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Abstract: Chagas disease, caused by Trypanosoma cruzi, is a potentially life-threatening tropical
disease endemic to Latin American countries that affects approximately 8 million people. In the
chronic phase of the disease, individuals are classified as belonging to the indeterminate clinical form
or to the cardiac and/or digestive forms when clinical symptoms are apparent. The relationship
between monocytes and lymphocytes may be an important point to help clarify the complexity that
surrounds the clinical symptoms of the chronic phase of Chagas disease. The co-stimulatory signals
are essential to determining the magnitude of T cell response to the antigen. The signals are known to
determine the regulation of subsequent adaptive immune response. However, little is known about
the expression and function of these molecules in Chagas disease. Therefore, this review aims to
discuss the possible role of main pathways of co-stimulatory molecule-receptor interactions in this
pathology that could be crucial to understand the disease dynamics.
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1. Introduction: A Brief Overview of Chagas Disease

Although Chagas disease, which is caused by the protozoan Trypanosoma cruzi (T. cruzi),
was discovered in 1909 by Carlos Ribeiro Justiniano das Chagas, it remains a serious public health
problem in many countries. Currently, there are 8 million people infected by the parasite all around
the world, mainly in 21 countries in Latin America where the disease is endemic [1–3]. It is estimated
that 10,000 deaths of T. cruzi-infected people occur per year, and more than 25 million individuals are
at the risk of infection [4].

Since the early 1990s, the most effective measures to control Chagas disease in Latin America
have been through vector control programs and compulsory blood bank testing [2,3,5]. The Southern
Cone Initiative (Iniciativa de Salud del Cono Sur, INCOSUR) was launched in 1991 to eliminate the
main vector, Triatoma infestans, and transmission by blood transfusion in Argentina, Bolivia, Brazil,
Chile, Paraguay, and Uruguay [6]. This initiative led to a reduction in T. cruzi transmission, and its
interruption was certified in Uruguay (1997), Chile (1999), Argentina (2001), Brazil (2000) and Paraguay
(2002) [2,7]. However, despite these efforts to combat the transmission of the disease in still endemic
regions in Latin America, Chagas disease has become a significant epidemiological, economic and
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social problem at the global level [8] due to the migration of infected individuals from endemic regions
to non-endemic countries in North America, Europe, Asia, and Oceania [4,9–11].

In addition to vector transmission, the parasite can be transmitted to humans through blood
transfusion, organ transplantation, laboratory accidents, congenitally, and through ingestion of
food contaminated with trypomastigote forms of T. cruzi [11–13]. These forms of transmission
are responsible for the introduction and maintenance of Chagas disease in non-endemic regions
and contribute to the persistence and re-emergence of the disease in endemic countries [14,15].
Oral infection currently represents the most prevalent transmission route in Brazil [11,16]. The Ministry
of Health recorded 1252 cases of acute Chagas disease between 2007 and 2014 in Brazil, approximately
70% of which were due to oral transmission [17].

Chagas disease is characterized by two distinct phases: the acute phase, which may last between
one and two months, and the chronic phase. In the acute phase, most cases are asymptomatic, for about
50% of infected individuals, or oligo-symptomatic, when some clinical manifestations are evident,
such as fever, generalized adenopathy, edema, hepatosplenomegaly, or myocarditis [18]. However,
in other cases, classic symptoms of the disease may be apparent, such as signs of portal entry, defined
by edema at the infection site or Romaña signal, characterized by unilateral palpebral edema in the
ocular conjunctiva [18,19]. This phase is also characterized by an increase in parasitemia due to
intense parasite multiplication inside the host cells [10,20] and death due to severe complications [19].
After the acute phase, there is a decrease in parasitemia due to the host immune response and the
infection progresses to the chronic phase [10,19]. About 60% of infected individuals develop the
indeterminate clinical form (IND), characterized by positive serological tests and the absence of
clinical manifestations [10,18,20–23]. Patients with the IND clinical form may not develop severe
clinical manifestations and remain asymptomatic throughout their lives [12]. However, over time,
asymptomatic individuals may develop symptoms and evolve to the symptomatic clinical form [24].
Approximately 30% of infected individuals develop the cardiac clinical form (CARD), characterized
by myocarditis, destruction of cardiac fibers in the inflammatory focus, fibrosis, cardiomegaly,
and congestive heart failure, which can cause the sudden death of the patient [20,24–26]. Heart
failure caused by chronic Chagas cardiomyopathy has the worst prognosis and a survival rate of
less than 50% when compared to other heart diseases [23,27]. The digestive clinical form of Chagas
disease (DIG) affects approximately 10% of infected individuals [10]. This form is characterized by
gastrointestinal disturbances that may lead to megacolon and/or megaesophagus formation [28].
The cardiodigestive clinical form (CDG), also known as the mixed form, is characterized by clinical
symptoms compatible with CARD and DIG forms simultaneously [10,29,30].

Patients with the acute phase of the disease present high parasitemia and the trypomastigotes
can be detected through blood microscopy. In this phase, the evolution or regression of the parasite
load may be monitored using the Polymerase Chain Reaction, which offers both a qualitative and a
quantitative assessment of the T. cruzi burden. The transition from the acute to the chronic phase is
accompanied by a marked decrease in parasitemia, as a result of the host’s immune response. In this
phase, diagnosis focuses on the detection of serum antibodies to the parasite, for which there are
three serologic tests: indirect hemagglutination; indirect immunofluourescence; and enzyme-linked
immunosorbent assay [31].

The mechanisms involved in the development of severe forms of Chagas disease are not yet
well understood. However, the involvement of the host immune responses mediated by monocytes
and lymphocytes has been shown to be crucial in determining the disease pathogenesis [32–35].
Monocytes are innate immune cells that recognize pathogen-associated molecular patterns (PAMPs)
from the parasite through Toll-Like receptors such as TLR-2, 4, and 9 [36–38]. These cells activate
the subsequent adaptive immune response by processing and presenting T. cruzi antigens by major
histocompatibility complex II (MHC-II) to CD4+ T cells and major histocompatibility complex I
(MHC-I) to CD8+ T cells [39]. However, to effectively activate T lymphocytes, the interaction of
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accessory co-stimulatory molecules that will provide a signal to activate the adaptive immune response
is essential.

CD8+ T lymphocytes play a crucial role during the acute phase of the pathology. These cells
produce IFN-γ to activate effector mechanisms in macrophages to destroy amastigotes forms of T. cruzi,
even as display cytotoxic activity to destroy cells infected with intracellular amastigotes [36]. On the
other hand, the activation of T CD4+ lymphocytes may result in a functional differentiation into Th1,
Th2, Th17, or Treg effector cells that differ in terms of their cytokine secretion and trigger distinct
immune responses in Chagas disease [14].

Many studies have shown that patients with Chagas cardiomyopathy develop an exacerbated
pro-inflammatory cytokine environment, such as IFN-γ e TNF-α, which directs the Th1 lymphocyte-
mediate response. In addition, these patients also showed a low frequency of regulatory cells and
anti-inflammatory cytokines that cannot control the exacerbated response that leads to a loss of
regulation of immune response and contributes to pathology maintenance [27,32,34,40–42]. Conversely,
patients with the asymptomatic clinical form, despite having an important Th1 inflammatory response
to control parasite replication, largely produce anti-inflammatory cytokines, such as IL-10, showing a
balance between inflammatory and modulating cytokines production that controls tissue damage and
leads to a more modulated T lymphocyte-mediated response [11,24,32,34,43–46].

Although many studies have demonstrated the importance of cellular immune response in the
clinical dichotomy of Chagas disease [32,35,39,47–49], little is known about the role of co-stimulatory
molecules in pathology development. Therefore, this review focuses on describing the co-stimulatory
molecules and their possible role in Chagas disease.

2. Co-Stimulatory Molecules and Their Role in Chagas Disease

The immune response is essential to protecting the organism against a plethora of infections,
inducing multiple humoral and cellular mechanisms of the innate and adaptive immune responses.
CD4+ T cell activation requires two signals: the first is provided by the interaction of MHC-II with the
T cell receptor (TCR); and the second is delivered to T cells by co-stimulatory cell surface molecules
expressed on antigen-presenting cells (APCs) [50].

The B7-1/B7-2–CD28/CTLA-4 pathway is the best-characterized co-stimulatory interaction,
being crucial to T lymphocytes activation [51,52]. The B7 family is composed of members of the
immunoglobulin family that display V and C-like domains [50]. The most well-known members of
this family are B7-1 (also known as CD80) and B7-2 (also known as CD86), which interact with two
members of the CD28 family, the CD28 and cytotoxic T-lymphocyte–associated antigen 4, CTLA-4
(also known as CD152) receptors [52,53]. However, other members of the B7-CD28 superfamily
have been studied, such as programmed cell death protein 1 (PD-1), PD-L1 (also known as B7-H1),
PD-L2 (also known as B7-DC and CD273), inducible T-cell co-stimulator (ICOS) (also known as H4 and
AILIM), and ICOSL (also known as KIAA0653, B7h, GL50, B7RP-1, LICOS, and B7-H2) [50]. In addition,
many co-stimulatory pathways have been identified, including CD40L (also known as CD154)/CD40,
CD2 (also known as LFA-2)/CD58 (also known as LFA-3), LFA-1 (also known as CD18)/ICAM-1
(also known as CD54), CD95 (also known as Fas)/CD95L (also known as FasL), and the Tumor necrosis
factor family (TNF)/TNF receptor family (TNFR) [51,52].

Several studies have evaluated the role of co-stimulatory molecules in the immune response
in different pathological contexts [54–57]. Thus, co-stimulatory molecules play a pivotal role in
determining the outcome of T cells, directing the activation or inhibition of lymphocytes and the fate
of the immune response. Here, we will describe the main co-stimulation receptors and their possible
role in Chagas disease.

2.1. PD-L1, PD-L2, and PD-1 Receptors

PD-1 belongs to the CD28 family and interacts only with two B7 homologues, the PD-L1 and PD-L2
receptors [50]. This receptor is expressed by activated, but not resting, T cells, B cells, and myeloid
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cells [58,59], while its ligands are expressed in APC, with PD-L1 expressed mainly on B cells, dendritic
cells (DCs), and monocytes, and PD-L2 are expressed only on DCs [50].

It has been proposed that the interaction between PD-1 and PD-L1 or PD-L2 inhibits the activation
of T cells, suppressing T-cell function and downregulating the immune response [56,58]. In addition,
PD-1 is overly expressed on exhausted T cells and the homeostasis of the immune response is
returned upon the PD-1 or PD-L1 blockade [52]. Some studies have shown that C57BL/6 PD-1(−/−)

mice developed lupus-like proliferative arthritis and glomerulonephritis, while BALB/c PD-1(−/−)

developed a fatal dilated cardiomyopathy with thrombosis [54,55]. Other studies have shown that
anti-PD-1 antibodies could be efficient therapies in cancer treatment [52,57]. Taken together, these
results indicate that the PD-1 pathway is an important negative regulator of the immune system and
that the absence of this receptor can lead to autoimmunity.

Nevertheless, little is known about the PD-1 function in Chagas disease. Stempin et al. (2017)
reported an increase in the expression of PD-1 spleen CD4+ T cells from mice infected with the
Tulahuen strain of T. cruzi at 21 days after infection. However, PD-1 expression decreased significantly
at 42 days after infection [60]. In addition, another study evaluated the expression of PD-1L on DCs
from C57BL/6 mice infected with four different T. cruzi strains and observed that all strains were able
to induce the expression of PD-L1 after 18 h of DCs infection. Conversely, only the 2369 strain induced
an increase in IL-10 anti-inflammatory molecules and PD-L1 expression, but not of TNF-α, MHC-II,
or CD40 [61]. The frequency of polymorphism of the PDCD1 gene that encodes the PD-1 receptor,
the PD-1.3G/A, was evaluated and correlated with patients with cardiac (n = 90), digestive (n = 67),
cardiodigestive (n = 39), and indeterminate (n = 81) clinical forms of chronic Chagas disease [62].
However, no statistical difference in the PD-1.3G/A polymorphism was observed between the different
clinical forms of Chagas disease and healthy controls. However, another study observed a higher
frequency of CD8+ PD-1+ T cells in patients with chronic Chagas disease when compared to healthy
donors. In addition, a higher frequency of CD8+ T cells expressing PD-1 in symptomatic versus
asymptomatic patients was detected [63].

Borges et al. (2012) observed a higher expression of the inhibitory PD-1 molecule in CD4+ CD25+

T cells in the spleen of mice infected with the intermediate and higher inoculum of the Colombian strain
(3000 and 30,000 parasites, respectively). However, in the intermediate inoculum, the PD-1 receptor was
associated with the control of inflammation and in the higher inoculum, the presence of this inhibitory
molecule on the spleen was not sufficient to control inflammation and avoid mice mortality [64].
Another study showed that PD-1 and its ligands were highly expressed in lymphocytes found in
the hearts of mice infected with the Y strain of T. cruzi, and the blockade or deletion of this receptor
increased the proliferative response by lymphocytes, acute myocarditis, and mice mortality [65].

The expression of PD-1, PD-L1, and PD-L2 was evaluated in peritoneal macrophages of mice
infected with the Tulahuen strain, and a different role of these co-stimulatory molecules was seen.
An increase in nitric oxide (NO) production was observed in cells from infected mice treated with
anti-PD-1 or anti-PD-L. Even so, anti-PD-L2 blocking antibody treatment reduces iNOS expression
and NO production by infected macrophage [66]. Thus, the PD-2L receptor might play a protective
role in the immune response against T. cruzi.

2.2. ICOSL and ICOS Receptors

ICOS is a co-stimulatory receptor present on the T cell surface [52,67,68] that interacts with ICOSL,
which is constitutively expressed on B cells, macrophages, and DCs [68,69]. It has been proposed
that ICOSL binds strongly to ICOS at 37 ◦C, but, can bind weakly to CD28 e CTLA-4 at a lower
non-physiological temperature (25 ◦C) [70].

In contrast to the CD28 receptor, ICOS is not constitutively expressed, showing a low expression
on naive T cells. However, it is rapidly induced on T cells after TCR engagement [50,68]. Initially,
it was known that ICOS was restricted to T cell activation and T cell-dependent B cell responses
by interacting with its ligand, ICOSL. However, ICOSL can also modulate the immune response,
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promoting the T cell stimulatory and inhibitory pathways through its interaction with CD28 and
CTLA-4, respectively [69,71].

It has been proposed that the binding of ICOS with ICOSL is of great importance to T cell
activation and differentiation. Dong et al. (2011) investigated the role of the ICOS receptor in T-cell
activation in ICOS-deficient mice. Purified naive CD4+ T cells from ICOS knockout mice incubated
with wild-type APCs displayed a reduced expression of IL-2. It was also shown that differentiated Th1
and Th2 CD4+ T lymphocytes were able to express IFN-γ and IL-10, but they failed to produce IL-2
and IL-4, the latter being an essential cytokine to Th2 differentiation [72]. Thus, ICOS is essential to
IL-2 production by CD4+ T lymphocytes being crucial for T cell activation and proliferation.

The role of the ICOS/ICOSL pathway in T. cruzi infection is not well understood, but ICOS plays
a crucial role in T cell responses in other infectious diseases caused by protozoans [73–75]. A previous
study has shown that CD28−/− BALB/c mice infected with Toxoplasma gondii (T. gondii) developed a
T-cell response that was sufficient to provide resistance to the infection [73], suggesting that the ICOS
receptor is an excellent candidate for inducing a CD28-independent activation of T cells. Villegas
et al. (2002) observed that in vivo blocking of the ICOS co-stimulatory pathway in CD28−/− mice
infected with T. gondii leads to a decrease in IFN-γ serum levels, and an increase in parasite burden
and mortality when compared to the control group [74]. Additional studies have shown that ICOS−/−

mice infected with Leishmania mexicana showed a reduction in IL-4 e IFN-γ production when compared
to wild-type mice [75]. These studies suggest that ICOS may be involved in Th1 and Th2 regulation,
and is crucial in T helper cell differentiation.

2.3. Tumor Necrosis Factor Family

So far, 29 members of the TNF receptor superfamily have been identified in humans and,
according to their cytoplasmic sequences and signaling pathway, they can be divided into three
major groups [76,77]. The first group includes receptors with a death domain (DD) in the cytoplasmic
tail, such as Fas (CD95), TNF-R1, DR3, TRAIL-R1, TRAIL-R2, and DR6 receptors [76]. The interactions
of these receptors with their ligands lead to recruitment of adaptor molecules such as Fas-associated
DD (FADD) and TNFR-associated DD (TRADD), which activate the caspase cascade and lead to cell
death by apoptosis [76,77].

The second group includes TNF-R2, CD40, CD30, CD27, LTβR, Ox40, 4-1BB, BAFF-R, BCMA,
TACI, RANK, p75NGFR, HVEM, TNFRSF18, TROY, EDAR, XEDAR, RELT, and Fn14 receptors,
which contain one or more TNF receptor associated factor (TRAF)-interacting motifs (TIMs) in their
cytoplasmatic tails. These receptors activate TIM through the interaction with their ligands, which
recruit TRAF family members and lead to the activation of different signal transduction pathways,
such as nuclear factor κB (NF-κB) and phosphoinositide 3-kinase (PI3K), the well-known signaling
pathways. The recruitment of TRAF is associated with cellular activation, differentiation, survival,
and death [76,78,79].

The last group includes TRAIL-R3, TRAIL-R4, decoy-R3, and osteoprotegerin (OPG) receptors,
also known as “decoy receptors”. Differently from the other groups of the TNF receptor family, this one
does not contain functional intracellular signaling domains or motifs, meaning that these receptors
cannot trigger intracellular signaling pathways and can only compete with the binding sites of the
other groups. Therefore, the effective function of these receptors is to block the activation of signal
transduction pathways of the other TNF receptor groups [76].

The TNF superfamily is constituted not only by receptors, but also by binders that form the
TNF ligand family (TNFSF) [80]. This family comprises 18 genes encoding 19 type II transmembrane
proteins defined by structural homology in their ectodomain. This domain is composed by trimers
that form a highly efficient receptor clustering responsible for the interaction with their specific
receptors [80,81]. Although all ligands are synthesized as transmembrane proteins, some are cleaved
by proteases and released as soluble forms [81]. Among the TNF ligands, we can cite Lymphotoxin α

and Lymphotoxin β, being the first one secreted as a homotrimer or which can be anchored to the to the
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activated T lymphocytes membrane as a heterotrimer with Lymphotoxin β, a type II transmembrane
protein. These proteins are related to the embryonic development of peripheral lymph organs and the
formation of germinal centers in adults during immune responses [82].

TNFR/TNF interactions play an important role in the immune responses involved in the activation
of APCs, as also provide co-stimulatory signals to T cells [83,84]. Many studies have shown the
role of these receptors as co-stimulatory molecules in different pathological contexts [77,79,84–88].
However, only a few studies have showed the role of these molecules in Chagas disease. In T. cruzi
infection, C57BL/6 mice infected with the parasite showed high levels of CD40 co-stimulatory molecule
by DCs and macrophages. In addition, CD3+ T cells from these infected mice also demonstrated
high IL-2 and IFN-γ production [89]. Another study showed a higher CD40 expression in HL-1
murine cardiomyocytes infected with T. cruzi, and the interaction of this receptor with its CD40L
ligand on lymphocytes infiltrating in the heart can induce IL-6 production and contribute to tissue
inflammation [90]. Transfection of 3H3 fibroblasts-CD40L infected with T. cruzi leads to the control
of parasitemia through a NO-mediated IL-12-dependent pathway [91]. Another study showed that
blockage of the IFN-γ or CD40 receptor on human monocytes infected with Y strain of T. cruzi
causes 50% of the inhibition of the IL-12 expression, suggesting that most of the production of this
pro-inflammatory cytokine is due to IFN-γ and CD40-CD40L interactions [92].

These results indicate that CD40 receptor engagement is crucial to controlling parasite replication
by the production of the IL-2, IL-6, and IL-12 pro-inflammatory cytokines. However, CD40 receptor
interaction can also modulate the immune response by IL-10 anti-inflammatory cytokine production
and activation of Tregs, as seen in Leishmania infection [93].

In other infectious diseases caused by protozoans, such as Leishmania, the CD40 receptor is
involved in the activation of macrophages and the production of IL-12 by DCs. CD40−/− mice
infected with Leishmania major (L. major) showed a swift development of the disease when compared
to the susceptible control group, triggering a Th2 lymphocyte response characterized by higher IL-4
levels [94]. It has been shown that IFN-γ stimulates infected macrophages to produce high NO, which
is crucial to potentiate the lysis of the protozoan [1]. However, macrophages infected with L. major and
treated with exogenous IFN-γ are unable to effectively clear the parasites [95]. Kamanaka et al. (1996)
showed that the addition of anti-CD40 antibody in conjunction with IFN-γ treatment is a crucial signal
to macrophage activation, contributing to a lower parasite burden [94]. Moreover, CD40L−/− mice also
displayed a defective T cell response, evident when peritoneal macrophages from CD40 knockout mice
treated with soluble CD40L and IFN-γ demonstrated an increase in IL-12 production [96]. These results
suggested that CD40 is pivotal for the development of an inflammatory response that contributes
to parasite elimination. Nevertheless, previous studies have shown that different levels of CD40
expression on DCs can be associated with the development of different T cell subsets. Higher levels
of CD40 expression trigger the development of effector T cells that contribute to parasite clearance,
whereas lower CD40 expression levels trigger regulatory T cell (Treg) development. In addition,
the binding of CD40 with its ligand can favor the production of IL-12 or IL-10 cytokines [93,95].

Apoptosis is a mechanism of programmed cell death that can occur in physiological and
pathological contexts [97]. In myocardial diseases, due to the limited capacity of cardiomyocyte
regeneration, cardiac cell apoptosis can contribute to ventricular dysfunction and heart failure [98,99].
In Chagas disease, it has been demonstrated that cardiomyocyte samples from chronic Chagas
cardiomyopathy patients undergo apoptosis when compared to Chagas patients without heart failure.
Apoptosis contributes to myocardial cell loss and the development of severe heart damage [100].
Furthermore, apoptosis has also been observed in the inflammatory cells from patients with heart
failure, and this cascade of cellular apoptosis could be mediated by the TNF receptor superfamily,
such as CD95/CD95L interaction [99]. The CD95/CD95L engagement promotes apoptosis of CD4+

T lymphocytes co-cultivated with macrophages infected with T. cruzi, leading to the exacerbated
parasite growth in the acute infection. However, binding CD95 to its ligand is also essential to immune
response control [97]. Contrarily, IL-10 e IL-4 production was seen to be enhanced, but IL-2 e IFN-γ
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pro-inflammatory cytokines in supernatants from T cell cultures treated with anti-CD95L from mice
infected with T. cruzi [101] were not seen to increase. It was also observed an increased secretion of
Th2 cytokines IL-10 and IL-4 by CD4+ T cells in CD95L-deficient BALB gld/gld mice infected with
T. cruzi [102]. Other studies showed high CD95L expression in CD4+ CD95+ T lymphocytes from
IND patients when compared to the NI group. However, after T. cruzi stimulation, a decrease in
CD95L expression in CD4+ CD95+ T cells only in IND patients [103] was seen and higher levels of
CD95L receptor in patients with Chagas disease were also observed, regardless of the clinical form [99].
All these results suggest that, in T. cruzi acute infection, CD95/CD95L interaction leads to the apoptosis
of immune cells, such as CD4+ T lymphocytes, which cannot control parasite multiplication and,
therefore, contribute to the persistence of the infection. We think blocking these receptors during
Chagas disease development could be essential to down-modulate the immune response and control
exacerbated inflammation.

2.4. CD2 and CD58 Receptors

CD2, an adhesion molecule, belongs to the CD2 subfamily and, along with the CD150 family,
falls in the immunoglobulin superfamily (IgSF) [104,105]. This receptor is not only expressed in red
blood cells (RBC), but is also constitutively expressed on T lymphocytes [106–108] and interacts with
CD58 (a glycoprotein presents mainly in APCs). Many studies have shown the role of CD2 in T-cell
activation, with this receptor being a positive regulator of T-cell signaling [106,108]. The activation of
T cells by CD2 signaling involves this receptor directly interacting with the TCR-CD3 complex and,
in this co-engagement, CD2 is considered as a co-stimulatory molecule [104,107]. However, it has been
demonstrated that the CD2 co-stimulatory molecule can activate T cells in the absence of TCR, being
an alternate pathway to the activation of lymphocytes [106,109].

Further studies have shown that T cells from CD28-deficient mice, a co-stimulatory molecule
essential to the second signal to T-cell activation [110] were still capable of inducing an immune
response [111]. Moreover, while CD2 or CD28-deficient mice showed mild expression defects, when
CD2/CD28 double-deficient mice were evaluated, they showed major defects in lymphocyte activation
and proliferation. These results suggest that both receptors—CD2 and CD28—have similar functions
in the activation of T cells and that together they are capable of regulating initial steps in T cell
activation [107].

Recent studies have evaluated these receptors in different pathological contexts [112–118].
Co-cultures with blood forms of the Tulahuen strain of T. cruzi and human peripheral blood
mononuclear cells stimulated with anti-CD2 monoclonal antibodies have shown a reduction in the
proliferative capacity of lymphocytes and a lower expression of IL-2R when compared to cultures
without the parasite [119]. A lower expression of CD58 was also observed in lymphocytes in the heart
of patients with cardiac Chagas disease [120]. All these findings suggest that the immune response
is down-modulated in the presence of unicellular parasites by reduced expression of CD2 on T cells.
This, in turn, decreases lymphocytes activation and contributes to the persistence of infection.

2.5. LFA-1 and ICAM-1 Receptors

LFA-I is the most abundant and widespread integrin expressed in all human T cells [109,121],
playing a pivotal role in T lymphocytes function and mediating cell adhesion, the migration of T cells
from the lymph nodes to the inflammatory sites, and antigen presentation [121,122]. In addition
to interacting with members of the immunoglobulin superfamily present on the endothelium
known as an intercellular adhesion molecule (ICAM)-1, ICAM-2, vascular cell adhesion molecule
(VCAM)-1, and mucosal addressin cell adhesion molecule (MAdCAM)-1 [121], LFA-I also interacts
with ICAM-1 present on the antigen-presenting cell surface [123]. The expression of ICAM-1 on DCs
and its interaction with LFA-1 are crucial for effective T cell activation [123]. It was observed that
LFA-1/ICAM-1 engagement can induce Th17 cells in experimental autoimmune encephalomyelitis
and also contributes to iTreg differentiation [124–126]. In contrast, the interaction of the LFA-1 with
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ICAM-1 T can promote Th1 polarization through the increase in IL-2 and IFN-γ pro-inflammatory
cytokines [126]. These results suggest that the engagement of these receptors could modulate the
immune response and play an important role in inflammation and homeostasis.

A higher expression of LFA-1 was observed in the inflammatory infiltrate on the myocardium of
T. cruzi-infected mice [127,128]. A higher expression of LFA-1 in lymphocytes in the heart of Chagas
patients with cardiac disease was also observed [120]. Conversely, another study showed an increased
LFA-1 expression on invading cells from cardiac tissue of T. cruzi-infected animals with the Colombian
strain at 28 days after infection. Moreover, the inflammatory infiltrate was constituted mainly by
CD8+ T lymphocytes and less frequently by CD4+ T cells [129]. Ferreira et al. (2017) observed that
LFA-1 played a pivotal role in CD8+ T cell migration and could be related to the cytotoxicity of CD8+

T cells [130].
An increase in ICAM-1 expression has been demonstrated not only in the inflammatory infiltrate

leukocytes, but also in cardiomyocytes in acute infection with different strains of T. cruzi. Furthermore,
an increase in this receptor expression was paralleled by the production of pro-inflammatory
cytokines [131], as an increase in the ICAM-1 expression on circulating mononuclear cells during the
early acute phase of T. cruzi infection was also observed [129]. Together, all these findings emphasize
that the interaction of LFA-1 and ICAM-1 is essential for inflammation and could be important in
activating and moving T cells to inflammatory infiltrate during acute T. cruzi infection. It is also
possible that this engagement could be a strategy employed by T. cruzi to attract cells towards the
inflammatory foci.

2.6. Role of CD28, CTLA-4, CD80, and CD86 Co-Stimulatory Molecules in the Pathogenesis of Chagas Disease

CD4+ T lymphocytes are important cells in the adaptive immune response whose activation
requires at least two distinct signals: signals mediated by MHC-II e TCR receptors; and a second signal
by the co-stimulatory molecules [51,132]. It has been demonstrated that the interaction of TCR with
peptide antigen bound to MHC-II is not capable of inducing T cell activation and the engagement of
co-stimulatory molecules is crucial for effective lymphocyte activation e proliferation [110,133,134].

B7-1, B7-2, CD28, and CTLA-4 receptors are the most thoroughly studied co-stimulatory molecules
essential for the activation/inhibition of adaptive immunity [52]. B7-1 and B7-2 are present on the
cell surface of professional antigen-presenting cells (APC), such as DCs, B lymphocytes, monocytes,
and macrophages, and interact with CD28 and CTLA-4 receptors present on the CD4+ T lymphocyte
cell surface [135]. All these co-stimulatory molecules are differently expressed with their distinct
functions. While the CD28 receptor is constitutively expressed on T cells and shows low avidity for B7
molecules, CTLA-4 is rapidly upregulated only after T cell activation [50,136,137]. The interaction of
CD80 and CD86 with CD28 triggers the activation of T cells, promoting lymphocyte proliferation, IL-2
production, and consequently an enhanced immune response, whereas binding to CTLA-4 inhibits the
activation of lymphocytes, which down-regulates immunity [39,137–139].

The B7-2 co-stimulatory molecule is constitutively expressed at low levels on APCs, whereas B7-1
is upregulated later only after activation [50,139,140]. These molecules have shown a large overlap of
functions [50]. Differences in B7-1 e B7-2 functions may be related to the time they are expressed in
the cells. B7-2 is expressed early and can mediate the initial immune response by interacting with the
CD28 receptor and B7-1 might play an important function in late inflammation.

The CTLA-4-deficient mice showed a higher lymphocyte infiltrate into various organs, evidencing
a high proliferative capacity of these cells with early lethality [141]. CD28-deficient mice decrease the
activation of T-helper lymphocytes, but delayed-type hypersensitivity and cytotoxic T-cell activity
could still be induced [142,143]. June et al. (1990) observed that the CD28 co-stimulatory molecule
can trigger T-cell activation or anergy [144]. Moreover, blocking B7/CD28 interactions results in
antigen-specific unresponsiveness [145].

Many studies have demonstrated the functional role of CD80, CD86, CTLA-4, and CD28
receptors in different pathological settings [137,139,146–149], yet little is known about the role of
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these co-stimulatory molecules in Chagas disease patients. A few studies have shown that distinct
strains of Trypanosoma cruzi could trigger different mechanisms of activation of the immune response
mediated by monocytes and lymphocytes. Magalhães et al. (2015) observed a higher CD80 and CD86
expression by human monocytes infected with Col cl1.7, but not the Y strain [150]. An increase in
the expression of CD80 by DCs infected with AQ1.7, MUTUM, and 2369 strains was also observed.
However, this result was not observed in the 1849 strain [61]. These data suggest that the genetic
variability found in the different T. cruzi strains may be important for driving the immune response
and could also be related to the development of the different clinical forms of Chagas disease patients.

Conversely, the polarity of clinical manifestations could also be caused by the host background,
mainly for its capacity to induce an effective immune response. A higher frequency of CD80+

monocytes in IND and CARD Chagas patients has been demonstrated after exposure to the Y strain
of T. cruzi and the lower frequency of CD86+ monocytes in CARD patients, yet not in the IND form.
Exposure of monocytes infected with T. cruzi to lymphocytes increased CTLA-4 expression in IND
patients when compared to the control group [39].

On the other hand, a recent study also demonstrated an increase in CD80 expression in the total
monocytes of IND and CARD patients and a reduction in CD86 expression in CARD individuals after
being stimulated with cytoplasmic repetitive and flagellar repetitive T. cruzi antigens [151]. Moreover,
a higher CD80 expression in classical monocytes of IND and CARD patients was seen, but only
IND patients showed a greater CD86 expression in total, classical, intermediate, and non-classical
monocytes as well as higher CD86 rather than CD80 expression [49]. In addition, the ligands of
CD80 and CD86, CTLA-4 and CD28 molecules were evaluated on the total CD4+ T lymphocytes.
Increased CD4+CTLA-4+ T lymphocyte frequency was observed in Chagas patients, mainly in the
IND group. Moreover, an association between CD80 and CD28, and between CD86 and CTLA-4,
was observed [49]. These results suggest that the CD80 molecule could be essential for the activation
of lymphocytes after interaction with the CD28 receptor in Chagas disease patients regardless of the
clinical form. CD86 is most strongly expressed in IND patients, and CD86/CTLA-4 engagement could
be crucial for regulating the immune response and avoiding exacerbated inflammation in IND patients.
The interaction between CD86 and CTLA-4 may be associated with Tregs differentiation in IND
patients [49]. Therefore, while this interaction may contribute to the activation of Treg lymphocytes
in IND patients and favor the formation of an immunoregulatory environment, Tregs activation in
CARD patients could be mediated by the CD80 receptor. However, the activation of CD80-induced
Treg lymphocytes in CARD patients appears to be inefficient in regulating the immune response,
contributing to the formation of an uncontained inflammatory response as observed in the patients.

Although there are few works about the role of these costimulatory molecules in Chagas patients,
it is essential to expand studies with murine models to confirm and consolidate the mechanisms of
immune function. It was observed that CD28-deficient mice infected with the Tulahuen strain of
T. cruzi had increased susceptibility to the infection. The blocking of CD80 and CD86 by monoclonal
antibodies also exacerbated T. cruzi infection [152]. CD28 expression is reportedly seen to significantly
decrease in T cells from Chagas patients [153]. CD28-T cells display a biased expression of the V-beta
5 T-cell receptor region, and the functional profile of CD28-expressing Vbeta5 region is distinct in
patients with indeterminate and cardiac clinical forms [154]. CD28-deficient mice infected with Y or
Colombian strains of T. cruzi showed high parasitemia and a lower survival rate. This receptor is
essential to CD4+ T cell activation during T. cruzi infection [155] (Table 1).
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Table 1. The main co-stimulatory receptors and their possible roles in Chagas disease.

Co-Stimulatory Pathway Cell Expression Main Function Main Findings in Chagas Disease References

PD-1/PD-L1 or PD-L2

PD-1 (T cells, B cells, and
myeloid cells); PD-L1

(B cells, DCs, and
monocytes) and

PD-L2 (DCs)

Inhibition of the activation of T
cells

Different strains were able to induce the expression of PD-L1 on
DC;
PD-1 is highly expressed in lymphocytes found in the hearts of
mice infected with T. cruzi, and its blockade increased the
proliferative response by T cells and mice mortality;
macrophages of infected mice treated with anti-PD-1 or anti-PD-L
increased NO production.

[50,56,58,59,61,65,66]

ICOSL/ICOS
ICOS (T cell) and ICOSL (B

cells, macrophages, and
DCs)

Activation and differentiation of
T cells

To this date, no study has shown a role of the ICOS/ICOSL
pathway in T. cruzi infection. [52,67–69,72]

CD40/CD40L CD40 (APCs) and CD40L
(T cell)

Activation of APCs and
provision of co-stimulatory

signals to T cells

C57BL/6 mice infected with T. cruzi showed high levels of CD40
by APCs;
CD40/CD40L interaction on lymphocytes in the heart can induce
IL-6 production and contribute to tissue inflammation;
blockage of CD40 on human monocytes infected with T. cruzi
causes 50% of the inhibition of the IL-12 expression.

[52,83,84,89,90,92]

CD95/CD95L Several cells and T and B
lymphocytes Induction of apoptosis

CD95/CD95L engagement promotes apoptosis of CD4+ T cells
co-cultivated with macrophages infected with T. cruzi; the
deficiency of this receptor in modified mice or its blockage can
increase IL-10 and IL-4 production.

[97,99,101,102]

CD2/CD58 CD2 (Red blood and T cells)
and CD58 (APCs) Activation of T cells

Co-cultures of human PBMCs infected with T. cruzi and
stimulated with anti-CD2 antibodies showed a reduction in
lymphocytes proliferative and IL-2R expression.

[106–108,119]

LFA-1/ICAM-1 LFA-1 (T cells) and ICAM-1
(Endothelium and APCs)

Adhesion, migration of T cells
and antigen presentation

Leukocytes of the inflammatory infiltrate, circulating
mononuclear cells and cardiomyocytes increased ICAM-1
expression in the acute infection with T. cruzi.

[109,120–123,127–129,131]

CD80-CD86/CD28-CTLA-4
CD80-CD86 (APCs) and

CD28-CTLA-4 (CD4+

T cells)

CD80 or CD86 interaction with
CD28 activates T cells, and with
CTLA-4 inhibits the activation

of lymphocytes

CD28-deficient mice and CD80/CD86 blockage increased
susceptibility to T. cruzi infection; Chagas patients showed a
higher frequency of CD80 monocytes; IND patients showed a
high CD86 expression by monocytes and their subsets, CTLA-4 T
CD4+ T lymphocytes frequency, and increased Treg proportion.

[39,49,135,137–139,151,152]

APCs—Antigen-presenting cells, DCs—Dendritic cells, IND—Indeterminate clinical form, NO—Nitric oxide, PBMC—Peripheral blood mononuclear cell, T. cruzi—Trypanosoma cruzi.
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3. Concluding Remarks

The heterogeneity of clinical manifestations of chronic Chagas disease has, until now, been one of
the points to be unveiled by science. It is still unknown why some T. cruzi-infected patients develop
cardiac and/or severe digestive clinical outcomes, while others do not present symptoms related to
the pathology. As Chagas disease is a multifactorial pathology, different factors may be involved in
its establishment, such as the T. cruzi strain, virulence factors, the route of infection, parasitic burden,
and the host immune response. However, as in the chronic phase of Chagas disease few parasites can
be found in the host tissue and bloodstream, the immune response may be the main factor that could
be related to the polarity found between the different clinical forms of the pathology.

The co-stimulatory signals expressed by monocytes are essential to determining the magnitude
of T cell response to the antigen, playing a crucial role in determining the regulation of subsequent
adaptive immune response. However, little is known about the expression and function of these
molecules in Chagas disease development, mainly on the ICOSL and ICOS receptors.

These co-stimulatory interactions (Figure 1) may result in the activation of different subsets of
lymphocytes, which will lead to more or less efficient adaptive immune responses. Understanding
these effects and the type of lymphocytic response activated can elucidate this gap in the pathogenesis
of T. cruzi infection and the development of cardiac changes inherent to the parasite. Here, we have
described important co-stimulatory mechanisms from the perspective of Chagas disease and its clinical
manifestations during the chronic phase. However, it became clear that this is a field that needs to be
explored, given the importance of the issue and the complexity of the mechanisms in Chagas disease.
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