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Abstract
Substantial evidence shows that the hypophyseal–pituitary–adrenal (HPA) axis and

corticosteroids are involved in the process of addiction to a variety of agents, and the adrenal

cortex has a key role. In general, plasma concentrations of cortisol (or corticosterone in rats or

mice) increase on drug withdrawal in a manner that suggests correlation with the

behavioural and symptomatic sequelae both in man and in experimental animals.

Corticosteroid levels fall back to normal values in resumption of drug intake. The possible

interactions between brain corticotrophin releasing hormone (CRH) and proopiomelano-

cortin (POMC) products and the systemic HPA, and additionally with the local CRH–POMC

system in the adrenal gland itself, are complex. Nevertheless, the evidence increasingly

suggests that all may be interlinked and that CRH in the brain and brain POMC products

interact with the blood-borne HPA directly or indirectly. Corticosteroids themselves are

known to affect mood profoundly and may themselves be addictive. Additionally, there is a

heightened susceptibility for addicted subjects to relapse in conditions that are associated

with change in HPA activity, such as in stress, or at different times of the day. Recent studies

give compelling evidence that a significant part of the array of addictive symptoms is directly

attributable to the secretory activity of the adrenal cortex and the actions of corticosteroids.

Additionally, sex differences in addiction may also be attributable to adrenocortical function:

in humans, males may be protected through higher secretion of DHEA (and DHEAS), and in

rats, females may be more susceptible because of higher corticosterone secretion.
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Introduction
The purpose of this review is to demonstrate the critical

role of the adrenal cortex in addiction and additionally to

propose that sex differences in adrenocortical function

may contribute to sex differences in addiction. Where it

is clear, the sex of experimental animals or of human

subjects in the cited studies is stated, although in most

cases sex differences were not emphasized.

There is a long history of associating addiction with

the adrenal. Indeed, it was well before the adrenocortical

hormones were even characterized that morphine toxicity

was linked to the adrenal gland. Thus, Lewis (1) and

Mackay & Mackay (2) showed that adrenalectomy

increased morphine sensitivity in female rats, and chronic
treatment with morphine in males or methadone in

either sex produces adrenocortical hypertrophy (3, 4).

Consequently, there has been interest in the actions of the

hormones of the adrenal as possible agents in addiction

from the time of their discovery. Treatment with cortisone

(the therapeutic corticosteroid of choice at the time) was

soon applied in the management of meperidine and

morphine withdrawal symptoms in men (5), apparently

with beneficial effects, while Lovell associated alcoholism

and drug addiction with hypoadrenocorticism (6).

More systematic study then discounted corticoster-

oids along with other novel ‘cures’ for withdrawal

symptoms, and Fraser & Isbell (7) were the first to suggest
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that in fact withdrawal symptoms (from morphine) in

men were associated with eosinopaenia, a measure used

at that time to reflect high levels of circulating cortico-

steroids (8). Eosinophil counts swiftly normalized when

morphine was restored. These authors also found that

treatment with either cortisone or ACTH shortened the

period for development of withdrawal symptoms

in men, and therefore, they themselves could be con-

sidered a cause (7, 9, 10, 11). Indeed, chronic treatment

with corticosteroid can itself lead to later withdrawal

symptoms (12).

So there are fundamental questions on the role of

corticosteroids in addiction. Is the lower adrenocortical

activity in sustained morphine administration, and its

elevation when administration ceases, a cause or an effect

of addictive responses? Could the drive to addictive drugs

actually represent a drive to lower cortisol, with its

sequelae? Or is the heightened secretion of corticosteroids

in drug withdrawal simply a response to stress? We here

argue that the adrenal cortex has a critical role in the

acquisition of addiction and also in protection against it.
The hypophyseal–pituitary–adrenal axis in
the brain and addiction

In relation to addiction, far more attention has been paid

to hypophyseal–pituitary–adrenal (HPA) components in

the brain than to the systemic (i.e. blood-borne) HPA axis.

All the components are present in the brain, and, in

relation to the hypothesis that the adrenal itself is crucial

to addiction, it is important to unravel the relationship

between brain and systemic HPA function. This section

examines the evidence for brain HPA function in

addiction and shows that it is not autonomous, and its

function is closely regulated by and linked to the

systemic HPA.
Corticotrophin releasing hormone

Corticotrophin releasing hormone (CRH) is produced in

various parts of the brain (13). First, CRH exerts its

systemic effects following its release at the median

eminence by neuronal tracts that originate in the

paraventricular nucleus (PVN) of the hypothalamus.

CRH is transported to the corticotrophs of the anterior

pituitary via the hypophyseal portal system and then

stimulates the secretion of ACTH. ACTH is in turn carried

in the general circulation and stimulates the secretion of

corticosteroids in the adrenal cortex.
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In addition, however, CRH, its receptors CRHR1 and

CRHR2, and also CRH binding protein (CRH-BP), which

modulates CRH actions, are found in other brain

locations, where CRH presumably acts primarily as a neuro-

transmitter. These sites include the cerebrocortex,

limbic system, hippocampus, amygdala, locus coeruleus,

olfactory bulb and cerebellum (14, 15, 16, 17, 18, 19, 20).

While the involvement of such extra hypophyseal CRH

with addiction may be independent of the HPA (18, 20),

there are certainly pathways through which it con-

tributes to the multifactorial regulation of hypothalamic

CRH (Fig. 1).

In the brain, CRH binds to both receptor types, CRHR1

and CRHR2. In addition to CRH itself, both these

receptors bind ligands of the urotensin family. The two

receptors mediate different responses; CRHR1 agonists

produce stress-related responses on which CRHR2 may

have less effect, while more potently depressing food

intake (21, 22, 23, 24).

There is certainly substantial evidence for the role

of CRH in addiction (18, 25), and particularly in

reinstatement, but the data are not always consistent.

For example, cocaine stimulates the HPA axis through a

hypothalamic/CRH-mediated mechanism in male rats

(26, 27), and although this is not invariably closely linked

to corticosterone (28), both Crh mRNA transcription

and circulating corticosterone are further increased on

cocaine withdrawal (29). In contrast, shock-induced

reinstatement of heroin or alcohol seeking clearly depends

on CRH, but not on corticosterone, according to some

authors (30, 31, 32). Nevertheless, adrenal function is

required during cocaine self-administration for sub-

sequent CRH-dependent shock-induced reinstatement

to occur (33). The modulator of CRH actions, CRH-BP,

is now emerging as an additional factor, although not

so widely studied in the addiction field (34, 35). Although

both corticosterone and ACTH secretion are increased by

acute alcohol exposure, they are inhibited in chronic

exposure (36, 37). Neither CRH nor cortisol is implicated

in cocaine reinstatement in squirrel monkeys (38).

With specific regard to morphine and the opioids,

it is clear that reduced circulating corticosteroid con-

centrations may be a consequence of opioid inhibition of

CRH secretion, acting through m- and k-type opioid recep-

tors in the male rat hypothalamus (39, 40, 41). In humans,

opioids directly inhibit CRH secretion and the HPA axis,

resulting in decreased circulating cortisol. In male rats,

the effect is biphasic, with early enhancement of CRH

(and the HPA) followed by inhibition after a few days of

treatment (41, 42); such responses are affected by stress
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Figure 1

The expanded HPA axis. From (20, 49, 80, 82, 192, 193) and see text.

BNST, bed nucleus of stria terminalis; PFC, pre-frontal cortex; PVN,

paraventricular nucleus; VTA, ventral tegumental area (associated with

reward responses); CRH, corticotrophin releasing hormone; POMC,

proopiomelanocortin; C, stimulatory; K, inhibitory. Solid arrows show

proven regulation, and dotted arrows show postulated actions. Secreted

CRH is indicated in blue lettering, and sites of CRH and POMC signalling are

indicated in red and green respectively: here, arrows indicate regulatory

pathways that are unquestionably multifactorial but may include actions of

CRH and POMC peptides. The inhibitory effect of neural POMC peptides on

PVN CRH is particularly interesting, and, by comparison with other systems,

might suggest a negative feedback mechanism; however, there is little

evidence for reciprocal feedback of CRH on POMC in the brain. Instead,

regulation of neural POMC is multifactorial (e.g. (65, 67), and this is

primarily linked to its role in energy balance and nutrition, see text. There

is, however, much evidence to show the feedback of glucocorticoids on

CRH expression in several brain regions. Mostly, this is negative, except in

the amygdala, a key region in addiction (19), where it is positive.
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in male rats (43). Indeed, the evidence suggests that

opioidergic mechanisms may at least partially underlie

both the behavioural effects of CRH in male rats (44) and

also the increase in CRH secretion under conditions of

stress. This may not be true in other situations such as the

increased HPA activity in adrenalectomized animals (45).

This double effect in rats may be because opioids have

differential effects on different cell types: they certainly

inhibit CRH secretion that is promoted by neurotransmit-

ters (46). The possibly critical involvement of opioids in

alcohol addiction in humans (47) has also been shown to

be exerted via other than HPA pathways (48).

There are clear differences between the actions of

different addictive drugs on Crh mRNA transcription in

the hypothalamus, and although alcohol acts directly on

the PVN, other drugs, including cocaine, nicotine and
http://www.endocrineconnections.org
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cannabinoids, activate Crh transcription in other brain

sites (49). Adrenocortical activity may still be critical, for

example in reinstatement of cocaine addiction in male rats

(33). Timing of exposure is also significant; early exposure

can affect subsequent responses (50), and in male rats,

adolescent exposure to alcohol vapour blunts subsequent

adult Crh transcription response to acute alcohol (51).

The development of specific CRHR1 antagonists has

provided more information. CRHR1 blockade inhibits

further alcohol drinking in male rats habituated to a

high intake (52), and, in conjunction with additional

studies using Crh1 knockout animals, it has been shown

that CRHR1 signalling pathways are essential for sensi-

tization to alcohol addiction in male mice (53); a common

expression of neuroadaptations induced by repeated

exposure to addictive drugs is a persistent sensitized
This work is licensed under a Creative Commons
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behavioural response to their stimulant properties. These

authors also show that acquisition and sensitization are

differentially regulated. Acquisition involves the HPA axis

and is inhibited by the glucocorticoid blocker mifepris-

tone as well as by CRHR1 blockade, whereas sensitization

is unaffected by mifepristone. Pastor et al. (53) propose

that this suggests a non-hypothalamic CRHR1-linked

pathway in sensitization. Different effects were seen in

methamphetamine (MA) responses, in which behavioural

sensitization measured as increased drug-induced loco-

motor activity was unaffected in Crh1 knockouts or by

the antagonist CP 154 526 in DBA/2J mice, whereas

deletion of Crh2 attenuated MA-induced behavioural

sensitization. Here, an action of endogenous urocortins

was suggested, focused in the basolateral and central

nuclei of the amygdala (54).
Proopiomelanocortin

Proopiomelanocortin (POMC) provides, in ACTH and

a-melanocyte stimulating hormone (a-MSH), the other

components of the HPA axis, and in this context, its

primary site of expression and processing is the anterior

pituitary and (in rodents) the pars intermedia. POMC is

also expressed in brain sites, primarily in projections from

the arcuate nucleus of the hypothalamus and from the

nucleus tractus solitarius of the brainstem (55, 56, 57). Its

primary role in the brain is the generation of a-MSH,

which participates in the regulation of food intake and in

the production of b-endorphin, pain control. a-MSH acts

through two of the melanocortin receptor (MCR) series,

MC3R and MC4R, and the latter may also regulate aspects

of pain recognition (25, 58).

POMC expression and processing suggests that

although ACTH and other POMC products such as

b-endorphin can be found in non-hypothalamic regions

of the brain or cerebrospinal fluid (59, 60), some may be

transported to the brain from the blood (60, 61). From

early development, the major adrenocortical-related

POMC product in the brain is a-MSH (62), presumably

associated with the distribution of the prohormone

convertases PC1 and PC2 (63, 64). By far, the major

focus of attention in this regard is the role of a-MSH with

leptin, ghrelin and agouti protein in the regulation of food

intake and energy balance (56, 62, 65, 66, 67, 68).

In addition to its role in energy balance, a-MSH

also plays a part in the physiology of addiction, and

MC4R, like CRH receptors, respond to morphine (69, 70,

71), and the behavioural effects of morphine or cocaine

are modulated by selective MC4R inhibition (72, 73).
http://www.endocrineconnections.org
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Additionally, acute alcohol treatment reduced a-MSH

expression in hypothalamic and other brain locations in

rats, but chronic treatment enhanced it (74).

Of course, POMC processing in relation to addiction

cannot be considered purely in terms of its HPA-linked

functions. The production of b-endorphin leads inevitably

to direct effects on addiction pathways. Its main action

is mediated by m-receptors as are the opiates morphine,

heroin and methadone, and in humans, the endogenous

opiates are similarly inhibitory on HPA function, although

both stimulatory and inhibitory in rats (49, 75).

What has not been clear hitherto is whether the term

‘HPA axis’ can in reality be extended to these components

in the brain. In other words, it has been unclear whether,

for example, non-hypothalamic CRH provokes synthesis,

processing or release of POMC in the brain, but the

different locations of the expression of these components

may suggest it does not (Fig. 1). Similarly, there has really

been no evidence that brain CRH or POMC products have

any interaction with the adrenal cortex and the secretion

of glucocorticoids, other than via the hypothalamus. On

the contrary, it has sometimes been assumed that they do

not (e.g. (53)). However, neural glucocorticoid receptor

(GR) disruption, including in the PVN, ameliorates the

effects of anxiety and also results in heightened HPA

activity in male mice (76), consistent with the loss of

glucocorticoid inhibition of CRH (20, 77). In contrast,

forebrain-specific GR knockout, which does not involve

the PVN, increased anxiety behaviour but has the same

effect of diminishing glucocorticoid inhibition of CRH in

male mice (77). It is clear from this study that the HPA is

regulated partly by forebrain GR-mediated inhibition.

Accordingly, what needs to be unravelled is the signi-

ficance of the local brain CRH/POMC components in

distinction to that of the systemic HPA, and how

independent these systems really are in addiction.
Interaction between brain CRH and a-MSH

Although the main recognized function of a-MSH in the

brain, regulation of food intake and nutrition seems not to

be closely related to that of CRH, in fact there is ample

evidence of crosstalk between them. Certainly, like the

systemic HPA, POMC-processing neurones are activated

by stress and play a role in the consequent behavioural

response in male rats (78, 79). Furthermore, neuronal

POMC-derived peptides regulate hypothalamic CRH and

thus ACTH secretion in male and female mice (80).

Additionally, a-MSH stimulates Crh transcription in the

PVN of male rats (81, 82), although, like g-MSH, it also
This work is licensed under a Creative Commons
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inhibits interleukin-1b-induced HPA activity, apparently

through central MCRs (83). That the circuit connecting

brain and systemic HPA is complete is suggested by the

finding that glucocorticoids enhance MC4R signalling in a

hypothalamic neuronal cell line (84). We can therefore

predict the existence of an extended HPA axis in which the

same components, CRH, POMC products and corticoster-

oids as in the classical system, also interact in the brain

(Fig. 1) with specific effects on mood and behaviour. The

two systems, brain and somatic, interact to the extent that

whatever physiological stimuli activate the systemic

system, broadly ‘stress’ and the clock, must also have

consequences on mood and behaviour.
Steroids in the brain

The spectrum of structures and functions of neurosteroids

is so wide as to form a branch of endocrinology (or at

least paracrinology) in its own right. Many are locally

synthesized, although usually requiring substrates from

non-neural sources. Oestrogens are prominent among

these and are produced by aromatase activity in the

hippocampus, acting, it is thought, on locally produced

C19 steroid substrates (85). They have roles in neural

plasticity (86) and neuroprotection (85, 87, 88) and

regulate the function of other neurally active agents,

including neuroprogesterone, which is also synthesized

locally (89). There are sex-related differences in the neural

responses to oestrogen (90, 91, 92). Oestrogen action in

the brain is mediated through classical oestrogen receptors

a and b and also through membrane metabotropic

glutamate receptors (93, 94). Neuroactive steroids that

primarily act through N-methyl-D-aspartate or gamma-

aminobutyric acid (GABA) receptors include the adrenal

androgen DHEA, which as DHEAS conjugate is the most

abundant steroid in human plasma (95, 96, 97, 98). DHEA

is not secreted by the rat adrenal cortex: its presence

and activity in the brain reflect its local synthesis (99).

DHEA and pregnenolone, both D5,3b-hydrosteroids,

are also opioid sigma receptor agonists, whereas pro-

gesterone, which has the D4,3-one configuration, is an

antagonist (100). Through their sigma-1 agonist actions,

pretreatment with DHEA or pregnenolone potentiates

cocaine-induced conditioned place preference (CPP)

behaviour in mice (100) but attenuates cocaine-seeking

behaviour (101). In patients, DHEA and DHEAS are

associated with beneficial actions in cocaine withdrawal

(102, 103), and the use of DHEA administration to

assist opioid withdrawal has been studied, with variable

outcomes (104, 105).
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Other known neurosteroids include 3a-hydroxy-

5a-pregnan-20-one (tertrahydroprogesterone, allopregna-

nolone, THP) and 3a,21-dihydroxy-5a-pregnan-20-one

(tetrahydrodeoxycorticosterone, THDOC), and they are

formed in the brain from progesterone and deoxy-

corticosterone (106, 107). They have anxiolytic, anti-

convulsant and sedative activities and are known to be

elevated in both plasma and brain in response to ethanol

in rats (106, 108). In addition, the HPA axis is under tonic

GABA inhibition at the hypothalamic level (75). Impor-

tantly, production in the brain of both THP and THDOC

depends on precursor steroids of adrenal origin (106).

The corticosteroids themselves have neurological

effects, and brain concentrations of corticosterone cer-

tainly have relevance to addictive behaviour in male

rats (109), and see below. However, the relevance of local

brain synthesis of corticosteroids is unclear. Certainly, all

the required enzymes of the corticosteroid biosynthetic

pathway from cholesterol are present, notably in the

hippocampus, together with the StAR protein (110, 111,

112), but their level of production is likely to be low in

comparison with concentrations crossing the blood–brain

barrier, and they are not thought to be produced in the

brain to any great extent (113, 114). Remarkably then, of

the known neurosteroids, the corticosteroids may fall into

a group of their own being predominantly dependent on

an extraneural source: the adrenal cortex.
The role of the adrenal cortex

Corticosteroids and mood

Clearly, the role of corticosteroids in addiction cannot be

understood without reference to the nature of the

psychological and behavioural aspects of the actions of

corticosteroids themselves. Almost as the corticosteroids

were first characterized, their paradoxical capacity to

generate both euphoria and depression in humans has

been well known, although poorly understood (115, 116).

Changes in mood are a feature of chronic corticosteroid

therapy, with mild euphoria in the short term and

increases in severity of symptoms associated with

depression, or even psychosis in the long-term, and

these occur most frequently in women (116, 117, 118,

119, 120), although with large variations in incidence in

different studies. Moreover, both cortisol levels and the

response to ACTH are higher in depression or depressive

episodes (121), and animal experiments show that both of

these may be linked to high CRH secretion (29). It has

been suggested that corticosteroids may have a role in
This work is licensed under a Creative Commons
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dopamine-related psychiatric disorders (122), and it has

also been speculated that some behavioural features in

animals and humans may result from structural or other

changes in the brain that corticosteroids may invoke, or

at least facilitate (114, 123, 124). Reduction of circulating

corticosteroid levels, in combination with other indices,

can also be used as a marker for response to anxiolytic

therapy (125, 126). It has been postulated that depression

in fact reflects GR desensitization, giving rise to impaired

glucocorticoid feedback at the hypothalamus, hence

increased HPA activity. In this model, one action of

antidepressants is thus to resensitize GR transcriptional

activity (125), independent of their action on monoamine

reuptake, but perhaps involving regulation of steroid

elimination from the cell through the multi-drug resist-

ance P-glycoprotein membrane transporter system (127,

128). Together, these studies suggest that corticosteroid-

evoked mood changes could be related to behavioural

responses to addiction.
Corticosteroids and addiction

Although the earlier association between the adrenal

cortex and addiction is derived largely from circumstantial

evidence, there are now data showing a direct causal link.

From their experiences with patients receiving chronic

steroid treatment, some authors have been willing to label

the corticosteroids as drugs of addiction themselves (129,

130, 131, 132, 133, 134), although much of the earlier

evidence is based on individual case reports. These

findings tend to suggest a close link between corticoster-

oids and addiction, a concept amply borne out by more

recent studies. Alcohol administration induces ACTH

secretion and thus adrenocortical stimulation in male

rats (106). In habituated men smoking high- but not low-

nicotine cigarettes, increased plasma ACTH and cortisol

occurs within minutes of smoking (135). Further evidence

for the crucial actions of elevated cortisol is given by its

association with impaired learning and memory in

abstinent cocaine-dependent men and women (136),

although higher basal cortisol levels are associated with

improved memory performance in healthy controls. These

effects on memory apparently reflect the inverted

U-shaped cortisol response curve; at low levels, increased

cortisol is beneficial to hippocampal cognitive responses,

but at higher levels, it is not (137). The degree of stress-

induced cortisolaemia and mood negativity is correlated

with increased positivity after amphetamine in men and

women (138).
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Furthermore, much experimental evidence supports

the general concept (see Table 1). Male rats too self-

administer corticosterone in a manner that suggests

some degree of dependence (139, 140). Thus, de Jong

et al. (141) found that cocaine-induced locomotor

sensitization in adrenalectomized male mice was

restored by replacement of both adrenaline and corti-

costerone, and cocaine- or alcohol-induced behaviours

in female mice are inhibited in the presence of a GR

inhibitor (142). Additionally, if corticosteroid synthesis

is blocked, cocaine self-administration also relapses

according to some authors (143). Others find the reverse

that corticosterone facilitates relapse, although dexa-

methasone did not, suggesting mineralocorticoid

receptor (NR3C2, MR) involvement (144). Such effects,

like those of antipsychotic drugs, may be mediated

through the mesolimbic dopaminergic system (145,

146). It is striking that dopamine-dependent responses

to morphine require glucocorticoid receptors (147).

In experimental animals, the definitive evidence for

the pivotal role of the corticosteroids in addiction stems

from recent studies in the effects of GR over- and under-

expression. Brain-specific GR depletion in mice decreased

cocaine self-administration, while corticosterone replace-

ment restored it (148). Specific GR disruption in dopami-

noceptive but not dopamine neurones decreased cocaine

self-administration (149), whereas GR disruption in either

type attenuates cocaine-induced CPP, with no effect on

morphine-induced behaviour (150). Morphine-induced

CPP depends on hippocampal and nucleus accumbens

GR (151). In male mice, overexpression of forebrain GR

results in heightened sensitization to cocaine as well as

anxiety (152).

There is also evidence of the pivotal role of GR in

studies of GR polymorphisms in humans, which have

revealed association of particular alleles with the initiation

of alcohol abuse in female adolescents (153). These and

further experimental data that now link addictive

behaviour and symptoms with corticosteroids, particu-

larly in response to cocaine, are summarized in Table 1.
Sex differences in addiction

The possibility of sex differences in responses to drugs of

addiction of brain CRH, POMC, neurosteroids and the

HPA axis has not been addressed anywhere in the

literature reviewed here. Sometimes, the sex of experi-

mental animals used is not actually given, although this is

rare. The impression is that studies are often performed on

animals of the same sex – male rats are frequently used – to
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Table 1 Glucocorticoids and addiction. All the direct experimental evidence for the essential role of glucocorticoids has been obtained

in experimental animals, as illustrated here. Evidence from the human species is indirect and circumstantial but appears to support the

general conclusion that glucocorticoids, regulated by an expanded HPA axis, underlie the important features of addiction.

Species Effects Reference

Ratsa Corticosterone Administration Up to 100 mg/ml in drinking
water

Induced corticosterone self
administration

139

Up to 50 mg/animal per day Induced corticosterone self
administration

140

Up to 0.8 mg/kg implant Induced corticosterone self
administration

194

Stress induced Novel environment Induced amphetamine self
administration

195

Immobilisation Impaired HPA feedback in cocaine
habituated animals

28, 29

Synthesis blocked By metyrapone 50 mg/kg Reduced psychomotor effects of
cocaine, and reduced reinstatement

196

By metyrapone 100 mg/kg Reduced psychomotor effects of
cocaine, and reduced reinstatement

143

By metyrapone synergistic
with benzodiazepine
agonist oxazepam; up to
45 mg/kg: 20 mg/kg i.p.c

Reduced psychomotor effects of
cocaine, and reduced reinstatement

197

By adrenalectomyd Cocaine reinstatement reduced,
restored by corticosterone
replacement

198

Reduced Fos response to dopamine
agonist, enhanced dopamine
response to cocaine

199

Decreased cocaine-induced locomotor
sensitisation

200

With corticosterone hemi-
succinate replacement; up
to 3 mg/kg implant

Restoration of cocaine-induced
sensitisation

200

Levels in blood Unrelated to high or low responder to
cocaine classification

201

Levels in brain Related to high or low responder to
cocaine classification

109, 202

Miceb GR Antagonist, mifepristone
30 mg/kg i.p. (or, less
effective, MR antagonist
spironolacetone
20 mg/kg i.p.)

Reduced cocaine induced
reinforcement

203

Selective GR
depletion

In brain Decreased sensitisation to cocaine self
administration

148

In brain Selective reduced glutamate receptor
subunit, and enkephalin response to
cocaine, no effect on neuropeptide or
dopamine receptor response

204

In dopaminoceptive
neurones

Decreased cocaine self administration 149

In dopaminoceptive or
dopamine neurones

Decreased cocaine induced CPP 150

Selective GR
overexpression

In forebrain Increased cocaine sensitisation 152

Adrenalectomy With corticosterone (20 mg
in pellets) and adrenaline
(5 mg/kg s.c.) replacemente

Synergistic actions on restoration of
cocaine induced locomotor
sensitisation

141

aSprague Dawley strain except where stated
bOriginal strain usually C57B/6
cWistar rats
dLong Evans rats
eDBA/2 Rj strain
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minimize variance. Yet sex differences in addiction are

clear and the extensive evidence has been reviewed in

human subjects and in experimental animals. Thus,

women are more susceptible to addiction and are at

greater risk of relapse than men (154, 155), and female rats

are more susceptible than male rats. Substantial evidence

links this to gonadal hormones (156).

There is nevertheless good reason to speculate that

adrenocortical hormones are involved here as well. Both

humans and rats have sex differences in adrenocortical

function, and although different in nature, both may

contribute to sex differences in addiction.

In humans, differences in circulating cortisol in males

and females are marginal at most, though there may be

differences in responsiveness to ACTH (96, 157, 158).

However, the major product of the gland is in fact DHEA,

which is secreted not only as the free steroid, but also, and

predominantly, as the sulphate, DHEAS. Plasma concen-

trations of DHEA and DHEAS in young adult men are

about 12 nM and 10 mM respectively, compared with about

8 nM and !7 mM in women, levels decrease with age

but the sex differences are maintained (96, 159, 160, 161).

The point is that DHEA has been shown to be

protective against drugs of addiction, as previously

noted. Evidence from cerebrospinal fluid suggests that

adrenal DHEA, and even DHEAS, may reach the brain in

significant amounts (162), although how this relates to

amounts synthesized within the brain cannot be assessed.

Although no sex differences in cerebrospinal fluid were

reported, it remains plausible that men receive more DHEA

protection to addictive drugs than women (154, 162).

In rats, the situation is different, and there is no

significant adrenal secretion of DHEA. However, there is a

profound difference in secretion and circulating concen-

trations of corticosterone (the main glucocorticoid in the

rat); adult female adrenals are nearly twice the size of males;

and output of corticosterone is proportionately greater

(163, 164, 165, 166). Although as noted earlier, DHEA is

synthesized in the rat brain, there is no sex difference, and

brain concentrations are similar in males and females (167).

Accordingly, in the rat, it is plausible that heightened

sensitivity to addictive drugs in females is associated with

the higher circulating levels of corticosterone.
The adrenal, addiction and the clock

If it is the adrenal gland itself that is critical for HPA-

modulated addictive processes, then other factors that are

instrumental in generating adrenocortical responses

may be expected to interact with addiction. Of the
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physiological stimuli that stimulate the adrenal cortex,

stress is the most prominent and relevant. However, an

equally potent regulator of the adrenal cortex is the clock.

That stress, however defined, facilitates addiction

in both patients and animal models is well understood

(168, 169, 170, 171, 172). It is deeply interesting to note

that clock time too has its effect on addictive craving

and behaviours, although this literature generally has

little reference to the HPA, but has been focused on the

pineal and melatonin in the brain of male mice (173), or,

primarily, on clock genes. Periodicity in PER1 and cocaine

sensitivity are associated in male rats and mice of various

strains (174), drug reinstatement can be suppressed by

photoperiod in male rats (175), and clock gene variants

are associated with cocaine sensitization in Drosophila

(176) as with addiction in mice (sex not given) (177) and

in humans, according to some authors (178, 179, 180, 181)

but not all (182). In men, alcohol consumption over a

26-hour period affected neither melatonin nor the cortisol

secretory diurnal variation (183, 184).

Autonomy of the adrenal

One feature of adrenocortical function that is hardly

considered, in relation to addiction or anything else, is

that mechanisms exist whereby the secretion of gluco-

corticoid appears to be regulated in part by local stimuli.

CRH is notable among these. The relationship between the

functions of hypothalamic CRH and CRH formed locally

in the adrenal is currently obscure. That the adrenal gland

of various species may secrete CRH from the medulla in

response to splanchnic nerve stimulation has been shown,

as has the direct stimulatory effect of CRH on corticoster-

oid secretion (185, 186, 187, 188). How does adrenal CRH

vary with addiction? This is a topic for the future.

Conclusion

There is a clear pattern in the relationship of HPA activation

to the development of addictive behaviours in response to

quite different drugs. What is it they all have in common?

Is there a unifying pathway that in so many cases leads

to what may sometimes appear to be an addiction to the

adrenal cortex and the secretion of glucocorticoids?

One point is becoming clear: CRH and POMC at

different brain sites have clear functional links with the

classical HPA (Fig. 1), and together, they may play similar

roles in the adaptation that underlies addictive behaviour.

They may be considered in the context of addiction as

an expanded HPA, of which the terminal, and crucial,

component is the adrenal cortex itself.
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The evidence for the key importance of the adrenal

cortex and glucocorticoids in behaviour and symptoms in

drug withdrawal and reinstatement seems conclusive.

Therapeutic control of glucocorticoid secretion or inhi-

bition of glucocorticoid action at its receptor may be

important future developments (148, 189) in what other-

wise is a bleak therapeutic landscape (48, 189, 190, 191).
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