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In case of traumatic brain injury (TBI), occurrence of central nervous tissue damage
is frequently aligned with local modulations of neuronal and glial gap junction channel
expression levels. The degree of gap junctional protein expression and intercellular
coupling efficiency, as well as hemichannel function has substantially impact on the course
of trauma recovery and outcome. During TBI, gap junctions are especially involved in the
intercellular molecule trafficking on repair of blood vessels and the regulation of vasomotor
tone. Furthermore, gliosis and astrocytic swelling due to mechanical strain injury point
out the consequences of derailed gap junction communication. This review addresses the
outstanding role of gap junction channels in TBI pathophysiology and links the current state
of results to applied clinical procedures as well as perspectives in acute and long-term
treatment options.
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INTRODUCTION
Traumatic brain injury (TBI) is defined as a severe intracranial
injury due to external impact force. Insurance industry and many
health care providers treat TBI as an “event.” Once treated with a
brief period of rehabilitation, the perception exists that patients
with a TBI require little further treatment and face no lasting
effects on the central nervous system or other organ systems (Lu
et al., 2013; Selvarajah et al., 2013). As a chronic disease TBI meets
the World Health Organization definition as having one or more
of the following characteristics: it is permanent, caused by non-
reversible pathological alterations, requires special training of the
patient for rehabilitation, and/or may require a long-period of
observation, supervision, or care. TBI increases long-term mor-
tality and reduces life expectancy. It is associated with increased
incidences of seizures, sleep disorders, neurodegenerative dis-
eases, neuroendocrine dysregulation, and psychiatric diseases that
may arise and/or persist for months to years post-injury.

One of the major factors in cellular pathophysiology, leading
to long-lasting effects in TBI patients, is based on the interrup-
tion of gap junction connectivity of the neuro-glial network and
mechanically induced opening of large pore channel conduc-
tances due to the traumatic event (Avila et al., 2011).

Gap junctions enable neurons and glial cells to communi-
cate by exchange of ions and small molecules via intercellularly
connected, adjacent channel proteins (Prochnow and Dermietzel,
2008; Eugenin et al., 2012). Each of these channels is consisting
of six subunits of integral membrane proteins, termed Connexins
(Cxs) (Figure 1). In mice and humans, Connexins are encoded by
a family with 20 and 21 genes, respectively (Berthoud and Beyer,
2009). In the CNS of rodents, the majority of Connexin isoforms
(n = 11) are expressed by glial cells (Prochnow and Dermietzel,
2008; Giaume and Theis, 2010; Mika and Prochnow, 2012; Rash
et al., 2012). Among others, Cx36 gives rise to the main neu-
ronal gap junction channel forming protein (Belluardo et al.,

2000; Venance et al., 2000; Rash et al., 2012; Belousov and Fontes,
2013). Connexins can also be expressed as unopposed hemichan-
nels in cells of the CNS. In this context, different types of Cxs form
hemichannels (Schock et al., 2008; Giaume and Theis, 2010; Saez
et al., 2010).

Additionally, a vertebrate protein family, Pannexins (Pxs)
(Figure 1), with a strong homology to Innexins (Figure 1) has
been described (Panchin et al., 2000; Baranova et al., 2004;
Panchin, 2005). Innexins are the gap junction forming proteins
in insects. Recent findings reveal that Px1, expressed on neurons
and glial cells (Thompson et al., 2008; Macvicar and Thompson,
2010; Bargiotas et al., 2011; Prochnow et al., 2012), operates as a
unique large pore channel instead of forming gap junctions (Bao
et al., 2004; Locovei et al., 2006a,b; Pelegrin and Surprenant, 2006,
2007; Romanov et al., 2007; Zoidl et al., 2007).

Here we discuss the role, function, and regulation of
Connexin-based gap junctions and hemichannels as well as
Pannexin1 large pore channels (summarized in Table 1) in
the context of concomitant network (dys-)regulation and pro-
inflammatory effects according to TBI. Furthermore, the latter
proteins will be focused with regard to experimental and clinical
treatment options which might influence the long-term outcome
in TBI patients in future times.

THE ROLE OF GAP JUNCTIONS AND CONNEXIN
HEMICHANNELS DURING CNS INJURY
NEURONAL CONNEXINS
Electrical synapses based on Cx36/Cx35gap junctional contacts
are common for dendro-dendritic as well as dendro-somatic neu-
ronal connections and contacts between axon terminals (Hamzei-
Sichani et al., 2007). In the mammalian central nervous system,
Cx36 is expressed by neurons in a dynamic manner: the cou-
pling of neurons by gap junctions and the expression of Cx36
transiently increase during early postnatal development and take
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FIGURE 1 | More recently, another family of proteins, termed pannexins

(Panxs), has been identified. These proteins share similar membrane
topology but no sequence homology with Cxs. In turn, sequence homology is

given to the invertebrate gap junction protein Innexins. Pannexins form
unique, multimeric membrane channels with pharmacosensitivity partially
overlapping with that of Cx hemichannels.

Table 1 | Summary of cell type specific expression of Cxs and Pxs as described until this point of time.

Cell type Connexin isoforms Pannexin isoforms Discussed by, a.o.

Neurons 26, 30.2, 36, 45, 57 1, 2 Condorelli et al., 2000
Rouach et al., 2002
Bruzzone et al., 2003
Nagy et al., 2004

Astrocytes 26, 30, 43, 40, 45, 46 1 Nagy et al., 2004
Giaume et al., 2013

Oligodendrocytes/Myelin 29, 32, 47 Not described Nagy et al., 2004
Altevogt et al., 2002
Li et al., 2014

Microglia 36, 43, 45 Not described Mika and Prochnow, 2012

Bold typed isoforms are currently known to contribute to the course and development of traumatic brain injury (a.o., and others).

part in the regulation of neuronal death (Park et al., 2011). After
the second postnatal week, coupling and expression of Cx36
physiologically decrease (Arumugam et al., 2005).

Due to spinal cord and TBI, gap junctional coupling and
Cx36 expression by neurons increase in a pathophysiologic way
(Chang et al., 2000; Frantseva et al., 2002a). A similar injury-
dependent upregulation of neuronal coupling occurs during
ischemia (Oguro et al., 2001; De Pina-Benabou et al., 2005) and
epilepsy (Gajda et al., 2003). Furthermore, the isoforms Cx26 and
Cx32 can be expressed by neurons of the CNS (Bruzzone and
Ressot, 1997; Dermietzel and Hofstadter, 1998; Teubner et al.,
2001). Belousov and colleagues characterized the mechanisms
that are responsible for the injury-mediated increase in neuronal
gap junction coupling. Furthermore, they were able to describe
a group II metabotropic glutamate receptor (mGluR) regulation
dependent process in injury-induced neuronal death (Wang et al.,
2012). It was shown that activation of group II mGluRs increases
background levels of neuronal gap junction coupling and Cx36
expression. Inactivation of group II mGluRs prevents ischemic
increase in coupling of Cx36 via cAMP/PKA-dependent signal-
ing pathways (negatively coupled to the group II mGluRs) (Conn
et al., 2005). Interestingly, other neurotransmitter receptors,

including N-methyl-D-aspartate receptors (NMDAR), AMPA
receptors, group I mGluRs, group III mGluRs, GABAA recep-
tors, and GABAB receptors did not directly contribute to these
regulatory mechanisms (Wang et al., 2012). Similar results were
obtained using three other in vitro injury models: hypo-osmotic
shock, as a model of cytotoxic and osmotic edemas occurring dur-
ing stroke and TBI (Unterberg et al., 2004); hydrostatic pressure
injury, representing mechanical aspects of TBI (Morrison et al.,
1998a,b) and administration of 4-aminopyridine, as a model of
epileptic seizures (Wong and Yamada, 2001).

These observations led to the conclusion that group II mGluRs
controls the injury-mediated increase in neuronal gap junction
coupling. By regulation of neuronal gap junctions, they also
control both death and survival mechanisms in injured neurons.

The critical factors for secondary neuronal cell death can
be restricted to an excessive glutamate release from cells of
the injured tissue, in turn causing local glutamate-dependent
excitotoxicity. The excitotoxic mechanisms of glutamate include
hyperactivation of NMDA receptors and increased Ca2+ ion
influx. Furthermore, an overactivation of Ca2+-dependent signal-
ing pathways is discussed to cause death of neurons (Choi, 1988;
Arundine and Tymianski, 2004; Hazell, 2007).
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Based on the results of Belousov et al. (Belousov et al., 2012;
Belousov and Fontes, 2013), a novel model for the mechanisms
of glutamate-dependent excitotoxicity was proposed. This model
implicates that overactivation of NMDAR is not only the main
reason for glutamate-dependent neuronal death during neuronal
injury. The process might be supported by the expression of
neuronal gap junctions.

ASTROGLIAL CONNEXINS
TBI is mostly associated with excessive excitatory neurotransmit-
ter release and subsequent cellular depolarization. This process,
in turn, impacts on the degree of neuronal injury and glial reac-
tion. The abrupt increase of extracellular glutamate subsequently
drives an influx of Ca2+ ions, resulting into Ca2+-dependent exci-
totoxicity (Conti et al., 1998; Osteen et al., 2001). Another face
of TBI is the rapid loss of astrocytes and the substitutive induc-
tion of reactive astrocytes, as it could be demonstrated in the
Hippocampus in animal models (Dietrich et al., 1994; Zhao et al.,
2003). Studies of Nakase et al. (2003) gave rise for a predominant
role of astroglial Cx43-gap junctions in the reduction of neu-
ronal apoptosis under ischemic conditions, influencing infarct
volumes and caspase-3 levels. Furthermore, the physiologically
relevant portion of glial fibrillary acidic protein (GFAP)—positive
astrocytes could be primarily attributed to Cx43 expressing mice.
Knockout models showed that a lack of Cx43 expression is
aligned with strongly reduced levels in GFAP expression, leading
to pathophysiological conditions of the neuro-glial syncythium
(Nakase et al., 2003). Cx43 and Cx30 are primarily localized on
astrocytes, whereas Cx29, 32, and 47 are predominantly expressed
on oligodendrocytes (Bruzzone and Ressot, 1997; Dermietzel and
Hofstadter, 1998; Teubner et al., 2001).

Regarding functionality, the intracellular condition and state
of phosphorylation of the Connexin proteins influence the inter-
cellular permeability characteristics of gap junctions. In this con-
text it was demonstrated that extracellular signal-regulated kinase
(ERK) mediated phosphorylation of Cx43 strongly reduced the
intercellular permeability of gap junctions (Brandes et al., 2002;
Cottrell et al., 2003). These findings correlate well with later
findings of Ohsumi et al. (2010) who investigated the expres-
sion of phosphorylated Cx43 in the rat hippocampus following
experimental TBI in vivo. The authors showed by the use of
immunochemistry that high levels of phosphorylated Cx43 were
present in astrocytes of the hippocampal CA3 of the TBI exposed
hemisphere for up to 6 h. Subsequent upregulation of phospho-
rylated ERK coincided with the Cx43 expression and gave rise
to a participation of astrocytic gap junctions in the hippocampal
pathophysiology following TBI (Ohsumi et al., 2010).

It is critically discussed whether propagation of stress factors
(including apoptotic factors) via astroglial gap junctions might
impact on the process of secondary brain damage after TBI which
is mostly correlated to ischemic injury (Hossmann, 1994; Lin
et al., 1998; Frantseva et al., 2002a). This hypothesis became
strengthened by findings of Frantseva and colleagues who demon-
strated that neuronal cell death after hypoxic-hypoglycemic
insults is reduced in CNS slices treated with antisense oligonu-
cleotides for Cx43. Propagation of secondary cell injury to neigh-
bored cells via astrocytic gap junctions was demonstrated in

1998. It was shown that astrocytic Cx43 based gap junctions
mediate transcellular signals, enhancing calcium overload, oxida-
tive stress, and metabolic inhibition (Lin et al., 1998). On the
other hand Nakase et al. (2003) suggested that astrocytic gap
junctions facilitate the establishment of a reactive astrocytic net-
work and remove cytotoxic factors (Nakase et al., 2003). This
would also underline the indication that mechanisms of spread-
ing depression after TBI or ischemic insults trigger neuronal as
well as glial depolarization, and thereafter tend to induce neu-
ronal damage (Katayama et al., 1990; Nedergaard and Hansen,
1993).

Especially in the context of cerebral ischemia, selective block-
ade of Cx43 hemichannels by mimetic peptide application sig-
nificantly improved the neuronal outcome in fetal sheep. This
finding was in particular due to a hemichannel blockade follow-
ing, but not during global cerebral ischemia in the near-term
fetal condition (Davidson et al., 2013). Recently, Orellana et al.
(2013) discussed the role of Cx hemichannels as diffusional
pathways for ions and small molecules between the intra- and
extracellular compartments and suggest that channel opening
may gate the release of neurotoxic substances (e.g., glutamate,
external Ca2+-overload) (Orellana et al., 2011). Here, putative
operators, facilitating channel activity can be cytokines such as
Tumor Necrosis Factor-alpha or Interleukin1-β (Froger et al.,
2010). In other cases, hemichannels may confer neuroprotec-
tion against an ischemic episode by the phenomenon of ischemic
preconditioning (Bennett et al., 2012).

Nevertheless, it can be summarized to this point that the cell
type specific expression of neuronal and astroglial Cxs seems to
be dynamic and influenced by the environmental signals that are
induced by TBI. The role of neuronal and astroglial Cxs in neu-
ronal cell death as well as their role in neuroprotection increase in
therapeutic importance.

PANNEXINS AND TBI
Addressing Pannexin functions, especially in the context of neu-
rotrauma, we enter a young field in CNS research. In 2003,
three Innexin homologs were cloned from rats and mice, the
isoforms Px1, Px2, and Px3. Since nothing is known about
the role of the latter two isoforms in TBI, this paragraph
focusses on the sparse facts about Px1 in neuroinflammation and
induced neurotrauma-like conditions. Pannexin1 is ubiquitously
expressed in the mammalian CNS (Bruzzone et al., 2003; Ray
et al., 2005), covering cells of the retina, olfactory bulb, neo-
cortex, hippocampus, cerebellum, and spinal cord. Pannexin1
is described to act as an ATP release channel with unselective
high conductance properties (Prochnow et al., 2009; Kurtenbach
et al., 2013). Opening of this large pore channel can be initiated
by depolarizing voltage sensing or hyposmolar/mechanical acti-
vation (Iglesias and Spray, 2012; Krizaj et al., 2013). Regarding
traumatic injury of the CNS, the mechanical stress related acti-
vation process of Panx1 gains special interest. With focus on
inflammatory processes, neuronal Px1 was shown to closely oper-
ate together with stimulus-induced opening of astroglial Cx43
hemichannels with. According to this, pharmacologic inhibition
of NMDA or P2X receptors only partially reduced the activa-
tion of neuronal Panx1 hemichannels and neuronal mortality
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(Orellana et al., 2011). Simultaneous inhibition of both receptors
completely prevented the neurotoxic response. The authors sug-
gested that responses to ATP and glutamate converge in activation
of neuronal Panx1 hemichannels. It was proposed that block-
ing hemichannels expressed by astrocytes and/or neurons in
the inflamed nervous system could represent a novel and alter-
native strategy to reduce neuronal loss in various pathological
states including ischemia which often concomitantly occurs as a
consequence of TBI.

EXPERIMENTAL MODELS ELUCIDATING THE FUNCTION OF
CONNEXINS AND PANNEXINS IN TBI
Sudden cumulation of extracellular glutamate after TBI results
into an increase of intracellular Ca2+ ion which, in turn, leads
to Ca2+-dependent excitotxicity (Conti et al., 1998; Osteen et al.,
2001). Animal models reveal that vulnerability of CNS struc-
tures does not follow a homogenous propagation pattern, in
contrast, selective vulnerability is observed for certain regions
such as CA3 pyramidal neurons, dentate hilar neurons, and
cortical neurons (Lowenstein et al., 1992; Cortez et al., 1995;
Nawashiro et al., 1995). These results were primarily obtained
from fluid percussion induced neurotraumatization (McIntosh
et al., 1989) in rats. In this experimental setting, focal brain
injury was performed by application of fluid pulse (2.6–2.8 atm;
12 ms duration) on the intact dura following osteotomy in the
anaesthetized animal. By this approach, Ohsumi et al. inves-
tigated the temporal and spatial expression profiles of Cx43
in the hippocampal CA3 region of adult rats (Ohsumi et al.,
2010). Using Western blot analysis and immunohistochemistry
the authors were able to show that phosphorylated Cx43 is
strongly increased in astrocytes of the perilesion sites 1 h after
TBI and lasting for the next 24 h. In contrast, no distinct pattern
of phosphorylated Cx43 expression was found in the neighbored
hippocampal CA1 region. Immunoreactivity of the total amount
of Cx43 was unchanged. Based on these facts, the authors sug-
gested that time-dependent phosphorylation of Cx43 contributes
to hippocampal dysfunction via astrocytic gap junction commu-
nication and serves as a prodromal. Total Cx43 immunoreactivity
was localized in astrocytes in the direct periphery of the contu-
sion focus at 72 h post TBI. This probably directly reflects the
anatomical correlate for potentiation of intercellular signaling
via gap junction transduction. This process might be benefi-
cial to restoring of neuronal damage during the late phase of
injury.

In analogy to an increased occurrence in war zones and due
to terrorist incidents (Risdall and Menon, 2011), another set of
approaches covers blast-induced traumatic brain injuries in ani-
mal models (Wolf et al., 2009). Also in this type of experimental
setting, utilizing controlled 60 mg TNT blasts in a described vicin-
ity of rabbit skulls, an increase in Cx43 and caspase-3 expression
could by detected in the penumbral regions. Caspase-3 is one of
the downstream pro-apoptotic factors, discussed as a candidate
to be transmitted via gap junction communication during TBI
(Wennersten et al., 2003; Yong-Ming et al., 2012).

Providing a target for putative treatment the penumbra region
of TBI delineates, as a locus for delayed responses, the pri-
mary injury core from the intact brain region (Paciaroni et al.,

2009). The region itself reveals a centralized pattern of astroglial
Cx43 expression which is described to be related to ischemic
processes (Hossain et al., 1994). Later on it was demonstrated
that Cx29 and Cx32 are expressed in a subset of microglia and
astrocytes in the sharp border of the penumbra (Moon et al.,
2010). The data were obtained from a cryogenic TBI model in
mice where a liquid nitrogen filled iron rod is directly placed on
the cranium of the anaesthetized animal (Tatsumi et al., 2005).
The authors suggested a Connexin-mediated influence on cellu-
lar degeneration/regeneration information between the core and
the periphery of the injury. This finding was also underlined by
knockout animal studies. As an example, knockout of the Cx32
gene enhanced neuronal vulnerability (Oguro et al., 2001; Moon
et al., 2010), whereas knockout of the Cx43 gene resulted in the
previously described decreased neuronal vulnerability after TBI
(Frantseva et al., 2002a).

Regarding the investigation of Pannexin channel function due
to neurotrauma the only reliable model are specified weight drop
experiments by Wang et al., on the spinal cord in mice (Wang
et al., 2004). In the weight drop approach, a standardized neuro-
trauma is induced by dropping a small weight into a predefined
area of the spinal cord. By help of this attempt, Wang and col-
leagues showed that ATP was released in the penumbral region
leading to a massive recruitment of microglial, macrophage,
and monocyte derived cells. The process was followed by sec-
ondary expansion of the lesion (Wang et al., 2004). The authors
were also able to identify the contribution of P2X receptor acti-
vation and neuronal excitation in direct subsequence to the
lesion process. Evidence was provided by targeting direct phar-
macological inhibition of ATP-P2X7 receptor interaction and
application of P2X7 receptor antagonists. In combination with
previous findings of Nedergaard and colleagues (Wang et al.,
2004; Peng et al., 2009) these results gave first rise for an involve-
ment of Px1 interaction with P2X7 receptors in the course of
neurotrauma.

Another sophisticated approach was given by Davalos et al.
(2005). The authors investigated the fast microglial response
according to local two-photon laser mediated ablation of the
superficial layer of the motor cortex and mechanical tissue
manipulation via a glass microelectrode. Wang et al., as well
as Davalos et al., reported and mimicked the effects of locally
released ATP. Davalos and colleagues showed that local increases
in ATP levels, as it can be supported by Px1 operated release
from astrocytes and neurons, influence the chemotactic guid-
ance of microglial processes toward the borders of the penum-
bral region in mice in vivo. The process is carried out without
movement of the cells’ somata and can be mimicked by local
application of ATP and subsequent activation of P2Y recep-
tors. Additionally the baseline motility of microglial processes
was slowed down under application of ATP-degrading apyrase
and Connexin channel inhibitors, indicating that the interplay of
both, Connexins and Pannexins seems to be needful in the cel-
lular response toward injury. Nevertheless, the different types of
experiments underline that severity and type of traumatization
can impact on Px1- and Cx-dependent systems in relevant mod-
ulatory ways with influence on the future development of the
injury site.
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FROM EXPERIMENTS TO BEDSIDE? A YOUNG CHAPTER
Based on the actual results from in vitro and in vivo related exper-
iments, Connexins appear to be the most important player in the
intercellular neuroglial pathosphysiology of the CNS during TBI.
At the moment, an effective therapeutic agent for TBI remains
elusive (Wang et al., 2006; Beauchamp et al., 2008; Elliott et al.,
2011).

The astroglial expression site of Cx43 (Garre et al., 2010) might
play an important role in future clinical treatment. Since descrip-
tion is pending that stress factors, including apoptotic factors,
are passed through gap junctions, the hypothesis was established
that a partial decrease in neuronal or glial gap junction medi-
ated communication might be sufficient to reduce secondary
tissue damage. The hypothesis became strengthened by studies of
Frantseva et al. who proved that cell death is reduced in native
CNS slices following treatment with antisense oligonucleotides
for Cx43 after hypoxic-glycemic insult (Frantseva et al., 2002b).
Pharmacological inhibition of Cx43 activity was performed in
a multitude of TBI studies. Here, gap junction blockers such as
insulin (Homma et al., 1998) octanol (Rawanduzy et al., 1997)
and carbenoxolone (De Pina-Benabou et al., 2005) were shown
to exhibit neuroprotective effects in diverse models of cerebral
injury. Especially the latter one is also serving as a non-specific
Px1-inhibitor.

Stem cell therapy promises another treatment option of TBI.
In order to reestablish neuronal networks in the perilesion
regions, the functional integration of grafted neuronal stem cells
might provide a perspective. In this context the property of Cx43
based cellular coupling should serve as a means to link endoge-
nous and exogenous network components together. Aside from
the expression on astrocytes, Cx43 is most closely associated with
immature neuronal stem cells (Jaderstad et al., 2010; Yu et al.,
2013). One proposed way in which grafted neuronal stem cells
integrate into host tissues is gap junction coupling. The exoge-
nous stem cells are described to protect the host neurons from
cell death as well as reducing signs of secondary injury such as
reactive gliosis. Experiments in vivo and in vitro revealed that
these beneficial effects were lacking, when gap junction commu-
nication was suppressed in the host (Jaderstad et al., 2010). Yu
et al. (2013) underlined these findings by showing that neuronal
stem cell transplantation significantly enhanced the Cx43 protein
expression in a rat model of controlled cortical impact TBI (Ma
et al., 2011). Connexin43 expression after transplantation was
increased in the core and the border of injury. These expression
levels were maintained for up to 4 weeks post transplantation,
giving rise that gap junctions based on Cx43 might participate in
the iterative developmental process of graft integration into the
host CNS tissue following TBI. Although it is becoming recog-
nized that grafted neuronal stem cells interact with endogenous
neurons of the peritransplant region, the underlying mechanisms
remain to be matter to intensified research.

Since approximately 85–89% of TBI patients show non-open
trauma injuries e.g., caused by traffic accidents (Masson et al.,
2001; Wu et al., 2008), local pharmacological treatment or stem
cell delivery to the host tissue still provides a problem.

An actual pharmacological intersection between basic research
and applied treatment of TBI is given by the patient

administration of cannabinoid receptor agonists including �9-
tetrahydrocannabinol or nabilone. These substances are clini-
cally used in the suppression of multiple sclerosis and spinal
cord injury symptoms, as well as for the prevention of neu-
rotoxicity (Pertwee, 2006). Interestingly, cannabinoid receptor
agonists influence Cx43 regulation in culture models under pro-
inflammatory conditions in a preventive manner mediated by
CB1 receptor activation (Froger et al., 2009). On the one hand
Froger et al. demonstrated that cannabinoid agonists prevent the
inhibition of gap junction coupling of astrocytes induced by con-
ditioned medium harvested from LPS-activated microglia. On the
other hand the authors showed via dye coupling and ethidium
uptake experiments in astrocyte cultures the dual regulation of
Cx43 functions induced by IL-1β and TNF-α.

These results of cannabinoid-Cx interaction provide evidence
for an indirect mechanism to impact on Cx43 activity in a
traumatic/pro-inflammatory condition as it might act already in
clinical routine.
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