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Background: Irinotecan (IRI) is considered an option for second-line treatment of advanced

gastric cancer; however, acquired drug resistance currently limits its clinical application.

Recently, many researchers have shown that autophagy plays a crucial role in the resistance

of tumor cells to chemotherapy and radiotherapy. In this study, we investigated the relation-

ship between autophagy and antitumor activity of IRI in gastric cancer cells.

Methods: We used MTT assay, flow cytometry and immunofluorescence staining to detect

viability, apoptosis and autophagy in gastric cancer. Western blotting assay was used to

determine the expression of LC3, Beclin-1, P62, cleaved PARP and Caspase 3. In vivo

animal study was performed finally.

Results: We found that IRI treatment dose- and time-dependently inhibited growth and

induced apoptosis in gastric cancer cells. Moreover, IRI treatment caused autophagy in these

cells, whereas autophagy inhibitors—3-methyladenine (3-MA), chloroquine (CQ), and

Beclin-1 small interfering RNA (siRNA)—suppressed cytotoxicity of IRI. A mechanistic

analysis showed that IRI-induced autophagy and apoptosis were related to increased reactive

oxygen species (ROS) accumulation and activation of the JNK- and p38-MAPK pathways.

Further in vivo experiments revealed that IRI suppressed tumor growth, induced autophagy,

and stimulated the JNK- and p38-MAPK pathways, whereas 3-MA attenuated these effects.

Conclusion: Taken together, these results indicate that IRI stimulates the ROS-related JNK-

and p38-MAPK pathways to promote autophagy-dependent apoptosis. Thus, a combination

of IRI with a pharmacological autophagy enhancer may be a promising therapeutic strategy

against gastric cancer.
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Introduction
Gastric cancer is the fourth most common malignant tumor and the third most

common cause of cancer-related deaths worldwide.1 Over 50% of newly diagnosed

gastric cancer cases occur in developing countries, and approximately 70% of

deaths occur in less economically developed areas despite declining incidence

and mortality rates.2 Despite the advances in diagnosis and treatment, the median

5-year overall survival (OS) rate among patients with advanced gastric cancer after

surgical resection is still low.3 Hence, there is an urgent need to find promising

therapeutic techniques for treatment of gastric cancer.

Irinotecan (IRI) is a semisynthetic derivative of camptothecin, which was origin-

ally isolated from Camptotheca acuminata.4 As a camptothecin derivative, IRI

Correspondence: Caifang Ni; Zhi Li
Email nicaifangsz@163.com;
zhilisoochow1983@163.com

OncoTargets and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com OncoTargets and Therapy 2020:13 2807–2817 2807

http://doi.org/10.2147/OTT.S240803

DovePress © 2020 Zhu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

mailto:nicaifangsz@163.com; 
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


directly inhibits the activity of topoisomerase I (TOP I),

a nuclear enzyme that is essential for replication and

transcription. TOP I unwinds the supercoiled DNA, and

subsequently, IRI leads to lethal replication-mediated dou-

ble-strand breaks and eventually causes cell death.5 As

a chemotherapeutic agent, IRI has been used to treat various

cancers, such as colorectal cancer, hepatocellular carci-

noma, and pancreatic cancer.6–8 It has also been applied to

gastric cancer treatment.9,10 Nonetheless, the therapeutic

effect of IRI is still hampered by acquired chemotherapy

resistance.11 Therefore, it is necessary to devise a promising

and safe treatment regimen to overcome drug resistance and

reduce drug side effects in gastric cancer.

Autophagy is a highly conserved physiological mechan-

ism that eliminates needless proteins or damaged organelles

as well as degrades and recycles cellular components under

conditions of low nutrient supply (or other analogous condi-

tions) to ensure homeostasis.12 Autophagy is regulated by

autophagy-related genes (ATG) and initiated by a double-

membrane organelle formation, which is triggered by autop-

hagy-related proteins, such as LC3, Beclin-1 and P62.13 The

role of autophagy in cancer remains in debate because it can

either exhibit a cytoprotective or cytotoxic role depending on

cancer type. Some studies show that autophagy facilitates

cell survival and serves a cytoprotective function in cancer

treatment.14,15 Furthermore, autophagy has been identified as

an important mechanism of resistance to IRI treatment in

cancers. It has been reported that autophagy and cellular

metastasis are enhanced by the resistance to IRI in LoVo

colon cancer cells.16 Survival-promoting autophagy is acti-

vated to protect tumor cells against the cytotoxic effects of

IRI in colon cancer cells.17 Nevertheless, the relationship

between autophagy and resistance to IRI treatment in gastric

cancer has not been clearly demonstrated.

In this study, we investigated the connection between

autophagy and antitumor activity of IRI in gastric cancer

cells. We demonstrated that IRI causes growth inhibition,

apoptosis, and autophagy in gastric cancer cells.

Autophagy was found to play a cytotoxic role in IRI-

treated cells. Additionally, the JNK- and p38-MAPK sig-

naling pathways were involved in IRI-induced autophagy

and were mediated by reactive oxygen species (ROS).

Materials and Methods
Reagents and Antibodies
IRI, 3-MA, CQ, N-acetyl-L-cysteine (NAC; a standard anti-

oxidant), SB203580 (a p38 inhibitor), and SP600125 (a JNK

inhibitor) were purchased from Sigma (St. Louis, MO,

USA), whereas the RPMI 1640 medium, fetal bovine

serum (FBS), penicillin, and streptomycin were purchased

from Invitrogen (Carlsbad, CA, USA). Antibodies against

cleaved PARP, cleaved caspase 3, LC3-I, LC3-II, and β-actin
were acquired from Cell Signaling Technology (Danvers,

MA, USA), and the corresponding secondary antibodies

from Jackson Immunoresearch (West Grove, PA, USA).

Cell Lines and Cell Culture
Gastric cancer cell lines MGC803 and SGC7901 were pur-

chased from the Cell Bank of the Chinese Academy of

Medical Sciences (Shanghai, China). All the cells were cul-

tured in RPMI 1640 containing 10% FBS, 100 U/mL penicil-

lin, and 100 μg/mL streptomycin at 37°C in a 5% CO2

incubator.

Cell Viability Assay
Cell viability was determined by a 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. In

brief, cells (104 per well) were seeded in 96-well micro-

plates and then exposed to various concentrations of IRI

for various periods. The MTT solution was added to each

well for an additional 4 h incubation. The culture medium

was removed, and 100 μL of dimethyl sulfoxide was

added. Finally, absorbance at 490 nm was measured on

an ELISA microplate reader.

Western Blotting
After treatment, the cells were lysed in ice-cold lysis

buffer.18 The samples were clarified by centrifugation for

15 min at 4°C. The protein concentrations were measured

with the BCA protein assay (Pierce, Waltham, MA, USA),

and 20 μg of each protein sample was resolved on a 15% gel

by denaturing sodium dodecyl sulfate polyacrylamide gel

electrophoresis and then electrophoretically transferred

onto polyvinylidene fluoride membranes (Millipore,

Bedford, MA, USA). The blotted membranes were blocked

in 5% nonfat milk, incubated with primary antibodies, and

then probed with the secondary antibodies. β-actin served as
a loading control. The signals were visualized with the ECL

detection solution (Thermo Scientific, Rockford, IL, USA).

The relative densities of bands were quantified using Image

J software.

Transmission Electron Microscopy (TEM)
Cells were collected and fixed with 2.5% glutaraldehyde in

0.1 M phosphate buffer (pH 7.4) at 4°C for 1 h. After the
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cells were washed with phosphate buffer, they were post-

fixed in 1% osmium tetroxide (OsO4) for 1 h. The cells were

then washed with water, dehydrated in a graded series of

ethanol solutions and propylene oxide, and embedded in

araldite (Merck, Rahway, NJ, USA). Ultrathin sections

(40–60 nm) were prepared on an ultramicrotome. The sec-

tions were mounted on 200-mesh nickel grids and double-

stained with uranyl acetate and lead citrate. Ultrastructure of

the cells was examined under a transmission electron micro-

scope (JEM-1200EX, JEOL, Tokyo, Japan).

Immunofluorescence Assay
The cells were treated with 20 μM IRI, seeded in 24-well

plates containing glass coverslips, and incubated for 24

h. Next, the cells were washed with ice-cold phosphate-

buffered saline (PBS), fixed with 4% paraformaldehyde in

PBS for 30 min at room temperature (RT), allowed to

permeate in 1% Triton X-100/PBS for 30 min at RT, and

blocked with 10% FBS/PBS overnight at 4°C. The cells

were incubated with the anti–LC3-II antibody for 4 h at

RT, and then with a secondary antibody for 1 h in the dark

at RT. The nuclei were stained with 4′,6-diamidino-2-pheny-

lindole (DAPI, Sigma) and observed under a Zeiss LSM710

confocal microscope (Zeiss, Oberkochen, Germany).19

Measurement of Intracellular ROS Levels
The ROS levels in gastric cancer cells were measured by

means of 2,7-dichlorofluorescein diacetate (DCFH-DA), an

oxidant-sensitive fluorescent reagent. Briefly, cells cultured

in the RPMI 1640 medium supplemented with 10% of FBS

were treated with 20 μM IRI for 24 h. The cells were then

harvested, washed twice with PBS, and incubated in serum-

free RPMI 1640 containing 10 μM DCFH-DA at 37°C for

30 min in the dark. The cells were washed three times with

ice-cold PBS, and DCF fluorescence intensity was analyzed

immediately on a FACS Canto flow cytometer (Becton

Dickinson, Franklin Lakes, NJ, USA), at an excitation wave-

length of 488 nm and emission at 525 nm.

Xenograft Experiments and

Immunohistochemical Staining
BALB/c nude mice (6 weeks old) were purchased from

Shanghai Slac Laboratory Animal Co., Ltd. (Shanghai,

China). The animal experiments were performed with the

approval of the Animal Ethics Committee of the Second

Military Medical University. Animal experiments were car-

ried out according to the National Institutes of Health

guidelines to the Care and Use of Laboratory Animals. In

total, 2 × 106 viable SGC7901 cells in 100 μL of PBS were

injected subcutaneously into the nude mice. When the

resultant tumors reached approximately 100 mm3, the ani-

mals were injected intraperitoneally with either 1) physio-

logical saline (100 μL) or 2) IRI (20 mg/kg), 3-MA (30 mg/

kg), or their combination once weekly for 15 days. Tumor

volume (V) was calculated using the following formula:

V = longest diameter × shortest diameter2 × 0.5. The

excised tumors were weighed and prepared for subsequent

Western blotting and immunohistochemical staining.

Statistical Analysis
All statistical analyses were performed in the SPSS 17.0

statistical software (SPSS, Inc., Chicago, IL, USA). The

data are presented as means ± standard deviation. The sig-

nificance of differences between two groups was evaluated

with two-tailed Student’s t test. Probabilities of P < 0.05 were

considered statistically significant.

Results
IRI Inhibits Growth and Induces

Apoptosis in Gastric Cancer Cells
IRI has been reported to cause growth inhibition and apoptosis

in tumor cells.16,20 To confirm that IRI has the same effects on

gastric cancer cell lines, MGC803 and SGC7901 cells were

treated with IRI at various concentrations and for different

periods. Two important apoptosis-related signaling molecules,

cleaved caspase 3 and cleaved PARP, were analyzed next. As

shown in Figure 1A andB, the expression of cleaved caspase 3

and cleaved PARP increased in a dose-dependent and time-

dependent manner, suggesting that apoptosis in MGC803 and

SGC7901 cells was induced by IRI. Additionally, the MTT

assay was conducted using cells treated with various concen-

trations of IRI for various periods. Cell viability significantly

decreased as the IRI dose or action duration increased

(Figure 1C). These results indicated that IRI inhibits growth

and induces apoptosis in gastric cancer cells.

IRI Induces Autophagy in Gastric Cancer

Cells
Autophagy has been demonstrated to take part in the drug

resistance of gastric cancer,21 but whether IRI induces autop-

hagy to mediate this drug resistance in gastric cancer cells

remains unknown. The conversion of LC3 from LC3-I to

LC3-II is a specific indicator of the autophagy process. We

performed Western blotting to evaluate the expression of
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autophagy marker protein LC3-I/II in MGC803 and

SGC7901 cells treated with different concentrations of IRI.

We found that IRI treatment upregulated the proteins LC3-II

in a concentration- and time-dependent manner (Figure 2A).

To confirm the induction of autophagy by IRI, TEM analysis

was performed. As shown in Figure 2B, cells treated with IRI

showed accelerated autophagosome formation, a major phe-

nomenon of autophagy. Consistent with these results, IRI

treatment dramatically promoted the formation and aggrega-

tion of LC3-positive vesicles (Figure 2C). Moreover, IRI

treatment increased levels of Beclin-1 and decreased protein

abundance of P62, both of which are markers of autophagy

(Figure 2D). These results provided evidence that autophagy

can be induced by IRI in gastric cancer cells.

Blocking Autophagy Suppresses the

Antitumor Activity of IRI in Gastric

Cancer Cells
To evaluate the role of autophagy in the therapeutic effects of

IRI on gastric cancer cell growth, two autophagy inhibitors,

3-methyladenine (3-MA) and chloroquine (CQ), were

applied for subsequent experiments. The former was able to

suppress formation of the autophagosome during the initial

stages of autophagy, and the latter blocked the transition of

autophagosomes to autolysosomes. As depicted in

Figure 3A, the influence of IRI on the LC3-II level in

MGC803 and SGC7901 cells was attenuated by 3-MA treat-

ment but augmented by the presence of CQ. Additionally, the

expression of Beclin-1 and P62—after treatment with 3-MA

or CQ following IRI exposure—dramatically decreased and

increased, respectively, as compared with IRI treatment alone

(Figure 3A). The MTT assay results revealed that inhibition

of autophagy using 3-MA or CQ significantly increased the

proliferation of IRI-treated cells (Figure 3B). Furthermore,

knockdown of Beclin-1 suppressed LC3-II and Beclin-1

expression, and enhanced P62 expression in the presence of

IRI and reversed the suppressive growth effect of IRI in

gastric cancer cells (Figure 3C and D). Moreover, the levels

of cleaved PARP and cleaved caspase 3 decreased in cells

treated with IRI+3-MA, IRI+CQ, or IRI+siBeclin1 in com-

parison with IRI-treated cells (Figure 3E and F). Taken

together, these results indicated that autophagy exerted
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Figure 1 IRI induces cytotoxicity and apoptosis in gastric cancer cells. (A) MGC803 and SGC7901 cells were treated with IRI (0, 20, or 40 μM) for 24 h or (B) with 20 μM
IRI for 0, 12, or 24 h, and cleaved PARP and cleaved caspase 3 protein expression levels were examined by Western blotting. β-actin served as the internal control. (C)

MGC803 and SGC7901 cells were incubated with various concentrations of IRI for the indicated periods, and cell viability was determined by MTT assay. *P < 0.05.
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cytotoxic action, whereas inhibition of autophagy weakened

the antitumor effects of IRI on human gastric cancer cells.

ROS Mediate IRI-Induced Autophagy and

Growth Inhibition in Gastric Cancer Cells
Some studies have shown that ROS stimulate autophagy.22 To

determine whether ROS are involved in the IRI-induced

autophagy, we measured ROS levels via the DCF-DA assay

kit with quantitation of DCF fluorescence. As expected, ROS

levels increased after treatment with IRI alone, but the accu-

mulation of ROSwas attenuatedwhen the cells were cotreated

with NAC, an antioxidant (Figure 4A). Subsequently,Western

blotting results showed that the expression level of LC3-II

markedly diminished in the cells cotreated with IRI and NAC

as compared with the cells treated with IRI alone (Figure 4B).

Furthermore, cell viability was enhanced while the protein

amounts of cleaved caspase 3 and cleaved PARPwere reduced

by this cotreatment (Figure 4C and D). Altogether, these

results indicated that IRI-induced autophagy and growth inhi-

bition in gastric cancer cells were mediated by ROS.

IRI-Induced Autophagy Is Related to the

ROS-Mediated JNK- and P38-MAPK

Pathways
Given that the MAPK pathway is crucial for the initiation and

induction of autophagy,23 we tested whether this cascade is

involved in IRI-induced autophagy. As illustrated in

Figure 5A, IRI treatment increased the amounts of phospho-

(p-)JNK and p-p38 in MGC803 and SGC7901 cells. By con-

trast, cotreatment with NAC blocked IRI-induced p-JNK and
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p-p38 formation. In addition, both inhibition of p-p38 by

SB203580 and inhibition of p-JNK by SP600125 decreased

the expression of LC3-II, which was enhanced by IRI treat-

ment alone (Figure 5B). Overall, these results mean that the

JNK- and p38-MAPK signaling pathways are involved in IRI-

induced autophagy and are mediated by ROS.

IRI Induces Autophagy and Inhibits Tumor

Growth in a Murine Xenograft Model of

Gastric Cancer
Finally, a xenograft model was set up to verify the influ-

ence of IRI-mediated autophagy on tumor growth in vivo.

As shown in Figure 6A and B, IRI treatment significantly

reduced the tumor volume relative to the control group,

whereas treatment with IRI and 3-MA yielded inferior

tumor suppression when compared with IRI alone.

Furthermore, IRI plus 3-MA treatment decreased the per-

centage of terminal deoxynucleotidyl transferase dUTP

nick end labeling (TUNEL)-positive tumor cells and

increased the proportion of Ki67-positive cells in tumor

tissues compared with IRI-treated tissues (Figure 6C).

Moreover, Western blotting results revealed that IRI

enhanced the expression of LC3-II, cleaved caspase 3,

and cleaved PARP as well as the amounts of p-JNK and

p-p38 in tumor tissues, whereas 3-MA dramatically
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attenuated these effects (Figure 6D). These findings indi-

cated that IRI inhibited tumor growth and induced autop-

hagy, whereas suppression of autophagy attenuated the

inhibitory action of IRI.

Discussion
It has been reported that IRI is an effective therapeutic

agent as a second-line treatment of advanced gastric and

gastroesophageal adenocarcinomas.10 Besides, IRI therapy

alone is considered a salvage-line treatment of advanced

gastric cancer in clinical practice.24 Even though cytotoxic

chemotherapy of gastric cancer patients with IRI is cap-

able of enhancing the antitumor effects of other treatments,

acquired chemoresistance remains a serious clinical pro-

blem in gastric cancer therapy. In addition, autophagy is

reported to be activated to protect tumor cells from the

cytotoxic action of IRI and is associated with drug

resistance,16 but the underlying molecular mechanisms in

gastric cancer still need deeper exploration. In this study,

we tested two gastric cancer cell lines, MGC803 and

SGC7901, to investigate IRI-induced autophagy and the

response to antitumor activity of IRI. We observed upre-

gulation of cleaved PARP and cleaved caspase 3 and

a decrease of viability in IRI-treated MGC803 and

SGC7901 cells, indicating that IRI exerts its cytotoxic

action by inducing apoptosis and growth inhibition.

Autophagy has been regarded as a cellular metabolic

response to many metabolic stressors, including chemother-

apeutic agents. It is known as an important mechanism of

resistance to IRI treatment in cancer cells.16,17 In the present

study, we aimed to find out whether IRI could induce autop-

hagy and whether autophagy participates in the antitumor

activity of IRI inMGC803 and SGC7901 cells. TEM, immu-

nostaining, and a Western blot assay showed that autophagy

could be induced by IRI treatment in gastric cancer cell lines.

Other studies indicate that the blocking of autophagy using

3-MA or CQ enhances the sensitivity of tumor cells to

chemotherapeutics, e.g., in lung adenocarcinoma, head and

neck cancer, and breast cancer.25–27 By contrast, in the pre-

sent study, we found that suppression of autophagy by the

specific inhibitor 3-MA remarkably attenuated IRI-induced

cytotoxicity and apoptosis in MGC803 and SGC7901 cells.

These data confirm the cytotoxic role of autophagy in IRI-

treated gastric cancer cells.

ROS are small highly reactive compounds that are pro-

duced naturally during the normalmetabolism of oxygen.28 It

is now widely accepted that ROS play an important role in

the regulation of autophagy.29 Some anticancer drugs cause
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accumulation of intracellular ROS, which in turn induce

autophagy and apoptosis.30,31 In the present study, we

observed an increased level of ROS in IRI-treated cells.

After obliteration of ROS with NAC, the accumulation of

ROS was attenuated, along with the decline of LC3-II and

cleaved-PARP levels, and the cell viability recovered. These

results suggest that ROS generated after IRI treatment

promote autophagosome formation and exert a cytotoxic

action on MGC803 and SGC7901 cells. Notably, MAPKs

such as JNK participate in the induction of autophagy by

phosphorylating BCL-2 and disrupting the BCL-2/Beclin 1

complex.32 p38 also mediates cell autophagy by reducing the

phosphorylation of mTOR.33 In the present study, we also

observed upregulation of MAPK signaling proteins p-JNK
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and p-p38 when the cells were treated with IRI, and this

upregulation was impaired by cotreatment with NAC. This

finding indicates that the MAPK signaling pathway is asso-

ciated with ROS. Furthermore, inhibition of p-p38 by

SB203580 or suppression of p-JNK activity by SP600125

attenuated the upregulation of LC3-II induced by IRI, sug-

gesting that the JNK- and p38-MAPK pathways participate

in IRI-induced autophagy.

In conclusion, our study indicates that IRI stimulates the

ROS-related JNK- and p38-MAPK pathways to promote

autophagy-dependent apoptosis. A combination of IRI with

a pharmacological autophagy enhancer may be a promising

therapeutic strategy against gastric cancer. Further work on

direct target(s) of IRI as well as more detailed studies of its

molecular mechanism of action are in progress.
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