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Diverse Molecular Targets for Therapeutic Strategies in 
Alzheimer’s Disease 

Alzheimer’s disease (AD) is the most common form of dementia caused by 
neurodegenerative process and is tightly related to amyloid β (Aβ) and neurofibrillary 
tangles. The lack of early diagnostic biomarker and therapeutic remedy hinders the 
prevention of increasing population of AD patients every year. In spite of accumulated 
scientific information, numerous clinical trials for candidate drug targets have failed to be 
preceded into therapeutic development, therefore, AD-related sufferers including patients 
and caregivers, are desperate to seek the solution. Also, effective AD intervention is 
desperately needed to reduce AD-related societal threats to public health. In this review, 
we summarize various drug targets and strategies in recent preclinical studies and clinical 
trials for AD therapy: Allopathic treatment, immunotherapy, Aβ production/aggregation 
modulator, tau-targeting therapy and metabolic targeting. Some has already failed in their 
clinical trials and the others are still in various stages of investigations, both of which give 
us valuable information for future research in AD therapeutic development.
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INTRODUCTION

Alzheimer’s disease (AD) is a pernicious neurodegenerative 
disease which is incurable with remedies developed up to date. 
The number of patients increases every year worldwide and 5.2 
million people in the United States are suffering from AD. This 
number is expected to expand to 36 million to 115 million in 
worldwide around the year of 2050 and the estimated econom-
ic cost and suffering is increasing greatly (1, 2). Therefore, AD is 
seemingly insurmountable disease and the increasing num-
bers of patients produce diverse societal concerns in different 
aspects.
 Senile plaques of amyloid β (Aβ) in the brain parenchyma 
have been regarded as not only the main pathological phenom-
ena (3, 4) but also the culprit of this disease according to amy-
loid cascade hypothesis based on molecular information found 
in AD study (5). Abnormal production and accumulation of Aβ 
in brain parenchyma result in AD pathologies through sequen-
tial events by aggregated forms of this protein and the amyloid 
plaque. Aβ is generated as a consequence of sequential cleav-
ages of amyloid precursor protein (APP) by β- and γ-secretases 
(6-8). APP is first cleaved by either α- or β-secretase, and then, 
the remaining remnants of C83 or C99, respectively, are vulner-
able to intramembrane proteolysis by γ-secretase. Amyloido-
genic process of γ-secretase cleavage followed by β-secretase 
produces aggregation-prone Aβ which are in the center of AD 

etiology (4, 9). Disrupted synaptic plasticity, reduced dendritic 
spine density and memory impairment were proven in rodent 
model by extraction of Aβ oligomers from human patients (10). 
 Along with Aβ, microtubule-associated protein tau is another 
major factor of AD pathogenesis as a component of neurofibril-
lary tangles (NFTs) (11). Tau stabilizes microtubule protein and 
microtubule-associated processes in normal condition. During 
AD pathogenesis, tau becomes hyperphosphorylated, aggre-
gated and finally accumulated as neurofibrillary tangles (12). 
Tau hyperphosphorylation and NFT formation is tightly related 
to the existence of excessive Aβ and plaques, proving the tau 
pathology in AD (13, 14). Not only as axonal protein but also as 
regulator of dendritic function, tau plays a pivotal role, espe-
cially mediating early Aβ toxicity during AD progress (15). There-
fore, inevitably, Aβ and tau became the main targets in drug de-
velopment. Many clinical trials aiming these two proteins have 
been performed whereas several lines of targets are still under 
investigations.
 Up to date, only a few AD medications have been proved as 
improving AD symptoms, but none of them modify disease 
progress or pathological cascades (16). Researchers and clini-
cians suspect that the reason for many drug target candidates 
to fail in their clinical trials reside in the improper time of drug 
treatment, in fairly late stage of AD progression where irrevers-
ible damages have already occurred, including excessive Aβ 
deposits, neuronal impairment, death and blood brain barrier 
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(BBB) disruption (17). Therefore, finding a diagnostic biomark-
er, especially for the early stages of AD pathology, is desperately 
needed for developing a valuable therapeutic target at the early 
stage and preventing progression of the disease. 
 Diverse approaches for AD therapeutic strategy have arisen 
along with better understanding of cellular and molecular me-
chanism of AD pathogenesis. In Fig. 1 and Table 1, we listed 
possible strategies of drug development target based on accu-
mulated scientific findings. In this review, we summarize the 
recent status of some AD drug targets using different strategies 
among them from published reports and ongoing clinical stud-
ies. In each category, we stated the representative drug targets, 
preclinical and clinical trials. 

ALLOPATHIC TREATMENT FOR AD

In spite of better understanding for molecular mechanism dur-
ing AD pathogenesis, the available medications for AD up to 
date provide only symptomatic benefit, not regulate or delay 
the progression of disease pathology. The US Food and Drug 
Administration (FDA) has approved only five medications for 
AD, including acetylcholinesterase inhibitors (AChEIs: done-
pezil, rivastigmine, galantamine and tacrine) and N-methyl-D-
aspartate (NMDA) receptor antagonist, such as memantine 
(18-21). These medications enhance cognitive function via in-
creased acetylcholine level or glutamatergic receptor blocking, 
respectively. Combined administration of these two medica-
tions accelerates symptomatic improvement, representing slow 

progress of cognitive and functional impairment and delayed 
time for nursing home admission (22, 23). Besides, several lines 
of regulators for neurotransmission were suggested for symp-
tomatic therapies in AD, including neuronal nicotinic acetyl-
choline receptor activation (ABT-418), GABAB receptor antago-
nism (SGS-742) and serotonergic modulation (Lu AE58054). 
However, they were insufficient to show significant efficacies of 
symptomatic improvement in clinical trials (24-27). Recently, 
high affinity 5-hydroxytryptamine (HT) 6 receptor antagonist 
Lu AE58054 ([2-(6-fluoro-1H-indol-3-yl)-ethyl]-[3-(2,2,3,3,-tet-
rafluoropropoxy)-benzyl]-amine) was reported to improve 
novel object recognition task in a rat model with cognitive im-
pairment induced by phencyclidine (28). The combined treat-
ment of Lu AE58054 and donepezil is under phase III clinical 
trial (ClinicalTrials.gov identifier: NCT01955161). Additionally, 
even drugs with uncertain mechanism were reported to be ef-
fective in symptomatic improvement and protection against 
neurotoxicity by Aβ, including ethanolic extract of Angelica gi-
gas (INB-176) and Ginkgo biloba (EGb761) respectively, how-
ever, none of which showed successful effectiveness in their 
preclinical and clinical trials (29-31). 

Table 1. Diverse strategies for Alzheimer’s disease therapeutic target. This table was 
modified from the box table by Grill and Cummings (26)

Strategy Target

Aβ production α-secretase activation
β-secretase inhibition
γ-secretase inhibition
γ-secretase modulation
APP modulation

Aβ degradation Neprilysin activation
Insulin-degrading enzyme activation
ApoE 

Aβ removal Vaccination
Passive immunization
General immune system modulation
Microglial activation
Receptor-mediated removal from CNS to periphery
Prevent entry from periphery to CNS
Modulation of Aβ balance between CNS and periphery

Preventing Aβ toxicity Aggregation inhibition by binding Aβ
Oligomerization inhibition through metal protein attenuation
Prevent formation of pyroglutaminyl Aβ 

Tau Tau aggregation inhibition
Prevent tau hyperphosphorylation
Facilitate tau phosphatase
Microtubule stabilization
Increase tau clearance

Neuroprotection Neuronal growth factor
Anti-apoptotic agents
Mitochondrial improvement
Anti-imflammation
BBB integrity
Neuronal metabolism

Aβ, Amyloid β; APP, Amyloid precursor protein; ApoE, Apolipoprotein E; CNS, Central 
Nervous System; BBB, Blood Brain Barrier.

Fig. 1. Diverse AD therapeutic strategies and their example chemicals tested in pre-
clinical or clinical studies. APP, Amyloid precursor protein; Aβ, Amyloid β; QC, Gluta-
minyl cyclase; AchEI, Acetylcholinesterase inhibitors; nAchRc, Nicotinic acetylcholine 
receptor; 5-HT6 Rc, 5-hydroxytryptamine 6 receptor; NSAIDS, Nonsteroidal anti-in-
flammatory drugs; O-GlcNAc, O-linked β-N-acetylglucosamine; NButGT, 1, 
2-dideoxy-2’-propyl-α-D-glucopyranoso-[2,1-d]-Δ2’-thiazoline; HDAC, Histone 
deacetylation.
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Aβ PRODUCTION/AGGREGATION MODULATOR

Abnormal Aβ production and accumulation in brain parenchy-
ma have been regarded as the central etiological hypothesis in 
AD pathogenesis (5, 10, 32). Therefore, the first line of strategy 
was inhibition of Aβ generation processes to prevent or cure the 
disease. The tight relevance of α-, β- and γ-secretases to Aβ pro-
duction made researchers to discover modulating drugs for 
these enzyme activities in order to reduce intracellular and ex-
tracellular Aβ level. Whereas effective α-secretase activator was 
rarely identified, several types of β-secretase inhibitors were 
discovered and tested, starting with first-generation potent in-
hibitor OM99-2, OM00-3 (33, 34). Since then, numerous reports 
and patents of β-secretase inhibition were published, however, 
finding drug candidate with desirable potencies and efficacy 
has been fairly challenging (35). Recently discovered MK-8931 
(Merck) is a promising β-secretase inhibitor whose result of 
phase I clinical trial was released in April, 2012. MK-8931 is now 
under phase II/III trial which was initiated in 2012 (ClinicalTri-
als.gov identifier: NCT01739348). 
 Gamma-secretase plays the critical role in Aβ generation, in 
charge of the rate-limiting cleavage of APP into Aβ. However, 
modulating this enzyme activity may cause diverse side effects 
because of its multiple cleavage actions on diverse substrates 
which are physiologically important, including notch receptor 
signaling. For this reason, modulating γ-secretase activity 
seems to be greatly complicated, requiring restricted substrate 
specificity for APP to reduce Aβ only, not affecting other sub-
strate processing such as notch signaling (36, 37). Consequent-
ly, substrate specificity is the critical issue in the development 
of AD therapy using γ-secretase inhibition. Semagacestat 
(LY450139, Eli Lilly) was a promising drug candidate targeting 
γ-secretase inhibition (38), tested in two Phase III clinical trials. 
Even though both trials finished with a disappointing result of 
insufficient efficacy it showed a breakthrough for possible utili-
zation of γ-secretase modulation in AD therapeutic develop-
ment. 
 Mostly, Aβ elicits its toxicity by aggregated forms (10, 39, 40). 
Therefore, the inhibition of Aβ aggregation is one of the most 
effective strategies in order to inhibit Aβ toxicity. Therefore, di-
verse candidates for inhibition of Aβ aggregation have attracted 
attention. Curcumin and β–sheet breaker such as RS-0406 were 
discovered to inhibit polymerization of Aβ into oliogmer and fi-
bril forms (41, 42). Compound D737 showed the most effective 
inhibition of Aβ aggregation among a collection of 65,000 small 
molecule candidates and elicited increased lifespan in a Dro-
sophila melanogaster model of AD as well as reduction of Aβ 
toxicity in cell culture system (43). Indirect inhibition of Aβ ag-
gregation was suggested by metal hypothesis of AD (44). Cup-
per/zinc ionophore, PBT2, which target the copper and zinc 
ions that mediate Aβ aggregation was proven to facilitate the 

aggregated Aβ clearance in the cortex, to lower Aβ level of cere-
brospinal fluid (CSF) and to restore the cognitive impairment 
in AD patients (44-46). PBT2 completed phase II clinical trial 
(ClinicalTrials.gov identifier: NCT00471211) and are now un-
der phase II clinical trial for Huntington disease as well. Addi-
tional large-scale clinical tests and high throughput screening 
for candidates of Aβ aggregation inhibitor are strongly encour-
aged in further investigation. 
 Various modifications of Aβ peptide have influence on its ag-
gregation and toxicity. Especially, pyroglutamyl modification in 
N-terminus of Aβ is critical alteration because pyroglutamated 
Aβ (pGlu-Aβ) species readily accumulated into senile plaque 
and vasculature deposit due to increased stability and aggrega-
tion velocity (47-49). Glutaminyl cyclase (QC) was demonstrat-
ed as the main catalytic enzyme responsible for this pyroglu-
tamyl modification of Aβ and intracortical microinjection of QC 
inhibitor, PBD150, significantly decreased pGlu-Aβ formation 
(50, 51). 

IMMUNOTHERAPY

Since inflammation response and activation of phagocytic cells 
such as microglia and astrocytes had been appreciated as a piv-
otal contributor to AD pathogenesis, immune system became 
one of the most prominent targets in the aspect of AD thera-
peutic invention (52). Cytokines and other neurotoxic adducts 
secreted by immune-related cells were suspected as possible 
mediators of neuronal degeneration and cell death (53, 54). 
Furthermore, data analysis using genome wide association 
study (GWAS) supported this idea by proving that specific over-
representation of genes related to immune pathway linked to 
AD risk (55). The protection effect of non-steroidal anti-inflam-
matory drugs (NSAIDs), especially ibuprofen, against AD 
proved that the suppression of immune response should be 
beneficial in AD (56). Many factors seemed to be tightly related 
to the protective effect of NSAIDs against AD, including age of 
cohort, apolipoprotein E (APOE) genotype, the duration of 
NSAIDs usage and NASAIDs types,  showing significant effect 
in APOE ε4 allele carrier (56-59). 
 Unfortunately, diverse clinical trials with different types of 
NSAIDs concluded not only beneficial effects but also insuffi-
cient efficacies and negative results (57, 60-65). Narrowing down 
the target along with amyloid hypothesis, immunotherapy against 
Aβ peptide attracted a great deal of attention because it is direct 
resolution of the seemingly main cause of pathogenesis and 
progression of disease in AD. Several strategies for Aβ peptide 
immunotherapy has been tested, including passive immuniza-
tion with monoclonal antibody against different regions of Aβ42 
as well as active immunization using synthetic Aβ42 (66). Be-
cause Aβ peptide, the major component of senile plaques in 
AD brain, is regarded as the critical contributor in AD patho-
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genesis, enhanced clearance of Aβ via the administration of 
anti-Aβ monoclonal antibody, including bapineuzumab and 
solanezumab (passive vaccination), or Aβ antigen with adju-
vant such as AN1792 (active vaccination) seemed fairly promis-
ing (67, 68). Preclinical trials for both active and passive immu-
notherapies against Aβ represented diverse beneficial effects of 
ameliorated brain Aβ burden, prevention of memory loss and 
improved cognitive function in different animal models of AD 
(67, 69). Preliminary test on human patients exerted promising 
outcomes of reduced plaque burden and cognitive benefit (70, 
71), suggesting multiple mechanisms of actions including mod-
ulation of Aβ equilibrium balance between the central nervous 
system and plasma (72) or improved peripheral clearance and 
sequestration of brain Aβ (73). However, unavoidable side ef-
fects found in clinical trials hindered the further clinical devel-
opment into AD therapeutic treatment on human, including 
meningoencephalitis, microhemorrhages and vasogenic ede-
ma (68, 74). Also, clinical evaluation in human AD patients failed 
to replicate the identical results as in the animal AD model, show-
ing unsynchronized phenomena between reduced Aβ plaque 
and rescue of neurodegeneration during AD progression (75). 
Immunotherapy is regarded as one of the most promising ther-
apeutic strategies in AD and some immunotherapeutic drug 
candidates are still under clinical trials, including the first mono-
clonal antibody for Aβ protofibril (BAN2401, ClinicalTrials.gov 
identifier: NCT01767311) and immunoglobulins combined 
with albumin by means of diverse application methods (Clini-
calTrials.gov identifier: NCT01561053) (68).   

TAU-TARGETING THERAPY

Intracellular neurofibrillary tangle (NFT) is another hallmark in 
AD pathogenesis, cytoskeletal inclusions consisted of hyper-
phosphorylated microtubule associated protein tau with paired 
helical filament structure (14). Especially, modulating endoge-
nous tau level in APP-overexpressing mice halted Aβ-induced 
behavioral deficit in spite of maintaining high Aβ level, suggest-
ing the relevance of tau during AD pathogenesis and implying 
the possibility for tau-targeting immunotherapy in AD (76, 77). 
Moreover, tight relationship between Aβ and tau pathologies 
during AD strengthened the rationale for tau-aiming therapeu-
tic strategy in AD. It was proven by that Aβ immunotherapy re-
duced not only the extracellular Aβ plaques but also intracellu-
lar Aβ accumulation which resulted in the absence of early tau 
pathology (78). Different mechanistic approaches of tau-target-
ing therapies were tried, including reducing tau level itself, pre-
venting tau hyperphosphorylation and inhibiting the aggrega-
tion (26). Many researches have focused on preventing hyper-
phosphorylation of tau, earlier event that cause detachment of 
tau protein from microtubule. Kinases responsible for tau 
phosphorylation (glycogen synthase kinase, GSK-3β, cyclin-de-

pendent kinase-5, cdk5 and microtubule affinity-regulating ki-
nase) and phosphatase (protein phosphatase 2A, PP2A) are the 
possible targets to achieve tau-aiming therapeutics, altering tau 
phosphorylation by modulating activity of the enzymes (79-81). 
Especially, GSK-3β inhibition is implicated in both Aβ and tau 
pathway concomitantly and is greatly appreciated in AD thera-
peutic development. GSK-3β inhibition by lithium, valproate, 
caffeine were also tested in preclinical and clinical studies and 
their efficacies were needed to be confirmed in further study 
because of inconsistent outcomes in different studies (82-85). 
AZD 1080 (AstraZeneca) and NP-12/Tideglusib (Noscria) were 
the most promising GSK-3β inhibitor, however, AZD 1080 was 
withdrawn from AD therapeutic development due to the neph-
rotoxic side effect in phase I clinical trials (68, 86, 87). Since 
then, NP-12/Tideglusib has been recognized as an effective 
GSK-3β inhibitor and completed not only pilot clinical study us-
ing small sample with the result of positive trends in mini-men-
tal state examination (MMSE), Alzheimer’s disease assessment 
scale-cognitive subscale (ADAS-cog), Global deterioration scale 
(GDS) and Global cortical atrophy (GCA) (88) but also phase II 
clinical trial (ClinicalTrials.gov identifier: NCT01350362). 
 In addition to tau phosphorylation, several agents were also 
suggested to prevent tau aggregation. Methylthioninium chlo-
ride (methylene blue, MTC) was the first tau aggregation inhibi-
tor discovered and reduced version of MTC, TRx0237, is now in 
the process of phase III clinical trial (89) (ClinicalTrials.gov 
identifier: NCT01689246). Also, diverse possible candidates 
were suggested as tau aggregation inhibitor, including anthra-
quinones, aminothienopyridazines, polyphenols and pheno-
thiazines (68, 90-92). These compounds, however, need more 
verification because they failed to show consistent efficacies in 
in vivo studies.

METABOLIC TARGETING

Since type 2 diabetes mellitus (DM2) was found to be related to 
AD, glucose metabolism has emerged as a new interest in AD 
research. It was widely known that glucose metabolism and in-
sulin signaling are impaired in AD brain (93-95). Insulin-de-
grading enzyme (IDE) was revealed to be responsible for Aβ 
degradation as well, more efficiently intracellular Aβ than ex-
tracellular form (96-98). Even though AD and DM2 share IDE 
as the key metabolic enzyme for their main etiological proteins, 
Aβ for AD and insulin for DM2, it is not enough to explain all 
the AD-mimic pathological phenomena found in diverse mech-
anism-driven diabetes mouse model with insulin resistance 
(98-100). Insulin has effect on cerebral function per se and is 
also tightly involved in inflammation and oxidative stress, rep-
resenting enhanced inflammatory response and markers of ox-
idative stress by hyperinsulinemia (101). In other studies, in-
creased autophagosome was suggested to accelerate the amy-
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loidogenic APP processing in insulin-resistant condition (102). 
Thereby, insulin itself represented tight relevance to AD and 
became a new therapeutic target in AD. Metformin, a peripher-
al insulin sensitizer drug approved by the FDA, was reported to 
sensitize brain insulin action and prevent AD-associated patho-
logical alteration in in vitro AD model (103). Also, other diverse 
insulin sensitizers are needed to be tested because they may 
have possibility to show valuable efficacy in AD as well. MSDC-
0160 (mTOT modulator, Metabolic Solution Development Com-
pany, MSDC) was recently performed successful phase IIa clini-
cal trial for type 2 diabetes (104). MSDC-0160 was demonstrat-
ed to elicit its insulin-sensitizing effect through newly discov-
ered mitochondrial target of thiazolinedione (mTOT) located in 
the mitochondrial inner membrane (104, 105).
 Mitochondria are one of the most devastated organelle in the 
process of AD development. During AD pathogenesis, mito-
chondrial impairment occurs in various brain areas, represent-
ing not only morphological alteration but also physiological 
dysfunction (106). Aβ was detected inside mitochondria com-
partment of AD mouse model expressing human mutant amy-
loid precursor proteins (APP), mostly within membrane and 
membrane-associated region (107, 108). Aβ seems to accumu-
late within mitochondria precedent to extracellular Aβ deposi-
tion. Study using mitochondria-specific targeting Aβ proved 
that mitochondrial accumulation of Aβ induced not only mor-
phological alteration but also physiological dysfunction which 
was fatal enough to induce neuronal apoptosis (109, 110). Other 
findings also showed morphological alteration of mitochondria 
and physiological dysfunction, especially electron transport 
chain through cytochrome C oxidase and increased oxidative 
stress in in vitro and in vivo AD-mimic system and patients (110-
112). Therefore, mitochondrial dysfunction by Aβ is a critical 
contributor during AD pathogenesis, and in the same line of 
thought, mitochondrial protection becomes a new strategy in 
AD treatment. Also, mitochondrial dysfunction and oxidative 
stress is more evidently the common linker between AD and 
abnormal glucose metabolism (113, 114). Therefore, mitochon-
drial recovery drug was proposed as a new concept for AD ther-
apy and treatment of insulin-resistance. Dimebon (Pfizer), orig-
inally allergy-treating drug used in Russia, was known to improve 
ATP generation and energy metabolism in mitochondria and 
was tested its effectiveness in clinical trial for AD therapeutics 
(115). Unexpectedly, phase III trial performed with 598 patients 
ended up as failure with the lack of improvement. This failure 
leads researcher to suspect the novel mitochondrial mechanism 
of action of Dimebon, rather than promiscuous clinical effects, 
including inhibition of histamine H1 and serotonin receptors. 
In extended thoughts, other medicines with the effect of mito-
chondrial rejuvenation have been investigated as probable can-
didates for AD therapeutics. Piracetam is a nootropic drug and 
has effect on cognitive impairment during aging and dementia 

(116). The mechanism of action for piracetam was controver-
sial, including effects on glutamate receptors, GABA-mimetic 
action and activation of calcium influx into neuronal cells (116). 
Recently, mitochondrial relevance of this drug has been found 
to enhance the membrane fluidity in brain mitochondria and 
consequently improve membrane potential, ATP generation 
and decrease apoptotic vulnerability in aging and AD model 
(117). These findings suggested the possibility that this drug ex-
erted therapeutic effect through mitochondrial recovery in AD. 
In addition to mitochondrial function itself, axonal transport of 
mitochondria through microtubule protein was observed to be 
impaired in AD (118). This could be another strategic target in 
AD therapeutic development. The acetylation status of α-tubulin 
by histone deacetylation (HDAC6) is highly related to cargo 
transport along microtubules (119). Restored α-tubulin acetyla-
tion by HDAC6 inhibitor improves both anterograde and retro-
grade motility of mitochondria and, furthermore, rescued mito-
chondrial morphology in hippocampal neurons under AD-mi-
mic condition of Aβ-induced impairment of mitochondria func-
tion (120). These diverse mitochondria-targeting mechanisms 
of action are all likely to be probable therapeutic mechanism for 
AD treatment and deserve to be evaluated. 
 Besides the relevance to mitochondrial dysfunction, disturbed 
glucose metabolism could be directly connected to Aβ genera-
tion and accumulation by modulating the enzyme activity of 
Aβ-generating enzyme through post-translational modifica-
tion. Addition of O-linked β-N-acetylglucosamine (O-GlcNAc) 
to protein is a glucose level-dependent post-translational mod-
ification and the specific inhibition of O-GlcNAcase, 1,2-dideoxy-
2γ-propyl-α-D-glucopyranoso-[2,1-d]-Δ2γ-thiazoline (NBut-
GT), ameliorated Aβ generation by modulating nicastrin activi-
ty, a component of γ-secretase, through S708 site O-GlcNAcyla-
tion (121). Different from other O-GlcNAcylation modulating 
drugs, such as O-(2-Acetamido-2-deoxy-D-glucopyranosyli-
dene) amino N-phenyl carbamate (PUBNAc) and Streptozoto-
cin (STZ), NButGT was specific to O-GlcNAcase and showed 
the lack of cellular toxicity nor insulin resistance (122). Addi-
tionally, O-GlcNAcase inhibitor was reported to reduce the tau 
phosphorylation and improve long-term potentiation (LTP) as 
well, which are possibly beneficial in AD (123, 124). O-GlcNA-
case inhibitor seems to be effective not only in Aβ generation 
but also in memory impairment and taupathies, which is need-
ed to be further verified in future clinical studies. In addition to 
O-GlcNAcylation, diverse post-translational modification could 
be another valuable target for AD therapeutics, especially spe-
cific modification for AD-related proteins, including γ-secretase 
and β-secretase.     

CONCLUSION

Recent findings suggest that Aβ accumulation is fairly slow and 
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time-consuming process, likely to require more than two de-
cades (125). During this long process, more than one physio-
logical system seems to be linked each other to harmonize in 
order to induce pernicious AD pathology. Taken information 
together, it is unlikely that a single remedy could cure AD be-
cause of its complexity and intricate relationship among the 
multitude of pathological components during pathogenesis. 
For this reason, therapeutic targets for AD should include mul-
tiple strategies and combinational remedy, not single, for the 
maximum effectiveness and better consequences. Also, not 
only direct therapeutic treatment for pathological intervention 
but also delaying this long pathogenic process would contrib-
ute to reduce the number of AD patients and increase prognos-
tic benefit (26). 
 Up to date, researchers are desperate to find new ways for AD 
treatment and tune the drug candidates for the maximum effi-
cacies. For instance, in developing Aβ synthesis modulator as 
AD therapeutic target, researchers has to consider diverse ques-
tions and concerns, including the right margins of decreased 
Aβ production level, maintaining proper physiological level and 
off-target effects by influencing other substrates besides Aβ. Be-
cause it is hard to tune the enzyme activity within the right 
physiological catalytic range, the successful development of AD 
therapeutics with enzyme modulator is dependent upon its ef-
ficacy on aiming action, specificity and selectivity to target sub-
strate. Also, as everyone agrees that the right timing of drug 
treatment is essential for the evaluation of efficacies for thera-
peutic targets, improvement in early diagnostic tool for AD have 
to be pursued along with AD therapeutic development.
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