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Letter to the Editor

No evidence for FANCF gene silencing in head-and-neck squamous cell carcinomas

To the Editor,

Fanconi anemia (FA) is a recessively inherited
genetic disorder with a strong predisposition to malig-
nancies, in particular acute myeloid leukemia
(AML) and squamous cell carcinoma (SCC) [1,2].
Thirteen FA genes are known today (FANCA, -B, -C,
D1/BRCA2, -D2, -E, -F, -G, -I, -J/BRIP1, -L, -M and
-N/PALB2) [3–6], whose products act in the ‘FA/BRCA
pathway’ to protect the genome against spontaneous
as well as cross-linker-induced chromosomal breakage
and rearrangements. Genomic instability is thought to
be the underlying cause of cancer predisposition in
FA patients as well as in other chromosomal insta-
bility and premature-ageing diseases [7]. It has been
hypothesized that FA gene defects might also play a
role in sporadic cancer [5,8]. In sporadic malignan-
cies, loss of DNA stability and tumor suppressor gene
function is often based on (a combination of) DNA
sequence alterations, deletions, and promoter methy-
lation. For FANCF, methylation of the promoter se-
quence has been reported for a proportion of sev-
eral types of cancer, including leukemia [9,10] and
cancer of the breast [11,12], ovary [13–16], blad-
der [17], cervix [18], testis [19], lung [20], and head-
and-neck [20]. All of these studies were based on a
methylation-specific PCR assay (‘MSP’), described in
detail by Taniguchi et al. [15] and discussed in more
general terms by Derks et al. [21].

Using the recently developed method of ‘methyl-
ation-specific multiplex ligase-mediated probe ampli-
fication’ or ‘MS-MLPA’ [22] we recently carried out a
survey of FANCF promoter methylation in a panel of
25 cell lines derived from squamous cell carcinomas of
various origins including the head-and-neck. We were
unable to ascertain any convincing example of FANCF
silencing, except in CHRF-288 leukemia cells, which
were used as positive controls [10].

Because cell lines, due to culturing-artifacts, may
not in every respect represent the initial tumor, we
analyzed archival formalin-fixed paraffin-embedded

HNSCC tumor material to retrospectively examine
the possible relevance of FANCF silencing for tu-
mor response to treatment regimens containing cis-
platin. Twenty-two tumors from patients treated with
cisplatin-containing chemoradiation were analyzed us-
ing MSP. Eleven tumors had shown sensitivity towards
this treatment regimen; this subgroup was expected to
be enriched for cases with FANCF methylation. How-
ever, no FANCF promoter methylation was observed
in any of the 22 tumors, while formalin-fixed paraffin-
embedded CHRF-288 cells, which served as a posi-
tive control, clearly showed methylation (Fig. 1). Our
results represent a marked difference from those pre-
viously reported (0 positives out of 22 tested versus
the reported 13 positives out of 89 tested; p < 0.07,
2-tailed Fisher’s exact test).

We next analyzed FANCF promoter methylation us-
ing an MS-MLPA test (MRC-Holland, Amsterdam,
The Netherlands). This test has the advantage over
MSP that methylation is determined at multiple pro-
moter sites simultaneously, while at the same time
deletions can be observed. However, this screen did not
reveal any case of FANCF promoter methylation or ho-
mozygous deletion. Thus, so far our results have failed
to provide evidence for FANCF inactivation underlying
a favorable response to cisplatin-containing treatment
regimens of head-and-neck SCCs.

The discrepancy between our results and those pub-
lished earlier may be explained, at least in part, by ex-
perimental details that could critically influence the re-
sults to be obtained with MSP (see [21] for a review of
the MSP method).

First, Marsit et al. [20], who followed the PCR con-
ditions as described by Taniguchi et al. [15], used
44 PCR cycles to amplify the (bisulphite-modified)
promoter sequences, whereas we used 34 cycles, which
is in compliance with Derks et al. [21], who recom-
mend not to exceed 35 cycles. The use of too many cy-
cles may carry a risk of producing false-positive am-
plification products.

Second, since the yields of microdissected mater-
ial may be low and highly variable, we used carrier
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Fig. 1. Bisulphite concentration-dependent variation in results obtained by MSP. MSP carried out on DNA isolated from FANCF-methylated
CHRF-288 cells, and from unmethylated HSC93 wild type control cells (both formalin-fixed and paraffin embedded), after treatment with various
concentrations of sodium bisulphite. An amplification product was generated with the M primers using methylated DNA even when the bisulphite
concentration was down to 10% of the prescribed concentration (EZ DNA methylation kit, Zymo research). Using unmethylated DNA as a
template, the PCR does not generate an amplification product when reducing the bisulphite concentration to 50%. Unmethylated DNA treated
with 10% and 25% of the prescribed concentrations of sodium bisulphite, however, appeared to produce a PCR product with the M primers that
will be interpreted as methylation-positive, but in fact is false-positive and due to suboptimal bisulphite treatment of the DNA.

DNA to standardize the amount of template for bisul-
phite treatment and to facilitate precipitation, as rec-
ommended [21]. Whether carrier DNA has been used
in the reported studies has not been specified.

Third, bisulphite is known to be chemically unsta-
ble and may thus be a variable component of the re-
action mixture if not used freshly-made. The MSP as-
say essentially relies on the conversion of unmethy-
lated cytosine residues into uracil by sodium bisulphite
treatment and the use of primers that specifically am-
plify either unmethylated (U) or methylated (M) DNA.
However, DNA isolated from formalin-fixed paraffin-
embedded specimens is often of relatively poor quality,
which might interfere with efficient bisulphite modi-
fication of unmethylated cytosines. We hypothesized
that incomplete conversion of cytosine bases could
cause false-positive results by PCR amplification, as
most amplification protocols allow few mismatches in
the annealing primers. We mimicked suboptimal con-
ditions by applying a range of bisulphite concentra-
tions and determined the amplification of methylated
and unmethylated promoter region of FANCF using
primers identical to those used in published studies
[15,20]. A concentration-dependent result of the PCR
reaction was observed for the amplification of methy-
lated and unmethylated DNA with M and U primers,

respectively (Fig. 1). Remarkably, a PCR product was
generated with unmethylated DNA using M primers at
bisulphite concentrations that were 10% and 25% of
the prescribed concentration. Moreover, when 10% of
bisulphite was used for conversion, only the M- and no
U-PCR product was generated with unmethylated con-
trol DNA, in which case the sample was to be scored
as fully methylated for FANCF.

Our results revealed that the method as often ap-
plied in the assessment of FANCF promoter methy-
lation, is liable to produce false-positive results when
suboptimal conditions are used. Suboptimal conditions
might exist particularly when using archival formalin-
fixed paraffin-embedded material. We suggest that the
discrepancy between our results and those reported by
Marsit et al. [20] may be partly explained by this effect
and that the occurrence of FANCF silencing in head-
and-neck cancer may in fact be less frequent than sug-
gested, if existing at all.

In conclusion, the molecular basis underlying a fa-
vorable response of HNSCC patients to cisplatin treat-
ment is not related to silencing of FANCF. In addition,
the reported MSP-results that have led to conclusions
regarding FANCF promoter methylation in tumor sam-
ples of various origins need to be considered with great
caution in view of the possibility for the MSP assay to
produce false-positive results.
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Abstract

Hypermethylation of the Fanconi anemia gene,
FANCF, has been reported to occur in an appreciable
proportion of malignancies, including 15% of head-
and-neck squamous cell carcinomas. This feature is
claimed to be a useful tumor marker predicting a fa-
vorable response to cisplatin-based treatment proto-
cols, since cells with a defective FA/BRCA pathway
are hypersensitive to cross-linking agents, such as cis-
platin. We examined the promoter methylation sta-
tus of FANCF in paraffin-embedded oral tumor mate-
rial from a cohort of 22 patients, of whom 11 (50%)
had responded favorably to a cisplatin-containing treat-
ment regimen. No evidence for silencing of FANCF
was obtained in any of these tumors. This result is in
clear contradiction with published data. We provide
evidence that the methylation-specific PCR method
as used routinely to probe for FANCF methylation is
flawed and liable to produce false-positive results. We
suggest that the discrepancy between our results and
those previously reported may be partly explained by
this effect and that the occurrence of FANCF silencing
in head-and-neck cancer may in fact be less frequent
than suggested, if existing at all.
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