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Abstract Inter occasion variability (IOV) is of impor-

tance to consider in the development of a design where

individual pharmacokinetic or pharmacodynamic parame-

ters are of interest. IOV may adversely affect the precision

of maximum a posteriori (MAP) estimated individual

parameters, yet the influence of inclusion of IOV in opti-

mal design for estimation of individual parameters has not

been investigated. In this work two methods of including

IOV in the maximum a posteriori Fisher information

matrix (FIMMAP) are evaluated: (i) MAPocc—the IOV is

included as a fixed effect deviation per occasion and

individual, and (ii) POPocc—the IOV is included as an

occasion random effect. Sparse sampling schedules were

designed for two test models and compared to a scenario

where IOV is ignored, either by omitting known IOV

(Omit) or by mimicking a situation where unknown IOV

has inflated the IIV (Inflate). Accounting for IOV in the

FIMMAP markedly affected the designs compared to

ignoring IOV and, as evaluated by stochastic simulation

and estimation, resulted in superior precision in the indi-

vidual parameters. In addition MAPocc and POPocc accu-

rately predicted precision and shrinkage. For the

investigated designs, the MAPocc method was on average

slightly superior to POPocc and was less computationally

intensive.

Keywords Inter occasion variability (IOV) � Optimal

design (OD) � Maximum a posteriori (MAP) � Fisher
information � Bayesian � Pharmacometrics � Shrinkage

Introduction

Inter occasion variability (IOV) is increasingly quantified

in nonlinear mixed effect (NLME) models, but the impact

of this type of variability on the optimal experimental

design (OD) for the estimation of individual parameters is

not clear. The NLME approach splits the model in fixed

effects describing the typical population value parameters

and different levels of random effects. Typically in phar-

macokinetic (PK) and pharmacodynamic (PD) analyses

inter individual variability (IIV) and residual error (RE) are

estimated, but if variability between occasions (e.g.

between dosing occasions or observation periods) is

apparent IOV could be introduced as a third level of ran-

dom effects [1].

With a Bayesian approach individual and occasion

deviations from the typical population parameters can be

estimated given a population model, its population

parameter estimates, and individual observations. Individ-

ual parameter estimates, referred to as Empirical Bayes

Estimates (EBEs), can be derived by Maximum a Posteri-

ori (MAP) estimation and are of interest in e.g. model

diagnostics [2], covariate analysis [3, 4] and feedback dose

individualization [5]. Good precision of the EBEs are

therefore of importance for effective model evaluation and

for understanding and determination of individual differ-

ences in PK and PD. Characterization of individual

parameters can also be of importance for establishing

concentration-effect relationships [6]. If little information

is provided about the individual parameters the patient will

be regarded as a typical representative of the population

and the predicted EBEs will be close to the typical popu-

lation predictions, an effect known as g-shrinkage [2].

Conversely, if the individual information is rich the prior

population information will have smaller influence and the
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predicted EBEs will be closer to the ‘‘true’’ individual

values. The information richness of an individual may be

improved by increasing the quantity of samples or by

increasing the quality per sample, e.g. by optimal design

(OD) methodology [7].

In OD a design criterion is used to link the experimental

design to the measure of interest, commonly the joint

precision of the parameter estimates. The determinant of

the maximum a posteriori Fisher Information Matrix

(FIMMAP), first suggested for NLMEs by Merlé and Mentré

in 1995 under the name Bayesian Information Matrix [8],

may be used as optimization criterion for individual devi-

ation EBEs (henceforth called gEBE) [9, 10]. The FIMMAP

is the expectation of the individual FIM over the IIV dis-

tribution with the population distribution as prior infor-

mation. The FIMMAP follows the Cramér-Rao inequality so

that its inverse is the lower bound for the expected poste-

rior covariance matrix of an unbiased estimator of the

individual parameters [8]. Hence the expected posterior

covariance matrix of the gEBEs may be minimized by

maximizing the inverse FIMMAP. Two additional metrics

has been proposed to more closely follow the true posterior

covariance matrix than the FIMMAP: the expected infor-

mation provided by the experiment, and the pre-posterior

covariance matrix (familiarly obtained through e.g.

stochastic simulation and estimation) [8]. While the

expected information provided by the experiment has been

employed for design optimization [11], these methods are

considerably more computationally demanding compared

to the FIMMAP [8, 12] and will not be further considered in

this work.

Even though IOV has long been recognized to be of

importance in NLME and neglecting IOV may negatively

affect the precision of MAP estimated gEBE [1], the

inclusion of IOV has not been previously investigated for

individual OD in a NLME framework. This work aims to

evaluate possible design criteria permitting OD for indi-

vidual parameter estimates in the presence of IOV. As a

driving example the design of a study (AIDA) aimed at

correlating individual PK of the antibiotic colistin with

patient covariates and treatment outcome is used (www.

aida-project.org). The trial will include over 300 patients

and a sparse sampling design was to be suggested. Colistin

was first used in the fifties but was later abandoned due to

toxicity concerns and hence sufficient exposure–response

information is missing. During recent years colistin has

seen resurgent use in treatment of multi drug resistant gram

negative infections [13]. A recent PK model for colistin

and its prodrug colistimethate sodium (CMS) by Mohamed

et al. [14] has quantified pronounced IOV in the PK

parameters and this model was considered for MAP esti-

mation of individual parameters from the AIDA study. The

OD of a sampling schedule was however hampered by the

current lack of methods to handle the IOV contributions in

the model. The model has a complex random effects

structure and a combined residual error model and the

colistin PK model will thus serve as a complex example of

MAP optimization in the presence of IOV. In addition to

the colistin PK model a simple constructed 1-compartment

IV-bolus population PK model with an additive or com-

bined (additive plus proportional) residual error model

(1-COMP) will be employed as a simpler test case.

Two possible methods to include IOV in the FIMMAP

were explored: (i) MAPocc where the IOV is included as an

individual deviation per occasion and individual, and (ii)

POPocc where the IOV is included as an occasion random

effect. These methods were compared against two cases

ignoring IOV, (i) Omit where the known IOV was omitted

from the FIMMAP, and (ii) Inflate mimicking a situation

where the study design neglected the possibility to quantify

IOV, e.g. by placing all samples in one occasion within an

individual. The methods were evaluated in terms of gEBE

precision (measured by simulation and MAP re-estimation)

and estimation run-times for discrete designs with fixed

sampling times (i.e. the same design for all individuals).

We also considered the correspondence between predicted

and evaluated precisions in gEBE as well as the ease of use

of the evaluated methods. Recently a method to predict

shrinkage in the distribution of gEBE from the FIMMAP was

presented by Combes et al. [15]. The ability of this method

to predict shrinkage from the FIMMAP with the proposed

additions was here evaluated as a secondary objective. To

accurately predict the precision and shrinkage of the gEBE

is of value as it would allow design appraisal without

secondary simulation based methods.

Methods

Model structure

The test models used in this work are NLME models where

the ith vector of individual responses yi is defined as:

yi ¼ f vi; g h; gi; j1;i; j2;i. . .; jm;i

� �� �

þ h vi; g h; gi; j1;i; j2;i. . .; jm;i

� �
; �i

� �
ð1Þ

where g() is the vector function describing the parameters

for the ith individual defined by the typical population

parameter vector h ¼ h1; h2; . . .hdf g, the individual devia-

tions vector gi ¼ g1; g2; . . .guf g�N 0;Xð Þ; and the m occa-

sion deviation vectors jx;i ¼ j1; j2; . . .jvf g�N 0;Pð Þ. f()
describe the structural model dependent on the individual

design given by vi and h() is the error model dependent on

the residual error deviation vector �i �N 0;Rð Þ. The

Matrices X, P, and R describe the covariances of the

individual, occasion and residual error deviations
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respectively. In this work all individuals were set to have

the same elementary design, i.e. vi ¼ v, although this is

not necessary within this framework.

Colistin PK

The PK model applied for colistin and its prodrug CMS

consists of one compartment for the formed colistin (Col)

and two compartments for CMS, i.e. the central (CMS1)

and peripheral (CMS2) compartments [14]. Parameter

values are presented in Table 1. The structural model is

described by the differential equation system:

dACMS1

dt
¼ ACMS2ðtÞ

hQegQ

hVCMS2
ejVCMS2

� ACMS1ðtÞ
hQegQ

hVCMS1

� ACMS1ðtÞ
hCLCMS

egCLþjCLCMS

hVCMS1

ð2Þ

dACMS2

dt
¼ ACMS1ðtÞ

hQegQ

hVCMS1

� ACMS2ðtÞ
hQegQ

hVCMS2
ejVCMS2

ð3Þ

dACol

dt
¼ ACMS1ðtÞ

hCLCMS
egCLþjCLCMS

hVCMS1

� AColðtÞ
hCLCol e

gCL�hscþjFM

hVCol
ejFM

ð4Þ

where Ax is the drug amount, CLx the clearance (CL/fm for

colistin) and Vx the volume of compartment x (V/fm for

colistin). The CL of colistin and CMS1 are 100 % corre-

lated and share the common IIV random effect gCL, with
hsc scaling the difference in the magnitude of IIV. Q is the

intercompartmental clearance between compartments

CMS1 and CMS2, and fm the fraction of CMS metabolized

to colistin. The initial condition for all compartments is

zero and the dosing compartment is ACMS1.

The combined additive and proportional residual error

model includes IIV on the residual error of CMS allowing

the residual error variance to differ between individuals.

The dependent variables are the log transformed central

compartment concentration of CMS (DVCMS1) and colistin

concentration (DVCol) given in Eqs. 5, 6:

DVCMS1 tð Þ ¼ ln CCMS1 tð Þð Þ þ �� egER

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ERCMS;prop
þ h2ERCMS;add

.
ln CCMS1 tð Þð Þ2

r

ð5Þ

DVCol tð Þ ¼ ln CCol tð Þð Þ þ �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ERCol;prop
þ h2ERCol;add

.
ln CCol tð Þð Þ2

r

ð6Þ

where CCMS1 tð Þ ¼ ACMS tð Þ
hVCMS1

, and CCol tð Þ ¼ ACol tð Þ
hVCol e

jfm . The

residual error variance was fixed to one and scaled by a

proportional part given by hERx,prop, and an additive part

given by hERx,add, with the inter-individual variability

described by gER for the CMS1 residual error. T
a
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For the Inflate case the IIV was inflated to accommodate

the IOV in order to mimic a scenario where insufficient

information to separate IIV and IOV caused all IOV to end

up in the IIV (e.g. all samples taken in only one occasion).

For the Colistin PK model by Mohamed et al. [14] (im-

plemented in NONMEM 7 [16] with the ADVAN5 solver

and FOCEI method) this was accomplished by removing

the IOV random effects and fixing the typical population

parameters (including the residual error parameters). The

model was then rerun on the original dataset and only the

IIV variances were estimated forcing the IOV variance into

the IIV. The new IIV matrix was taken as X*. The IIV

parameters for the Inflate case are presented along with the

original parameters in Table 1. For simplicity and com-

parability with the 1-COMP model the residual error was

not allowed to inflate.

In the clinical study a dosing regimen of 9MU

(413 lmol) CMS as load (30-min infusion), followed by a

maintenance dose of 4.5MU (30-min infusion) every

twelfth h (q12) is planned to be administered. One occasion

was defined as one dose interval, similar as in the model

development [14].

1-COMP

The 1-compartment IV-bolus structural model is defined by

the differential equation:

dA

dt
¼ �A� hCLegCLþjCL

hVegVþjV
ð7Þ

where A is the drug amount, V is the volume of distribution

and CL is the drug clearance. An additive or additive and

proportional (combined) residual error model was used.

The parameter values are found in Table 2. A q6 dosing

regimen given as 1 unit IV bolus was implemented with

one occasion per dose interval (6 time units).

As the IIV and IOV are included on the same parameters

the IOV inflated IIV,X*, for case Inflatewas taken as the sum

of the IIV and IOV variances so that xr
2* = xr

2 ? pr
2, where

xr
2* is the rth diagonal element ofX*. The original values and

the values for scenario Inflate can be found in Table 2.

FIMMAP

The approximation of the FIMMAP and the notation used

was based on the work by Hennig et al. [10]. Here we give

a brief description of the procedure, for a detailed

description please see Merle and Mentre [8].

In order to calculate the FIMMAP the population model

was transformed to an individual model transferring the

population random effect parameters, g, to individual

parameters, hg, sampled from X. The process is described

in Eq. 8:

pi ¼ g h; gið Þ ! g hh; hgi
� �

; hgi �N 0;Xð Þ ð8Þ

where pi is the parameter vector for individual i dependent

on the population parameters hh, and the individual

parameters hgi.
The FIMMAP is formed as the expectation of the indi-

vidual FIM for the transformed model over its prior, X�1.

The expectation was here approximated by Monte Carlo

integration over all possible individual parameter values.

The procedure is given by:

FIMMAP ¼ EPrior FIMi½ � þ Prior � 1

n
�
Xn

i¼1

FIMi þ Prior

where:

FIMi ¼ FIM v; hh; hgi
� �� �

;

Prior ¼ X�1

ð9Þ

with n being the number of individual parameter sets

sampled.

Inclusion of IOV in the FIMMAP

MAPocc

The IOV was added to the individual FIM as an occasion

deviation sampled per individual occasion from the prior

IOV distribution P. The prior IOV covariance matrix P
was utilized as occasion prior (Eq. 10).

Table 2 Parameter values for

the constructed 1-COMP model
Parameter Typical value IIV (%) IOV (%)

CV % X CV % P

CL 9 25 (35) 0.0625 (0.125) 25 (0) 0.0625 (0)

V 40 25 (35) 0.0625 (0.125) 25 (0) 0.0625 (0)

Additive residual error variance 1

Proportional residual error variance 0.04

Values in parenthesis are the IIV random effects inflated to include IOV. The variance parameters are

presented both as coefficient of variation (CV %—left) of the typical value and as variances (X or P—

right)
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FIMi;MAPocc ¼ FIM v; hh; hgi; hj1;i; hj2;i; . . .hjm;i
� �� �

PriorMAPocc ¼ diag X�1;P�1
1 ;P�1

2 ; . . .P�1
m

� �

ð10Þ

where hjji is the vector of occasion deviations for the jth

occasion of the ith individual, m is the number of occasions

and Pj == P.

The inclusion of the occasion deviations in the MAPocc
approach is analogous to how the individual deviations are

handled in the FIMMAP (Eq. 8).

POPocc

The IOV was included in the individual FIM as an occasion

variance term:

FIMi;POPocc ¼ FIM v; hh; hgi
� �

;P
� �

PriorPOPocc ¼ diag X�1; 0v;v
� � ð11Þ

where 0v,v is the v-by-v zero matrix acting as prior for G,
and v is the number of occasion effects in the prior popu-

lation model. Using the first order (FO) approximation

proposed by Retout and Mentré [17] the occasion variance

contribution to the individual FIM can then be written [18]:

Pm

j¼1

ofi :ð Þjjx;i¼0

oji;j
�P�

ofi :ð Þjjx;i¼0

oji;j

 !00

@

1

A

where:

fi :ð Þ ¼ f vi; g h; hgi; j1;i; j2;i. . .; jm;i

� �� �

ð12Þ

As reference the designs were optimized without

inclusion of IOV (using the FIMMAP as is), either ignoring

the known IOV (case Omit) or using a prior IIV distribution

inflated with IOV (case Inflate). The latter mimic the model

result from a study design neglecting the possibility to

separate IIV and IOV.

Design optimization

The models were implemented in the ODs software PopED

version 2.13 [18] written in MATLAB (MATLAB

v.7.12.0.635) using the FO approximation of the FIM. The

prior FIM functionality was utilized to supply the prior IIV

covariance matrix X. PopED supports IOV as a population

random effect making the implementation of method

POPocc straightforward. The individual deviations vector

hgi for the FIM calculation was drawn from X and reused

for each model and optimization iteration to decrease the

Monte Carlo error. The occasion parameter vectors for the

MAPocc method hjj;i were sampled in the same manner.

The expectation of the logarithm of the determinant of the

interesting part of the FIM over the prior was employed as

the criterion to be maximized (Ds optimality [7]):

OFV ¼ EPrior log
FIMi þ Priorj j

FIMi;uninteresting þ Prior
�� ��

 !" #

ð13Þ

where FIMi,uninteresting is the FIM for uninteresting

parameters (defined below). For the MAPocc criterion the

occasion deviation parameters hjj;i were taken as uninter-

esting while the POPocc method was computed with the

occasion variance parameters P fixed. In all cases (Omit,

Inflate, MAPocc, POPocc) the residual error variances, R,
and the population parameters, hh, were fixed.

The sampling schedules for the two test models were

optimized using the PopED Random Search, Stochastic

Gradient and Line search methods as described by Nyberg

et al. [18]. Schedules of 3 or 6 sampling times over 36 h

(three occasions) were investigated for the colistin PK

model. The number of samples was selected as the smallest

number needed to identify the g deviations in the absence

of IOV and adding one extra sample per investigated

occasion (3 and 3 ? 3). Sampling was prohibited during

and up to 15 min post infusion by setting the information to

zero for samples placed in these intervals. Both CMS and

colistin concentrations were assumed to be analysed at

each time point. For the 1-COMP model a sampling

schedule of 5 samples was optimized over 24 h, with no

restriction in time. In order to investigate sampling clus-

tering behaviour the number of samples were set to exceed

the number needed to identify the g deviations in the

absence of IOV.

Standard error prediction

The predicted individual standard error (iSE) of the indi-

vidual parameters (hgi) were computed as the square root of

the diagonal of the inverse individual FIM plus the prior:

iSEpred ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag FIMi þ Priorð Þ�1

q
ð14Þ

where iSEpred is the 1-by-u vector of predicted mean

standard deviations of the u model gEBEs of individual i.

Shrinkage prediction

Combes et al. [15] calculated the expected shrinkage (SH)

in the gEBEs from the FIMMAP and its prior according to:

SHpred;VAR ¼ diag FIM�1
MAP � Prior

� �
ð15Þ

where SHpred,VAR is the 1-by-u vector of predicted

shrinkages of the u model gEBEs on a variance scale.

Equation 15 quantifies the information gain of the

FIMMAP compared to its prior; if no information is gained

the FIMMAP will be equal to its prior and the SH will be 1,

conversely if much information is gained the FIMMAP is
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large compared to its prior and the SH is low. The accuracy

of the prediction is however dependent on how well the

FIMMAP reflect the individual information loss in the gEBE.

The FIMMAP may be substituted for the expected covari-

ance matrix, i.e. the expectation of the inverse of the

individual FIM plus its prior, which directly account for the

individual contribution to the total SH as the inverse of the

FIM is performed prior to summation. The predicted SH is

then written:

SHpred;VAR ¼ diag
1

n

Xn

i¼1

FIMi þ Priorð Þ�1

 !

� Prior

 !

ð16Þ

The expression in Eq. 16 is corresponding to the

expected shrinkage over the n sampled individual param-

eter sets. Commonly in pharmacometrics (e.g. [2])

shrinkage is presented on the standard deviation scale,

Eq. 16 then becomes:

SHpred

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

diag I� 1

n

Xn

i¼1

FIMiþPriorð Þ�1

 !

�Prior

 !vuut

ð17Þ

where SHpred is the vector of predicted shrinkages of the

u model gEBEs on a standard deviation scale.

Computation time

The computation time for each method was assessed as the

mean estimation time of 100 individual FIM calculations

on an Intel i7 2.7 GHz machine running MATLAB

v.7.12.0.635 on Windows 7.

Design evaluation

The performance of the designs was assessed via 10,000

Monte Carlo simulation–MAP estimation procedures of the

designs using the full population model implemented in

NONMEM 7.3 (Colistin PK: ADVAN5, FOCEI, 1-Com-

partment IV-bolus: ADVAN1, FOCEI). The simulation/

estimation was carried out using the SSE functionality in

PsN v.4.0.1 [19] with gEBEs estimated by setting the

MAXEVAL = 0 and MCETA = 1000 option in NON-

MEM. The individual SEs (iSEexp) of the EBEs were

obtained as the square root of the individual predicted gEBE

variance from the NONMEM 7.phi file, see Kang et al. [20].

The coefficient of determination (R2) between the sim-

ulated g and the MAP estimated gEBE was used as a

measure of re-estimation precision for the population and

obtained as:

R2
r ¼ 1�

Pn
i¼1 gEBEi;r

� gi;r
� 	2

Pn
i¼1 �gr �gi;r
� �2 ð18Þ

where Rr
2 is the R2 of the rth gEBE, gi,r is the rth simulated

individual deviation for individual i, �gr is the mean of the

rth simulated individual deviation (in the ideal case equal

to 0), gEBEi;r
is the corresponding EBE, and n is the number

of simulated individuals (here 10,000). Note that negative

R2 values are possible if the variance of the difference

between the simulated and the estimated deviations is

larger than the variance of the simulated values, i.e. the

precision of the re-estimation is worse than what would be

achieved if each value was set to the mean.

The g-shrinkage was calculated as:

SHr ¼ 1�
SD gEBEr

� �

xr

ð19Þ

where SHr is the shrinkage of the rth gEBE on standard

deviation scale and xr is the prior standard deviation.

Results

Designs

The two cases ignoring the IOV in the optimization (Omit

and Inflate) resulted in identical 5-sample designs for the

1-COMP additive error model (Fig. 1, top panel) placing

duplicate samples at Cmax in the first occasion (first dosing

interval) and three samples in the last occasion, a single

sample at Cmax and a duplicate sample in the middle. The

MAPocc method allocated single samples across all occa-

sions (two samples in the last occasion) while POPocc
sampled the first, third and last occasion. When the pro-

portional residual error was added the Omit and Inflate

cases again resulted in identical designs with duplicate

sampling of the Cmax of the first occasion and triplicate

sampling of the Cmin of the last occasion. MAPocc and

POPocc placed samples early and/or late in each occasion

(Fig. 1, 2nd panel).

For the Colistin PK model the Omit and Inflate methods

also resulted in identical designs placing a single sample at

the first available time of the first occasion and duplicate

samples at the end of the last occasion for the three sample

design (Fig. 1, 3rd panel). For the six-sample design trip-

licate samples were included in the first occasion plus three

clustered samples at the end of the last occasion (Fig. 1,

bottom panel). In contrast the MAPocc and POPocc methods

placed single samples at the start, middle and end of the

first occasion for the three sample design. For the six

sample design the MAPocc method added duplicate samples
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at the start and end of the first occasion and a single sample

at the end of the second occasion while the POPocc added

duplicate samples to the start and middle of the first

occasion and a single sample at the end of the last occasion.

The general layout of the designs produced by each

method was robust to the random seed used to initiate the

optimization. E.g. for the 3 sample Colistin PK design an

alternate deviation vector shifted the sampling times by

*1 % of the dosing interval.

Re-estimation

As the Omit and Inflate cases provided identical designs

the re-estimation performance will only be presented for

the Omit design.

For the 1-COMP additive residual error model the

baseline Omit design performed the worst for both

parameters (gCL: R2 = 0.52 and SH = 28 %, gV:

R2 = 0.64 and SH = 21 %) and MAPocc performed the

Fig. 1 PK profiles of models

1-COMP (top) and Colistin PK

(middle and bottom, Colistin

solid line, CMS dashed line)

and sampling schedules for the

Omit, Inflate, MAPocc, and

POPocc (from top to bottom in

each panel) with the number of

samples per time point indicated

on horizontal lines. For all

models samples are assumed to

be taken post-dose in the

respective occasion
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best (gCL: R
2 = 0.66 and SH = 19 %, gV: R

2 = 0.73 and

SH = 14 %) (Fig. 2). POPocc had intermediate perfor-

mance (gCL: R
2 = 0.66 and SH = 20 %, gV: R

2 = 0.64

and SH = 20 %). Similar results were found for the

combined residual error model where the Omit design also

was the worst (gCL: R2 = 0.43 and SH = 38 %, gV:

R2 = 0.09 and SH = 73 %) while MAPocc (gCL:

R2 = 0.63 and SH = 26 %, gV: R2 = 0.54 and

SH = 26 %) and POPocc (gCL: R2 = 0.59 and

SH = 24 %, gV: R
2 = 0.60 and SH = 23 %) had the best

performance for gCL and gV respectively (Fig. 3).

For the Colistin PK model 3 sample designs the gCL was

re-estimated with similar accuracy and precision

(R2 C 0.72) for all methods (Fig. 4, upper panel), while the

SH was lower for MAPocc and POPocc methods

(SH B 10 %) compared to Omit (SH = 13 %). MAPocc
achieved the highest precision (R2 = 0.74) and the lowest

SH (10 %). As the number of available samples was

increased to six the precision was unchanged for Omit

while the SH remained similar (R2 = 0.72, SH = 14 %)

(Fig. 5, upper panel). In contrast, for the MAPocc and

POPocc methods the precision increased and SH decreased

when the number of samples was doubled (R2 C 0.82,

SH B 8 %). POPocc performed the best (R2 = 0.8,

SH = 8 %).

The gQ parameter was less well re-estimated (Figs. 4, 5

middle panels) compared to the gCl parameter and the

difference between the re-estimation performance of Omit

(3 samples: R2 = 0.04, SH = 70 %, 6 samples: R2 = 0.04,

SH = 67 %) and the MAPocc and POPocc methods (3

Fig. 2 Re-estimation

performance per design for the

1-COMP model with additive

error. gCL (top panel) and gV

(bottom panel), the coefficient

of determination with respect to

the simulated g (R2) and the g-
shrinkage (SH %) of the re-

estimation are given. Upper row

Simulated g versus

corresponding gEBE with the

line of identity (solid) and a

smooth of the intercepts

(dashed). Lower row

Distribution of simulated g
(solid line) and corresponding

gEBE (dashed line)
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samples: R2 C 0.17, SH B 27 %, 6 samples: R2 C 0.37,

SH B 23 %) was higher. Overall, the MAPocc designs had

the best performance (3 samples: R2 = 0.21, SH = 26 %,

6 samples: R2 = 0.38, SH = 23 %).

None of the 3-sample designs for the Colistin PK model

were able to re-estimate the gER parameter with R2 values

above 0, and although SH was not high (\29 % for all

designs) the distributions were highly skewed (Fig. 4,

bottom panel). When the number of available samples was

increased to 6 the Omit design performed best in terms of

R2 (0.38) whereas MAPocc was best in terms of SH (0 %),

however all designs provided very low SH (\9 %) (Fig. 5,

bottom panel).

Correspondence between PopED and NONMEM

iSE

The correspondence between the individual SE (iSE) for

the g-parameters as given by the PopED prediction and

NONMEM evaluation are illustrated in Fig. 6. The agree-

ment between the iSE was evaluated both in terms of size

as given by the median, and in terms of spread in the

population as given by the inter quartile range (IQR).

For the 1-COMP model the correspondence of the

median iSE was poor for the Omit and Inflate scenarios and

best for the MAPocc method while the POPocc method had

slightly larger differences in the median iSE. The IQR was

Fig. 3 Re-estimation

performance per design for the

1-COMP model with combined

error. gCL (top panel) and gV

(bottom panel), the coefficient

of determination with respect to

the simulated g (R2) and the

g-shrinkage (SH %) of the

re-estimation are given. Upper

row Simulated g versus

corresponding gEBE with the

line of identity (solid) and a

smooth of the intercepts

(dashed). Lower row

Distribution of simulated g
(solid line) and corresponding

gEBE (dashed line)
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Fig. 4 Re-estimation

performance per design for the

Colistin PK 3-sample model

gCL (top panel), gQ (middle

panel) and gER (bottom panel),

the coefficient of determination

with respect to the simulated g
(R2) and the g-shrinkage
(SH %) of the re-estimation are

given. Upper row Simulated g
versus corresponding gEBE with

the line of identity (solid) and a

smooth of the intercepts

(dashed). Lower row

Distribution of simulated g
(solid line) and corresponding

gEBE (dashed line)
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Fig. 5 Re-estimation

performance per design for the

Colistin PK 6-sample model

gCL (top panel), gQ (middle

panel) and gER (bottom panel),

the coefficient of determination

with respect to the simulated g
(R2) and the g-shrinkage
(SH %) of the re-estimation are

given. Upper row Simulated g
versus corresponding gEBE with

the line of identity (solid) and a

smooth of the intercepts

(dashed). Lower row

Distribution of simulated g
(solid line) and corresponding

gEBE (dashed line)
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small for all designs with a slight tendency of overpre-

diction observed for Inflate, Omit, and MAPocc for both the

gCL and gV.

For the Colistin PK 3 and 6 sample designs, the Omit

and Inflate scenarios underpredicted both the iSE median

and IQR for the gCL and gQ parameters. For gER Omit

accurately predicted the observed median and the (very

small) IQR while Inflate overpredicted the median but

predicted the IQR well. MAPocc predicted the median and

IQR of the iSE well for all parameters. For the 3 sample

designs POPocc accurately predicted the median and IQR of

gCL and gQ while for the 6 sample design they accurately

predicted the gQ iSE and IQR. For both the 3 and 6 sample

designs POPocc overpredicted the gERE iSE median and

IQR.

Correspondence between predicted and observed

shrinkage

The cases Omit and Inflate strongly underpredicted the

observed SH for all models and parameters except for the

Colistin PK gER for which Omit moderately

underpredicted for the 3 sample design and overpredicted

for the 6 sample design (Fig. 7). For the 1-COMP model

the MAPocc and POPocc methods tended to moderately

underpredict the SH for both parameters. For the Colistin

PK model 3 sample design MAPocc accurately predicted

the SH in the gCl and gQ distributions and slightly

underpredicted the gER SH, while POPocc accurately pre-

dicted the SH of all three parameters. As the information

increased with the addition of three samples in the 6 sample

design the MAPocc and POPocc methods underpredicted the

gCL SH (MAPocc performing best, POPocc slightly worse),

accurately predicted the gQ SH and underpredicted the gER

SH.

Runtimes

Relative to the base FIMmap runtime (Omit and Inflate) the

runtime for one PopED FIM calculation for methods

MAPocc and POPocc of the 3-sample colistin PK design

were 1.8 and 38 times longer, respectively, and for the

1-COMP additive residual error model 4.0 and 46 times

longer, respectively (Fig. 8).

Fig. 6 Boxplots (1st, 2nd, 3rd

quartile ? whiskers) of the

distribution of individual SE

(iSE) per parameter and design

from PopED (SE of hik) and
NONMEM (SE of gEBE). The
upper whisker extend to the

highest value that is within 1.5 *

IQR of the 3rd quartile, where

IQR is the inter quartile range.

The lower whisker extends to

the lowest value within 1.5 *

IQR of the 1st quartile
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Discussion

The ability to optimize for individual parameter precision

in the presence of IOV could be important to improve the

ability to design studies reliant on precise individual

parameter estimates, e.g. feedback dose individualization.

However also studies with the aim of describing population

characteristics could be facilitated as many covariate model

building techniques utilize EBEs [3] and are thus inher-

ently reliant on precise individual parameter estimates [21].

The level of IOV limits the applicability for feedback dose

individualization [22] and is therefore important to con-

sider, but will also affect the precision with which indi-

vidual deviations may be estimated. OD with the aim of

providing precise individual parameter estimates for mod-

els including IOV has been investigated previously by e.g.

Nguyen et al. [23] where a standard population D-opti-

mality method was used. However this is to the authors’

knowledge the first effort to include handling of IOV in

individual OD using MAP based FIM.

The two cases of ignoring IOV in OD for individual

parameters resulted in identical designs. In contrast,

including the IOV as a fixed effect per occasion (MAPocc)

or as an occasion random effect (POPocc) markedly shifted

the design. The result that Inflate did not shift the design

relative to Omit may be anticipated as it does not convey

any information penalty for designs that cannot discrimi-

nate between individual and occasion deviations. In con-

trast, MAPocc and POPocc both treat the occasion deviations

as modeled variables. Hence lack of information to dis-

criminate between the individual and occasion deviations

directly impacts the expected parameter precision.

For the 1-COMP model with an additive residual error

this resulted in designs with a wide spread of samples over

the available occasions for methods MAPocc and POPocc,

maximizing the ability to discriminate between individual

Fig. 7 The predicted SH

(PopED) per parameter and

design (using the respective

methods) compared with the re-

estimated SH (NONMEM)

(using the full model)

Fig. 8 Runtime on a 2.7 GHz

intel i7 machine for one FIM

calculation for the two models

respectively
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and occasion deviations. In contrast Omit produced clus-

tered samples at the first and last occasion. When the pro-

portional residual error was introduced the emphasis was

shifted for all methods from sampling at high to low con-

centrations in an effort to minimize the noise. The general

sampling strategy was however similar to the additive

residual error case with Omit concentrating samples to two

time points while MAPocc and POPocc spread single samples

across all available occasions. When the impact of these two

strategies was evaluated it was apparent that the MAPocc and

POPocc designs provided higher accuracy and less shrinkage

and bias in the gEBE estimates compared with Omit,

regardless of the residual error model. In general the per-

formance of MAPocc was slightly superior to POPocc.

For the Colistin PK model the POPocc and MAPocc
3-sample designs concentrated all samples to the first

occasion while Omit also in this case sampled the first and

last occasion. The concentration of samples to one occasion

for MAPocc and POPocc is contrary to the 1-COMP design

(irrespectively of the residual error model) and the expec-

tation that maximizing the number of sampled occasions

would maximize the possibility of separating occasion and

individual deviations. The reason is the structure of the

random effects in the Colistin PK model as the occasion

and individual deviations are linearly independent with

respect to the model response. This make it possible to

separate the occasion and individual deviations on any one

occasion (Eqs. 2, 3, 4). It would thus be of advantage to

sample few and early occasions, as samples taken at late

occasions would be influenced by deviations from early

occasions carried forward in the PK profile. Additionally

for colistin there is a larger range of concentrations in the

first occasion providing information on the volume of

distribution. Three samples was sufficient to saturate the

first occasion for both MAPocc and POPocc and the addi-

tional three samples of the 6-sample design resulted in the

addition of one new sampling point at a later occasion as

well as duplicated samples. In contrast, for the Omit design

the added samples simply resulted in additional clustered

samples as the support points for the model without IOV

were already occupied.

For the Colistin PK model the re-estimation performance

of the MAPocc and POPocc designs was superior to the Omit

design except for the gER parameter (Figs. 4, 5) for which

the MAPocc and POPocc designs resulted in biased gEBE

distributions. The systematic negative bias of the re-esti-

mated gER may be due to an inability to sufficiently separate

the residual error and the occasion deviations leading to an

underestimation of the residual error variance. In contrast

the multiplicity of the sampling points in the Omit design

allowed more precise residual error characterization and

hence a better ability to determine the gER.

The effect of sampling in a limited number of occasions

for the two models was investigated by placing rich sam-

pling ([1 sample/h) in either the first occasion or in all

available occasions for the Colistin PK model and in either

the first, first and second, or all occasions for the 1-COMP

model. These designs were evaluated by simulation and

MAP reestimation in NONMEM (results not shown). For

the Colistin PK model rich sampling in one occasion was

sufficient to estimate all gEBEs with adequate precision and

shrinkage (R2 C 0.77, SH B 15 %) which was moderately

improved by rich sampling in all three occasions

(R2 C 0.88, SH B 11 %). As reflected in the 3 and 6

sample designs for methods POPocc and MAPocc, this result

confirms that due to linear independence of the random

effect parameters most information is available in the first

occasion for the Colistin PK model but that additional

information may be gained by adding samples in later

occasions. For the 1-COMP model there was a clear gain in

precision and decrease in shrinkage as the number of

sampled occasions was increased from the first (R2 C 0.48,

SH B 31 %), to the first and second (R2 C 0.63,

SH B 21 %), and finally to all four occasions (R2 C 0.74,

SH B 14 %). Again this result confirms the sampling

strategy of methods POPocc and MAPocc. In addition, for a

model where IIV and IOV variances are added to the same

fixed effect parameter, the result illustrates that the EBEs

will always be subject to shrinkage when a finite number

occasions are sampled. The iSE prediction was generally

good both in terms of size and spread for the MAPocc and

POPocc methods, albeit with a tendency of negative bias

(Fig. 6). In contrast methods Omit and Inflate behaved

poorly, however only Omit and MAPocc accurately pre-

dicted the Colistin PK gER iSE. A reason for the negative

bias of the predicted iSE may be that the prediction is

based on the symmetrical and centered X distribution

while the re-estimated iSE is based on the actual gEBE
from NONMEM. In an effort to increase the quality of the

NONMEM gEBE the MCETA option available in version

7.3 was used by which additional initial estimates for the

EBEs are tested.

The SH prediction by the MAPocc and POPocc methods

for the 1-COMP model was in the range of accuracy

demonstrated by Combes et al. [15] and excellent for

Colistin PK 3 sample design where the MAPocc method

predicted the gER SH with high accuracy. For the 6 sample

design the predictions deteriorated, possibly due to a larger

discrepancy between the observed and predicted g-vari-
ances. The Omit and Inflate methods failed to predict the

SH for all models and parameters except the Colistin PK

gER, the same trend may be noted for the iSE. The finding

that the SH prediction was worse for the simpler 1-COMP

model may be due to that the individual and occasion
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deviations in this model are added to the same parameter,

making the separation of these variances harder.

As expected, ignoring the IOV was fastest in terms of

computational effort followed by MAPocc by an increase

roughly proportional to the number of added parameters.

The POPocc method was associated with a pronounced

increase in computational effort due to the need to linearize

around the occasion random effects in addition to the

residual error [18]. The differences in computational effort

are not expected to be sensitive to the structure of the IIV

variances or the residual error model since these are the

same for the different methods. However the number of

occasions may potentially shift the computational effort of

POPocc and MAPocc as the latter needs one new set of

parameters added per occasion whereas POPocc instead has

to linearize over the additional occasions.

The clustering of samples (as observed for several of the

designs presented in this work) is a common behavior in

design optimization when the design is saturated, i.e. that

the support points needed to identify the model parameters

are populated, and any additional samples will be focused

on improving the signal-to-noise of the measurement [24].

The gain in parameter precision is however dependent on

the assumption that the errors of duplicate samples taken at

the same time are uncorrelated, an assumption that is

unlikely to hold for real data. The clustering behavior can

be avoided by acknowledging the inter dependence of

samples in the model building and design optimization

[24], or by empirically spreading the sampling clusters.

In this work it was only considered to add the occasion

variances as fixed parameters to the POPocc method as this

reflect the same assumption as for the MAPocc method;

namely that the variances of the occasion deviations are

known from the prior. The POPocc method could be further

expanded to consider the occasion random effect as unfixed

(set as interesting or uninteresting) in the optimization.

These alternative implementations were evaluated but

differences were found to be small compared with the

differences between the tested methods, both in the pro-

duced design and the predictability of the method (result

not shown). Additionally only FO based FIMs were eval-

uated, linearization of the model around the conditional

estimates of the occasion deviations (FOCE) may have

improved the performance of the POPocc method but would

have severely increased the run times. While the influence

of the balance between IIV, IOV, and residual error vari-

ances on the ability to precisely estimate gEBEs have not

been investigated here it is likely that higher degrees of

within subject variability (IOV and residual error) would

limit the precision of which the individual deviation

parameters may be estimated. However, in such a situation

the gEBEs are expected to be of less value for feedback

dose individualization or model diagnostics. We believe

the results are generalizable in the sense that large IOV

needs to be considered in the design of studies aiming to

estimate gEBEs. The exact sampling patterns are however

expected to be sensitive to differences in model structure

and random effect levels.

Conclusions

Two methods were formulated and applied to account for

IOV in the optimization for maximum precision in indi-

vidual parameters and evaluated against two scenarios of

ignoring the IOV. Directly accounting for IOV resulted in

designs markedly different from those suggested when

ignoring the IOV, with large gains in the precision of the

estimated individual deviation. In addition both methods

(MAPocc and POPocc) predicted the observed iSE and SH

well. In contrast, ignoring IOV, either by omitting known

IOV or by failing to separate IIV and IOV, led to overly

optimistic shrinkage and precision predictions, and lower

precision in the estimated individual parameters. While

differences between MAPocc and POPocc were slight, both

in the produced design and terms of predictability, MAPocc
was computationally much faster in the studied cases.

MAPocc is also attractive compared to POPocc as the

occasion deviations are handled analogously to the indi-

vidual deviations in the FIMMAP. The POPocc method is

however easier to implement in PopED and could be

advantageous if the number of occasions is large or if it is

suitable to consider the IOV distribution of interest to

estimate. Based on this work the authors would generally

recommend the use of method MAPocc in OD for indi-

vidual parameter estimates in the presence of IOV.
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17. Retout S, Mentré F (2003) Further developments of the Fisher

information matrix in nonlinear mixed effects models with

evaluation in population pharmacokinetics. J Biopharm Stat

13(2):209–227. doi:10.1081/BIP-120019267
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