fragments tended to be lost
during development, leading to phenotypic variations. In
spite of this, the chimeric animals exhibited behavioral
impairments and cardiac defects similar to those described in
humans with Down syndrome [99,100]. E. Fisher and
collaborators succeeded in producing a trans-species
aneuploid mouse line, called Tc1, that stably transmitted
almost a complete Hsa21, generating a more full model of
Down syndrome [101]. Indeed, the Tc1 line displays a large set
of deficits similar to those observed in trisomic 21 patients
that were not found in earlier models. The previously
observed failure of transchromosomal germline transmission
was overcame by using female mouse ES cell lines to derive
female chimeras that support the transmission of the
aneuploid chromosome through the germline [97].
Nevertheless such transchromosomic lines are difficult to
obtain and to work with. A large number of ES cell clones
should be controlled to detect any rearrangements and
should be injected to recover a germline transmission. In
addition, transmission from Tc1 females only could be
achieved with a rate of 40% in a hybrid genetic background,
and a large panel of animals should be studied as the
aneuploid chromosome tends to be lost during mitosis with
variable rates [101]. Nonetheless, transchromosomic lines
offer a promising substitute to mouse segmental
aneuploidies, as the complete genomic sequence is included,
and hence modeling a more complete human aneuploidy.

Conclusion

Chromosome engineering combined with the
transchromosomic approach is widely used for dissecting the
function, the regulation, and the contribution of genes to
genetic disorders, such as contiguous gene and aneuploidy
syndromes. For example, the increasing number of mouse
models for trisomy 21 that have been created recently
[101,102] provides the necessary tools to understand how
dosage imbalance results in the abnormal phenotypes
observed in the human patients. Breeding of the different
mouse strains carrying either the duplication or the deletion
of human Chromosome 21 syntenic regions will not only
allow the creation of a full model for human trisomy 21, but
also the deciphering of genetic interaction between regions
and enable one to look for candidate genes for each
phenotype. This approach is also valid for evaluating the
effect of copy number variation of genomic regions observed
in the human population that might contribute to the
susceptibility to certain diseases [103–105]. Manipulating
chromosomes on a large scale is likely to be increasingly
developed in the future also to identify genes underlying
complex phenotypes of polygenic diseases such as diabetes,
cancer, asthma, or obesity caused by a combination of
environmental and multiple genetic factors. To this end,
transchromosomic lines combined with deletions might be a
promising way to obtain more humanized models to study
specific human genes and pathologies.

Even though both techniques still require considerable

effort, they benefit from the development of the MICER
resource, with more than 18,000 targeting vectors referenced
in the mouse genome database, the increasing number of
mouse carrying loxP sites at various loci and of Cre transgenic
lines (Table 2). Together with the in vivo approaches
TAMERE and STRING [12,78], any laboratory can now
manipulate large genomic regions without any additional
work on ES cells, in order to analyze further the genomic
organization or to derive new tools for genetic analysis
(deletion, duplication, and inversion). These different
technologies are further supported by the combined effort of
the scientific community to establish large-scale gene trap
mutagenesis programs, integrating Cre/loxP technology and
offering the possibility to create a variety of alleles [106–108].
Emerging from these strategies of chromosome

engineering is the fascinating aspect of chromosome
organization, structure, and function, implicated in the as yet
poorly understood code for genetic instructions. Indeed, the
human genome contains about 2% of coding sequence, RNA
genes, and regulatory regions. In some cases, control regions
lay at a great distance from the gene, and hence the long-
range interaction is only detected by manipulation of large
chromosomal regions [109–112]. Surprisingly, a significant
amount of the non-coding portion of the genome is under
active selection, suggesting that it is also functionally
important, yet little is known about it [113–116]. Large desert
gene regions also are found and are starting to be
investigated by using chromosome engineering [30]. We
speculate that the modeling of chromosome will be more
commonly used to better understand the role of non-coding
sequences, and may be used to decipher the ‘‘C-value enigma’’
[117] and the chromosome architecture lying at the heart of
genetic instructions. Our increased ability to manipulate the
mammalian genome provides us with new tools for the
development of a functional chromoso–genomic approach,
bringing an exciting new dimension into biological and
biomedical research. “
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