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The immune response against Mycobacterium tuberculosis is
multifactorial, involving a network of innate and adaptive
immune responses. Characterization of the immune response,
a clear understanding of the dynamics and interplay of
different arms of the immune response are critical to allow the
development of better tools for combating tuberculosis.
Dendritic cells (DCs) are one of the key cells in bridging
innate and adaptive immune response through their signific-
ant role in capturing, processing and presenting antigens. The
outcome of interaction of M. tuberculosis with DCs is not fully
understood and the available reports are contradictory were
some findings reported that DCs strengthen the cellular
immune response against mycobacterium infection whereas
others reported M. tuberculosis impairs the function of DCs
were infected DCs are poor stimulators of M. tuberculosis Ag-
specific CD4 T cells. Other studies showed that the outcome
depends on M. tuberculosis strain type and type of receptor on
DCs during recognition. In this review I shall highlight the
recent findings in the outcome of interaction of
Mycobacterium tuberculosis with DCs.

Introduction

Tuberculosis (TB) is one of the most devastating diseases of
mankind and remains a major health threat in Africa with a much
higher incidence in the Sub-Saharan part of the continent.
M. tuberculosis is the predominant cause of TB in human and it
was first identified as the causative agent of TB by Robert Koch in
1882. It is an extraordinary effective human pathogen infecting
one-third of the world’s population resulting 8.8 million cases and
1.45 million deaths annually.1 The inhalation of small size
respiratory droplet nuclei (1–2 mm or less) through the respiratory
tract is the most common route of entry of the tubercle bacillus.
The respiratory droplet nuclei are small enough in size to pass into
the lower respiratory tract escaping the anatomical barriers of
nasopharynx and upper respiratory tract.2 Once inhaled droplets
pass the lower respiratory tract and are deposited in the alveolar
spaces and phagocytic cells, mainly macrophages, take up the

bacteria, which assist in the induction of a rapid inflammatory
response and accumulation of cells. Although alveolar macro-
phages are the first cells to engulf, dendritic cells and monocyte-
derived macrophages also take part in the phagocytic process.3,4

Endocytosis of M. tuberculosis involves multiple receptors such
as complement receptor (CR), Fc receptor (FcR), surfactant
protein A (Sp-A) and its receptors, scavenger receptor class A,
Toll-like receptor (TLR) CD14, mannose receptors and the DC-
specific intercellular adhesion molecule-3-grabbing nonintegrin
(DC-SIGN).5 Some receptors allow silent entry (CR), and others
induce defense mechanisms (FcR).6,7 The subsequent intracellular
fate of mycobacteria is considered as predetermined by the mode
of entry into macrophages;8 however, experiments have shown
that intracellular trafficking of M. tuberculosis did not significantly
alter by blocking individual receptors.5

Once organisms have made their way into the lung, they have
four potential fates.9,10

(1) Killing and elimination of the bacilli with the initial host
immune response, and these individuals do not develop TB due
to this exposure event. No clinical or immunological evidence of
this interaction is apparent.

(2) Immediately after infection the bacilli can grow and
multiply, causing clinical disease (primary TB).

(3) Development of “latent infection” where the bacilli persist
in a sub-clinical (quiescent) form. The bacteria may become
dormant or may persist at low numbers, and are prevented from
unchecked replication by the immune system and never cause
disease at all. This phase is manifested only as positive tuberculin
skin test (latent TB) or positive interferon gamma release assay.

(4) Reactivation of the dormant bacilli or escape from the
quiescent phase with resultant disease (reactivation TB).

Immunology of Tuberculosis

The protective response to M. tuberculosis is complex and
multifaceted involving many components of the immune system.
Macrophages and DCs are key cells in the immune response to
M. tuberculosis by presenting antigens to T cells in the context of
both MHC class I and II. T cells in turn activate macrophages to
kill the bacteria by secreting IFN-c and TNF.11 Furthermore,
macrophages and DCs play an important role in recruitment of
cells at the site of infection by secreting the proinflammatory
cytokines IL-1 and IL-6.12

Correspondence to: Adane Mihret; Email: adane_mihret@yahoo.com
Submitted: 07/24/12; Revised: 09/03/12; 10/18/12; Accepted: 10/18/12
http://dx.doi.org/10.4161/viru.22586

Virulence 3:7, 654–659; November 15, 2012; G 2012 Landes Bioscience

654 Virulence Volume 3 Issue 7

http://dx.doi.org/10.4161/viru.22586


Activated macrophages kill engulfed pathogenic bacteria via
different mechanisms, including phagosome-lysosome fusion,
generation of reactive nitrogen intermediates, particularly nitric
oxide and generation of reactive oxygen intermediates. The
maturation of phagosomes is a dynamic process where the
phagosomes, which contain engulfed microbes fuse with
lysosomes and then modified by transient fusion with endocytic
organelles.13,14 The phagolysosome fusion represents a major
antimicrobial mechanism where engulfed microbes are degraded
by intralysosomal acidic hydrolases.11

DCs are superior antigen presenting cells (APCs) and they help
in maximizing the recognition of antigens by T cells in the
draining lymph nodes.15-17 However, the outcome of interaction
of M. tuberculosis with DCs is not fully understood and the
available reports are contradictory.

M. tuberculosis is a classic example of a pathogen that resides
intracellularly within macrophages and for which the protective
response relies on cell-mediated immunity. Studies demonstrated
that acquired immunity to M. tuberculosis requires contributions
by multiple T cell subsets: CD4+ T cells, CD8+ aβ and cd T cells
and CD1 restricted T cells.18

CD4 T cells play a dominant role in the protective response
against M. tuberculosis.19 The mycobacteria reside within macro-
phage vacuoles; therefore, mycobacterial antigens are loaded on
MHC class II and presented to CD4 T cells through endocytic
antigen presentation pathway. Upon activation, CD4 T cells
secret IFN-c, IL-2 and TNF, which in turn activates macro-
phages.11 CD4 depleted or disrupted mice and adoptive
transferred showed that CD4 cells are important cells for
controlling infections.20-24 In humans, the necessity for CD4+ T
cells to help control of infection is shown by the rapid acceleration
of TB in HIV positive patients who have loss of CD4 T cells.25

Moreover, CD4 cells are also important to enhancing APC
function through interaction of CD40-CD40L between CD4 T
cells and APC and this in turn can facilitate APC medicated
induction of other T cells such as CD8 T cells.26

Other roles played by CD4 T cells include induction of
apoptosis through perforin and granulysin, FAS-L or TNF-a lytic
pathways,27 help for B cells and CD8 T cells, and production of
other cytokines.28 Studies in CD4 depleted or deficient mice have
also showed that CD4 cells have other roles in addition to IFN-c
production in controlling mycobacterial infections.29

The MHC class I-restricted CD8 T cells contribute to
protective immunity against TB;30,31 however, mechanisms
underlying CD8 T cell stimulation are not fully understood.
The stimulation of CD8 T cells require mycobacterial peptide
presentation by MHC I products, which generally occurs in the
cytosol not readily accessed byM. tuberculosis. Two pathways have
been proposed: first, M. tuberculosis can enter into the cytosol of
infected DCs, and this leads to direct loading of MHC I
molecules.32 Second, apoptosis of macrophages infected with
M. tuberculosis results in mycobacterial antigens carrying vesicles,
which are taken up by DCs in the vicinity and leads for cross
priming.33 CD8 T cells that are specific for mycobacterial antigens
can produce IFN-c and secrete perforin and granulysin, which
lyse host cells and attack M. tuberculosis directly.34

CD1 restricted T cells, cd T cells and CD8 T cells restricted by
non-classical HLA CD1 molecules participate in the response
against M. tuberculosis in humans.35-37 CD1 molecules present
glycolipid antigens, which are found in the cell wall of
mycobacterium to T cells, which in turn secretes IFN-c and
express cytolytic activity.38,39

Studies in mouse showed that cd T cells partially protect
against high doses of M. tuberculosis infection and they are
important in regulating granuloma formation.40,41 In humans,
these cells comprise about 5% of the whole T cell population in
peripheral blood.37 The cd cells have a mycobacteriocidal activity
via granule and stimulation of these cells with phospholigands
induces IFN-c production.42 Therefore, these cells are believed to
be part of the first line of defense against TB.

Cytokines are key molecules which play role in disease
protection, progression or development of pathophysiology.
Different animal and human studies have firmly established that
cytokines have a major role in determining the outcome of
infection with M. tuberculosis. Studies in mice and human showed
that IFN-c is a critical cytokine involved in the control of
M. tuberculosis infections. Mice with a genetic deficiency for IFN-
c are very susceptible to infection with virulent M. tuberculosis
with a shorter mean survival time and a less NOS2 production,
indicating that macrophage activation was defective, contributing
to the susceptibility of IFN-c gene knockout (KO) mice.43 The
importance of this cytokine has also been confirmed in humans
who have a mutation in their IFN-c receptor and this was
associated with a heightened susceptibility to mycobacterial
infections.44

TNF also play a central role in the initiation and maintenance
of controlling M. tuberculosis by activating macrophages and
facilitating granuloma formation.45-47 TNF-a in synergy with
IFN-c activate macrophages to produce RNI and mice deficient
in TNF-a or the 55-kDa TNF receptor succumbed to
infection.45,48 TNF-a or its receptor is also an important
molecule, which affects cell migration to, localization and the
granulomatous response following M. tuberculosis infection.49 In
addition, reactivation of latent disease in rheumatoid arthritis
patients after neutralization of TNF with specific monoclonal
antibodies signifies the importance of this cytokine.50

The other important cytokine to control M. tuberculosis
infection as in the case of most intracellular infections is IL-12.
The susceptibility of IL-12p40 gene deficient mice to
M. tuberculosis and the therapeutic role of IL-12 strongly support
an important role for this cytokine in the protective immune
response against M. tuberculosis.51,52 In chronically M. tuberculosis
infected mice administration of IL-12 DNA has been reported to
reduce the bacterial load.53 Mutations in the IL-12p40 receptor
IL-12RB1 gene are also strongly associated with susceptibility to
TB.54

Chemokines (chemotactic cytokines) are largely responsible for
cell trafficking to the site of infection; however, their role in
M. tuberculosis infection have been investigated to a limited
extent. M. tuberculosis induced elevated levels of a variety of
chemokines, including IL-8 (CXCL-8), monocyte chemoattrac-
tant protein 1 (MCP-1) (CCL-2), MCP-3 (CCL-7), MCP-5
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(CCL-12), regulated on activation normal T cell expressed and
secreted (RANTES/CCL-5), MIP1-a (CCL-3), MIP1-β (CCL-
4), MIP-2 (CXCL-2) and IP-10 (CXCL-10)55,56 and their
receptor like CCR5 and CXCR4.57

Dendritic Cells Origin and Function

Dendritic cells originally identified by Steinman and his
colleagues (1972) comprise a family of antigen presenting cells
that are central to the initiation of immune responses in their
capacity to orchestrate signals derived from the different parts of
the immune system.58 DCs are the most potent antigen
presenting cells than any other antigen presenting cell. DCs can
take up an array of different antigens, including viruses, bacteria,
parasites, extracellular fluid and apoptotic bodies released by dying
cells, process and present antigens to T cells in the form of
peptides bound to both MHC class I and class II molecules.59

They originate from stem cell precursors in the bone marrow and
circulate as precursors in blood before entering tissue where they
become resident immature DCs. DCs do not express a single
surface molecule and combination of markers is used to define the
different dendritic cell subsets.60

Useful information about the antigenic composition in the
periphery is provided to the secondary lymphoid tissues by DCs.
At the immature stage of development, DCs express high
intracellular MHC II, Endocytosis, phagocytosis, high CCR1,
CCR5 and CCR6; low CCR7, CD40, CD54, CD80, CD83,
CD86 and CD58 and are specialized in antigen capture residing
at the peripheral sites.61 In peripheral tissues DCs capture and
process antigens via different pathways: (1) Macropinocytosis
where fluid from the extracellular milieu is taken up into pinocytic
vesicles and antigen is concentrated by expelling excess water,62

(2) endocytosis via lecitin receptors such as mannose receptor,
DEC-205, Langerin or DC specific ICAM 3 grabbing non-
integrin (DC-SIGN),63,64 (3) Fc receptors (FccRI, FccRII and
FccRIII) and complement receptors (CR3) can mediate efficient
internalization of immune complexes or bacteria,65 (4) phagocyt-
osis of apoptotic and necrotic cell fragments, viruses, bacteria
including mycobacteria and/or intracellular parasites66 and
(5) Toll-like receptors (TLRs) in pathogen recognition including
LPS, peptidoglycan, lipotheicoic acid and lipoprotein.67

After antigen uptake, DCs migrate to the draining secondary
lymphoid organ and during this migration, DCs undergo a
maturation process with downregulation of the capacity to capture
antigen and upregulation of antigen processing and presentation.
Matured DCs are characterized by high surface MHC II, low
endocytosis, low phagocytosis, low CCR1, CCR5, CCR6, high
CCR7 and high CD40, CD54, CD80, CD83, CD86 and
CD58.68

Dendritic Cells and Their Role in M. tuberculosis
Immune Response

Dendritic cells are the most potent professional antigen presenting
cells for priming naïve T cells, an important source of IL-12 and
are highly efficient cells in inducing antimicrobial and antitumor

immune responses.69 However, the outcome of interaction of
mycobacteria with DCs is not fully understood and the available
reports are contradictory.

A number of studies indicated that DCs strengthen the cellular
immune response against mycobacterium infection.3,70-73, At the
onset of inflammatory response against M. tuberculosis, DCs are
highly represented at sites of M. tuberculosis infection.74-76

Immature DCs present in the lung mucosa are specialized for
antigen uptake and processing. After interacting with pathogens,
they mature and migrate in lymphoid organs where they prime T
cells through cell surface expression of MHC and costimulatory
molecules and secretion of immunoregulatory cytokines such as
IL-12.61

In the contrary, others reported that M. tuberculosis inhibits
DCs maturation and masks the presence of the pathogen and
impairs its ability in stimulating antigen specific T cells. Others
reported the fate of DCs maturation depends on the type of
receptors during recognition where interactions of M. tuberculosis
with TLR results in DC activation characterized by high IL-12
secretion during early infections whereas interactions with DC-
SIGN prevent DC activation by blocking TNFkB activation that
results in high secretion of IL-10.77

We and others showed that infection of monocyte derived
dendritic cells (MDDCs) with M. tuberculosis leads to upregula-
tion of MHC I and MHC II, CD40, CD54, CD58 and
CD80,3,78 a phenotype consistent with activation of DCs and
increased production of proinflammatory cytokines such as IL-12,
TNF-a, IL-1 and IL-6 that lead to maturation, and possibly
migration and antigen processing and presentation. DCs help for
T cell activation and generating effective cell mediated immunity
through successfully presenting antigen to T cells at local lymph
nodes and also infected DCs disseminate mycobacteria.17,71,79

Another study indicated that M. tuberculosis infected MDDC
showed a strong increase in CD83 expression as well as in co-
stimulatory molecules CD40, CD80 and CD86 and adhesion
molecules, CD58 and CD54.

Conversely, M. tuberculosis infected monocyte derived macro-
phages (MDM) showed enhanced expression of co-stimulatory
and adhesion molecules CD40 and CD54 and a slight down-
regulation of MHC class II DQ expression. No changes in CD80,
CD86, CD64 and MHC class II DR were observed. Contrary to
MDM, MDDC showed a significant upregulation of class II DR
and DQ molecules, suggesting that M. tuberculosis infected DCs
are likely to function as efficient APCs compared with
M. tuberculosis infected macrophages, in addition, M. tuberculosis
infected DCs stimulate production of IFN-c by T cells unlike
MDM.12 A cross talk between DCs and M. tuberculosis infected
polymorphonuclear neutrophils through DC-SIGN and Mac-1
induces maturation of DCs which can initiate T-cell responses
directed against M. tuberculosis. Activation of T cells and
production of IFN-c can amplify the early inflammatory response,
leading to macrophage activation and removal of bacteria.80

In mice, depletion of DCs impaired their ability to mount
effective CD4 T cell response which in turn resulted in a
significant loss of control over bacterial replication, resulting in
huge bacterial loads in the lungs and spleen.81 There are also
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studies which reported genetic deficiency of DCs or mutation of
genes associated with DCs lead for BCG-osis and spontaneous
Mycobacterium kansasii infection.82 Other studies also showed that
M. tuberculosis infected DCs produce high level of chemokines
such as CCL3, CCL4, CXCL8, CXCL9 and chemokine receptors
such as CCR7, which are important in the migration of NK and
T cells.83

On the other hand, there are studies which reported that a very
low or no upregulation of surface molecules and production of anti-
inflammatory cytokines by M. tuberculosis infected DCs.
M. tuberculosis impairs DCs maturation, reduce secretion of IL-
12 by DCs and inhibit their ability to stimulate T cell
proliferation.84-86 M. tuberculosis infects DCs with high frequency
and impairs their function in vivo. In this study they showed that
DCs transport M. tuberculosis from the lungs to the local draining
lymph node during the early stages of infection and these cells are
poor stimulators of M. tuberculosis Ag-specific CD4 T cells despite
expressing surface MHC class II and costimulatory molecules.87 It
has been shown that M. tuberculosis infected DCs had low capacity
to present mycobacterial antigens and stimulates M. tuberculosis
specific CD4+ T cells in vivo.88,89 Furthermore, M. tuberculosis
infection induced production of several cytokines like IL-10 which
can decrease DCs trafficking to draining lymph nodes.90

A recent study showed a delayed accumulation of lung DCs in
comparison with mice inoculated with PPD and this delayed DCs
accumulation in the lungs could be an evasion/pathogenic
mechanism of M. tuberculosis to avoid early generation of
protective responses, by delaying the early expansion of truly
effector T cells91 and other recent study reported that

M. tuberculosis directs T helper 2 cell differentiation by inducing
interleukin-1β production in DCs92 and also promotes regulatory
T-Cell expansion via induction of programmed death-1 ligand 1
(PD-L1 and CD274) on DCs.93

Other study reported that the activation and cell trafficking
ability ofM. tuberculosis infected DCs dependent upon the type of
M. tuberculosis strain and suppressing the migration of MoDC
and modulating its cell trafficking ability may be a mechanism
used by M. tuberculosis to paralyze the early immune response of
the host.94 Mycobacterial H37Rv cell wall, mannose-capped
lipoarabinomannan (ManLAM) and phosphatidylinositol manno-
sides (PIMs), had divergent effects on functional polarization of
human DCs with regard to their maturation and pro-inflammat-
ory cytokine responses. Highly purified H37Rv ManLAM
induces a vigorous pro-inflammatory response while PIM is
strongly anti-inflammatory.95

Conclusion

The ability of DCs in the lung to migrate to the regional lymph
nodes is a critical step in the immune response against M.
tuberculosis infection. However, the available information in the
outcome of interaction of DCs with M. tuberculosis is
contradictory. Some findings reported that DCs strengthen the
cellular immune response against mycobacterium infection
whereas others reported M. tuberculosis impairs the function of
DCs, and some findings reported that the outcome depends on
the M. tuberculosis strain type and type of receptor on DCs during
recognition.
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