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Block-wise Exploration of Molecular Descriptors with Multi-
block Orthogonal Component Analysis (MOCA)
Sebastian Schmidt,*[a] Michael Schindler,[a] and Lennart Eriksson[b]

Abstract: Data tables for machine learning and structure-
activity relationship modelling (QSAR) are often naturally
organized in blocks of data, where multiple molecular
representations or sets of descriptors form the blocks.
Multi-block Orthogonal Component Analysis (MOCA), a new
analytical tool, can be used to explore such data structures
in a single model, identifying principal components that are
unique to a single block or joint over multiple blocks. We
applied MOCA to two sets of 550 and 300 molecules and
up to 9213 molecular descriptors organized in 11 blocks.
The MOCA models reveal relationships between the blocks

and overarching trends across the whole dataset. Based on
the MOCA joint components, we propose a quantitative
metric for the redundancy of blocks, useful for a priori
block-wise feature selection or evaluation of new molecular
representations. The second data set includes 7 ecotoxico-
logical study endpoints for crop protection chemicals, for
which we (re-)discovered some general trends and linked
them to molecular properties. Using a single MOCA model
we estimated the predictive potential of each block and the
model-ability of the target block.
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1 Introduction

Quantitative structure-activity relationship (QSAR) model-
ling is the task of predicting a molecule’s activity, e.g. a
certain chemical reactivity or biological activity, from its
molecular structure. The latter is usually represented by
molecular descriptors, which quantify certain features of
the molecular structure. A large variety of descriptors have
been developed over the past decades, ranging from
topology, shape, atomic properties, pharmacophores or
toxophores, to fingerprints or fragment counts.[1,2] With the
recent technological advances of deep neural networks and
natural language processing abstract machine-learned
representations or characters of structure notations like
SMILES codes have become widely used.[3,4] The choice of
the molecular representation is a critical step in QSAR
modelling and remains an expert decision.[2] Oftentimes,
this selection is based on the ease of availability of the tools
to the model developer or the model performance on a
predictive task.[5–7] The brute force approach of combining
all available representations is not feasible due to computa-
tional constraints and the risk of spurious chance correla-
tions with increasing numbers of input features. Therefore,
we seek methods to inform the expert decision a priori, i. e.
before any predictive models are built, e.g. by analysing the
differences and similarities of chemical representations
across a representative chemical space. This can also help
to investigate the many claims in the literature that one
chemical representation is superior, by working out their
novel and unique information content in a systematic way,
complementary to predictive performance.

To analyze large data tables with multiple blocks of
descriptors efficiently, multivariate data analysis (MVDA) by
projections methods is useful.

Broadly speaking there are four basic data analytical
problem types to which these multivariate tools can be
applied. (1) In the early stages of a project one often
requires a simple overview of the information in a data
table. Such an overview can be obtained with principal
components analysis (PCA). (2) Another common data
analytical problem is the two-block (X/Y) regression prob-
lem, which can be addressed using partial least squares
(PLS) or an extension called orthogonal PLS (OPLS). (3) A
consequence of the results from an initial data analysis can
be that sub-groups or clusters of compounds are found
that warrant further study in terms of local class models. To
accomplish this objective, variants of PCA, PLS, or OPLS are
often used. PCA, PLS and OPLS are explained in more detail
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in Section 2.3. (4) The fourth data analytical objective occurs
when the data at hand are organized as multiple blocks.
Multivariate models involving large numbers of variables
are often difficult to interpret, because plots become
cluttered and difficult to overview. There may then be a
temptation to eliminate variables which runs the risk of
losing important information and may make the modelling
efforts more difficult to interpret and less robust. Usually, a
better alternative is to partition the data into blocks of
logically related variables and apply hierarchical[8–11] or
multi-block data analysis,[12–14] or PLS path modelling if data
are available as logical pathways of dependencies or time
orders.[15]

The early cases of multiblock analysis[8–15] had a strong
focus on concatenating, summarizing and quantifying
correlations among all data blocks, and sometimes to
predict one block from one or more of the other blocks. In
more recent years, however, the focus has shifted towards
data integration in the sense of separating information that
is common to many blocks from information that is
distinctive to a certain block of data, and expressing such
information in different model compartments, i. e. different
model components. These attempts of separating joint and
unique variabilities from each other stretches from ap-
proaches involving two blocks[16,17] over to many-block
methods, such as JIVE,[18] DISCO,[19] OnPLS,[20,21] and JUMBA/
MOCA.[22]

Datasets with multiple blocks of variables may also be
analyzed by hierarchical extensions of PCA, PLS, and
OPLS.[23] At the base level, detailed information is extracted
for each block using block-specific models. Subsequently,
the scores formed at the base level are concatenated at the
top level and analyzed by an overall model summarizing
the information encoded by all base level score vectors.
This top-level model provides a condensed overview of the
information found in all data blocks. One limitation of the
hierarchical approach, however, is that it does not lend
itself to readily labelling and quantifying the proportion of
joint and unique variabilities in the data.

In this paper, we use a new embodiment of the OnPLS
method denoted MOCA, short for Multiblock Orthogonal
Component Analysis, as a navigation tool to block-wise
investigate a selection of molecular descriptor packages,
which are frequently used as chemical representations in
QSAR modelling works. We selected the MOCA method as it
ties in nicely to the modelling spirit of the other multi-
variate methods employed in this work. Our selection of
descriptors is exemplary and can be extended to other
packages or chemical representations. We hope to encour-
age others to follow us along the path of better informing
the selection of input features based on other criteria than
predictive performance, and maybe spark ideas for the
design of better chemical representations.

2 Computational Methods

2.1 Data Sets

We compiled two data sets, referred to as ChemGPS and
Pesticides. The ChemGPS data set is an updated version of
the published ChemGPS[23,24] set of reference compounds,
which was designed to navigate the organic molecules
chemical space to support computational molecular design
and other tasks. It is a principal component analysis (PCA)
based system, where the 9 principal components represent
physical-chemical properties like molecular size, lipophilic-
ity, and flexibility. The molecules were selected in a way to
span a broad and diverse chemical space of organic
molecules, yielding stable and interpretable principal
components. We consider the ChemGPS reference set a
robust and representative starting point for our analysis.
Compared to the original extended set of 554 molecules,
however, we removed 4 molecules (#484, #327, #205, #456),
which became duplicates after our pre-processing of the
structures (see below) and corrected the structure of
Indolapril (#6) for a hypervalent nitrogen atom. Further-
more, we used our own selection of molecular descriptors
as X variables, as these are the subject of our analysis. In
total, this set contains 550 molecules and 9213 molecular
descriptor variables partitioned into 11 blocks representing
the software packages for descriptor calculation.

The Pesticides data set was extracted from the Pesticide
Properties Data Base (PPDB, as of 08.09.2018),[25] which is a
publicly available data source for properties of active
ingredients of crop protection products and their metabo-
lites. The properties range from physico-chemical to
environmental fate to toxicological properties and general
business relevant information. We were particularly inter-
ested in the ecotoxicological properties, which are of high
interest for the development and risk assessments of crop
protection products. To avoid too sparse a data matrix, we
restricted the selection to 7 ecotoxicological endpoints and
300 compounds with the highest number of known
endpoint values. Only values without prefix (i. e. “> ” or
“< ”) and labelled with high reliability (PPDB quality
parameter 4 and 5) were selected. The selected endpoints
are summarized in Table 1. They represent concentrations
or dose levels at which an effect was observed for 50% of
the tested individuals. The only exception is the bioconcen-
tration factor, which describes the partitioning of the
substance from water into fish. More information on the
endpoints is available on the PPDB website.

All endpoints were converted to negative logarithmic
molar quantities (-log X), which is a commonly applied
transformation in many structure-activity-relationship mod-
els, except for bioconcentration factor which was only log
transformed (log BCF). In addition to this biological data,
the same molecular descriptors were used as for the
ChemGPS data set.
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2.2 Molecular Descriptors

Molecular structures were standardized with RDKit[26] to
canonical SMILES, including neutralization and removal of
ambiguous stereo information. Inorganic compounds and
compounds containing heavy metals like Pb, Hg, Sn, or Cu
were filtered out. Salts and solvent molecules were stripped
off. Compounds were grouped neglecting stereo informa-
tion, i. e. the mean of the log-transformed endpoints from
all stereo isomers was taken.

We calculated molecular descriptors, Morgan finger-
prints (1024 bits, radius 2), ECFP4 fingerprints (1024 bits,
diameter 4), and MACCS keys based on the pre-processed
SMILES codes with the CDK (v1.5)[27] and RDKit (version
3.8.0)[26] implementations in the KNIME Analytics Platform.[28]

Unity fingerprints were calculated with Sybyl.[29] 3D molec-
ular structures were optimized with density functional
theory (Turbomole 7.0.1,[30] BP86 functional, def2-TZVP basis
set, COSMO-RS continuum model[31,32] for solvent water).
The latter was also used to compute several quantum-
chemical descriptors for the predominant protonation state
at neutral pH. The 3D structures of the neutral molecules
were used to calculate descriptors with the Dragon 7.0[33]

and PaDEL[34] software packages. The Dragon software was
recently superseded by its successor software alvaDesc,[35]

which can calculate 35 descriptors in addition to the ones
included in Dragon. We included these additional descrip-
tors as the “alva_add” block. Additionally, we calculated the
continuous and data-driven molecular descriptors (cddd)
recently published by Winter et al.,[4] which are based on
the embedding of a deep learning translation model for
molecular structures.

2.3 Data Analytical Methods

All results reported in this contribution were obtained using
the SIMCA software,[36] version 16, and using default
procedures for data pre-treatment, i. e., all variables were
mean-centered and scaled to unit variance prior to model
calculations. SIMCA uses the NIPALS algorithm[36] which

means automatic handling of missing values, such that any
missing value has zero residual and thus no leverage on the
estimated model parameters. R2 values denote the fraction
of explained variance.

Principal Component Analysis (PCA)

Principal component analysis is the mother method for
multivariate data analysis by projection methodology.[37–39]

PCA works with a single data table, X, with N rows
(observations) and K columns (variables). The objective of
PCA is to summarize the information content in a data table
X. Such an overview model may reveal groups, clusters,
trends, and deviators among the observations, as well as
giving information about the correlation structure among
the variables.

From a geometrical perspective, PCA can be understood
as finding lines, planes and hyperplanes in the K-dimen-
sional variable space that approximate the observation data
points as well as possible in the least squares sense. From a
statistical perspective, by using PCA, a data matrix X is
decomposed as

X ¼ 1*x0 þ T*P0 þ E

The first term above, 1*x0, corresponds to the variable
averages and originates from the pre-processing step of
mean-centering. The second term, the matrix product T*P’,
expresses the systematic information in the data, and the
third term, the residual matrix E, contains the unmodelled
variation. The principal component scores of the first,
second, third, …, components (t1, t2, t3, …) are columns of
the score matrix T. These scores may be understood as new
variables which summarize the original ones. To interpret
the scores, one uses the loadings. The loadings of the first,
second, third, …, components (p1’, p2’, p3’, …) form the
rows of the loading matrix P’. The loadings inform about
how the original variables are linearly combined to form
the scores, and thereby they account for the direction of
the PC (hyper-) plane with respect to the original X-
variables.

Partial Least Squares Projections to Latent Structures (PLS)

Partial least squares projections to latent structures, PLS, is
a regression extension of PCA.[40,41] The objective of PLS is to
analyze two blocks of data, often denoted X (“predictors”)
and Y (“responses”) and use the easy-to-get-hold-of data (X)
to predict the difficult-to-get-hold-of data (Y). It should be
noted that in many cases the Y-data is not a matrix of
response variables, but rather a single y-variable.

PLS modeling of the relationship between two blocks of
data can be described in different ways. One way to see PLS
is that it computes two “PCA-like” models, one for X and

Table 1. Experimental data for 7 ecotoxicological endpoints in the
Pesticides data set (log-transformed molar units).

endpoint min max mean missing
values

Algae, EC50 growth after 72 h � 0.26 6.37 2.60 16.7%
Aquatic plants (Lemna gibba and
Lemna minor), EC50 after 7 days

� 2.02 6.22 2.79 52.0%

Daphnia magna acute, EC50 after
48 h

� 2.43 7.39 2.47 10.0%

Fish acute, LC50 after 96 h � 2.46 7.11 2.37 10.3%
Rat acute oral, LD50 � 1.87 3.34 � 0.19 36.3%
Birds acute, LD50 � 2.10 3.31 � 0.04 52.0%
Bioconcentration factor (fish) � 1.87 3.51 0.45 35.3%
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one for Y, and simultaneously aligns these models. The
objectives are (a) to model X and Y, and (b) to predict Y
from X, according to:

X ¼ 1x0 þ TP0 þ E

Y ¼ 1y0 þ UC0 þ F

ð¼ 1y0 þ TC0 þ G, due to inner relationÞ

In the two expressions above, the first terms, 1x0 and 1
y0, represent the variable averages and originate from the
pre-processing step. The score matrices T and U contain the
observation related information, and the X-loading matrix
P’ and the Y-loading matrix C’ contain the variable related
information. The variation in the data that was unmodeled
form the E and F residual matrices.

Orthogonal Partial Least Squares (OPLS®)

Orthogonal PLS (OPLS®) is a modification of PLS allowing
simplified model interpretability.[42–44] This is accomplished
through the ability of OPLS to divide the systematic
variation in the X-block into two parts, one part which
expresses the predictive correlations between X and Y and
another part which expresses the variation in X that is not
related (orthogonal) to Y. OPLS components that are
correlated to Y are here called predictive whereas compo-
nents that are uncorrelated to Y are called orthogonal. In
case the OPLS model only covers a single y-variable, by
theory, there can then solely be one predictive component,
but there can be any number of orthogonal components.
This is why single-Y OPLS models are so useful as there is
only one predictive component to consider.

In the case of a single y-variable, we can write the X-
part of the OPLS model as

X ¼ 1x0 þ tppp
0 þ ToPo

0 þ E

and the OPLS model prediction of y as

y ¼ y0 þ tpqp
0 þ f

The OPLS model for multiple Y-variables involves more
elaborate matrix expressions, which are outside the scope
of this article.

Multiblock Orthogonal Component Analysis (MOCA)

Multiblock Orthogonal Component Analysis (MOCA) is a
new tool aimed at disentangling the information in
complex multi-block data analytics problems. It is available
in the software SIMCA® version 16[36] and is a specific
embodiment of a data analytical procedure known as
OnPLS in the scientific literature.[20,21] Embodiments some-

times differ in algorithm tweaks, thresholds, or default
values for adjustable parameters. Hence, by using the term
MOCA (and not OnPLS or JUMBA), it is clear that our
calculations have taken place in SIMCA®.[36]

Thus, MOCA is a result of long-term method evolution
among the family of orthogonal PLS methods. OPLS and
O2PLS address the two-block problem, O3PLS three data
blocks and OnPLS ‘n’ blocks. The common denominator
among these orthogonal methods is their ability to split
information structures residing in data into correlated (joint)
and uncorrelated (unique) sources of variabilities. This
property makes the OnPLS embodiment MOCA particularly
attractive to us.

Regardless of the number of data blocks covered by the
current model, MOCA will extract two sets of components;
joint and unique components.[22] A schematic illustration of
the MOCA model in the case of three data-blocks is shown
in Figure 1. More specifically, for every data block, Xi, the

variation is decomposed as globally joint information,
locally joint information, and unique information, as shown
in Figure 1.
* Globally joint information is systematic structure found in

all data blocks being analyzed;
* Locally joint information is systematic structure found in

a subset of the data blocks; and
* Unique information is additional systematic structure

found only in one, single data block.
Briefly, the MOCA algorithm comprises five major steps:

Figure 1. Venn diagram showing the data decomposition principle
of the MOCA model using a fictitious three-block data analytical
problem. The MOCA model will have three model compartments.
One type of components will express globally joint information
found in all data blocks being analysed. A second type of
components will represent locally joint information found in a
subset of the data blocks. And a third type of components will
capture unique information found only in one, single data block.
The residual part corresponds to the unmodelled data structure of
each data block, once the joint and unique variabilities have been
accounted for.

Research Article www.molinf.com

© 2021 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2022, 41, 2100165 (4 of 15) 2100165

Wiley VCH Dienstag, 12.04.2022

2205 / 228700 [S. 268/279] 1

www.molinf.com


(1) The first step is to compute pairwise OPLS models of all
included blocks to determine a suitable number of joint
components for each pair of blocks. This implies the
algorithm treats each data block according to equal
weight, independent of their size.

(2) In the second step, all OPLS components from step one
are combined into one set for each individual data
block. From each such set, PCA is then used to extract
only the relevant number of components for each data
block. These “compressed” components represent the
joint information in each data block.

(3) In the third step, using the new “compressed” compo-
nents from step two, the joint information in each block
can be recreated by multiplying the scores and loadings
to recreate the block data. The difference between the
recreated joint block matrices and the corresponding
original block matrices is a set of “residual” blocks
corresponding to the unique block information.

(4) In the fourth step PCA is used to extract the unique
components from the “residual” blocks remaining after
the third step.

(5) In the fifth step the joint information from step three is
re-assessed and divided into globally and locally joint
components. This step involves a series of PCA and
OPLS models. In this process, a specific final loading
vector is evaluated to determine if the component
under consideration is a globally or locally joint
component.
The MOCA algorithm contains a strictness parameter

which is linked to the final loading vector in Step 5 and
influences the proportion of the data structure which will
be regarded as joint information. It ranges from � 1 to 0
and the closer to 0 the stricter the solution. In the strictest
scenario, where high demands are placed on what is
labelled as joint information, the individual block joint
components of the overall joint components must be very
similar. In a less strict scenario, where the goal might be to
extract as much systematic information as possible, a less
stringent view on what information is connected between
different data blocks is applied.

Visualization of MOCA model parameters is similar to
visualization of PCA/PLS/OPLS model parameters. This
means plots of scores and loadings are frequently used for
model interpretation. However, compared with ordinary
PCA/PLS/OPLS score plots, the MOCA score plot of joint
components offers a diagnostic advantage. For each joint
component (global or local) it is possible to plot either a
score vector pertaining to an individual data block, or the
average joint score vector across all blocks. For the average
joint score vectors, SIMCA sizes the points proportional to
the block differences. A small point in the score plot
indicates an observation (here: compound) for which the
individual block score vectors are very similar to the
average score vector. Conversely, a large point highlights
larger differences. The size of the plotted point thus
indicates how much joint information is preserved among

the modelled data blocks for that particular compound, i. e.,
the smaller the point the higher degree of information
overlap.

In terms of computation time MOCA is more demanding
than PCA but not prohibitively more. Due to the initial
pairwise modelling in step 1 the number of included blocks
is a main driver of the computation time. The number of
variables in each block usually has a much less decisive
impact. Building the largest model with 550 molecules and
9213 descriptor variables in 11 blocks did not take longer
than 30 minutes on a standard business laptop.

3 Results and Discussion

3.1 Assessing the Influence of the Strictness Parameter in
MOCA Models

To investigate the influence of the strictness parameter
additional calculations were done on the ChemGPS data
set. Initially, a series of six 11-block MOCA models was
created in which the parameter adopted the values � 0.01,
� 0.03, � 0.05, � 0.10, � 0.20 and � 0.50. For each of the six
conditions the fraction of joint variation (R2Xj) was regis-
tered. Furthermore, to introduce some additional informa-
tion possibly “disturbing” the system we also invoked a
twelfth block of descriptor variables from an in-house
package. Using the 12-block setup an additional series of
six MOCA models were computed in which the strictness
parameter was anew varied as � 0.01, � 0.03, � 0.05, � 0.10,
� 0.20 and � 0.50. Again, the R2Xj fraction of joint variation
was registered.

In the next stage, a data table (see Table 2) with the
resulting R2Xj values was created in which each row was
one condition and each column an R2Xj value for a
particular block of descriptor variables. This means the data
table had 12 rows (six settings of the strictness parameter
times the two MOCA setups of 11-blocks and 12-blocks)
and 11 columns (R2Xj-values for the 11 descriptor blocks of
interest).

PCA was then applied to the data table of R2Xj-values
and of particular interest was the score plot. Prior to the
PCA calculations the data table of R2Xj values was only
mean-centered (but not scaled to unit variance). Mean-
centering is the usual procedure when the data have a
similar numerical range – 0-1 in this case – and arise by the
same underlying mechanism.

The PCA model obtained had one strong and significant
principal component accounting for 94% of the variance in
the data table of R2Xj-values. Its score and loading plots are
seen in Figure 2. The score plot shows two consistent,
repeating trends of the numeric series 1-6 (the six 11-block
MOCA models) and 7–12 (the six 12-block MOCA models),
indicating that addition of the 12th block does not perturb
the model qualitatively. In both numeric series cases, the
model with the strictest solution (1 and 7) are somewhat
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remotely positioned from the rest of the models using the
same set-up. This suggests rather sharp changes in R2Xj-
values profiles (joint variabilities) when moving from the
strictest solution given by the strictness � 0.01 to the
software default of � 0.03. As opposed to this, however,
models 2-6 and 8-12 display a trajectory indicating a rather
stable continuum in how the R2Xj-values (joint variabilities)
change depending on the setting of the strictness parame-
ter. This finding suggests that, as long as the strictest

solution is avoided, the chosen setting of the strictness
parameter will not fundamentally change the structure of
the information overlap of the different block of descriptors.
What will change is the proportion of descriptor variation
diagnosed as joint and overlapping information.

Furthermore, it is of interest to interpret the loading
vector of the PCA model (Figure 2, bottom). With the help
of the loading vector we can sub-group the different
descriptor packages with respect to how sensitive or
insensitive they are due to altering the setting of the
strictness parameter. The larger the loading value the more
the fraction of joint variation is growing when the strictness
is relaxed. This means that the smallest descriptor blocks
alva_add and QM and their joint variabilities are particularly
sensitive to the choice of the strictness parameter, which
we attribute to their small size. In the strictest setting the
alva_add block did not contribute any joint variance.
Conversely, for the large descriptor blocks Dragon, PaDEL,
ECFP4 and Morgan comparatively stable fractions of block-
overlapping information is detected, i. e., the R2Xj values
hardly change when modifying the strictness parameter.

Our conclusion is that the default setting of this
parameter (� 0,03) is sensible and provides faithful results.
This default value is used in all MOCA models quoted in this
work if not stated otherwise.

3.2 Analysis of Descriptor Blocks on a Reference Set of
Molecules (ChemGPS Data Set)

We started our analysis on the established ChemGPS[24] set
with the goal to understand the interrelationship between
the various descriptor blocks and eventually to reduce the
number of descriptor packages required for predictive
modelling. The first MOCA model (M1) contains a total of
9213 molecular descriptors partitioned into 11 blocks
representing the software packages for descriptor calcula-
tion. Figure 3 shows an overview of explained variance (R2)
covered by the globally or locally joint components (green)
and the unique components (blue) for each block.

Table 2. Fraction of joint variation (R2Xj) obtained when analysing the influence of the strictness parameter.

Nr. Blocks Strictness RDKit CDK cddd QM Dragon PaDEL alva_add ECFP4 unity MACCS Morgan

1 11 � 0.01 0.394 0.531 0.331 0.256 0.592 0.560 0 0.121 0.239 0.179 0.122
2 11 � 0.03 0.634 0.753 0.416 0.484 0.630 0.571 0.608 0.188 0.309 0.467 0.187
3 11 � 0.05 0.725 0.847 0.435 0.843 0.634 0.586 0.667 0.182 0.302 0.525 0.187
4 11 � 0.1 0.767 0.816 0.426 0.758 0.634 0.586 0.761 0.177 0.317 0.585 0.182
5 11 � 0.2 0.799 0.896 0.435 0.743 0.634 0.583 0.836 0.188 0.323 0.605 0.192
6 11 � 0.5 0.865 0.931 0.452 0.944 0.634 0.592 0.929 0.188 0.343 0.631 0.186
7 12 � 0.01 0.673 0.684 0.358 0.298 0.619 0.565 0 0.153 0.258 0.202 0.153
8 12 � 0.03 0.632 0.779 0.419 0.578 0.633 0.582 0.641 0.172 0.327 0.499 0.183
9 12 � 0.05 0.727 0.779 0.418 0.645 0.625 0.580 0.558 0.177 0.300 0.539 0.177
10 12 � 0.1 0.786 0.780 0.436 0.667 0.624 0.579 0.744 0.166 0.316 0.581 0.165
11 12 � 0.2 0.800 0.868 0.435 0.895 0.620 0.579 0.858 0.170 0.329 0.618 0.169
12 12 � 0.5 0.865 0.926 0.454 0.945 0.638 0.594 0.929 0.188 0.344 0.642 0.187

Figure 2. Results from assessing the influence of the strictness
parameter. Top: Score plot. Model numbering is in accordance with
Table 2. The numerical label is the setting used for the strictness
parameter. Yellow and red horizontal lines represent 2 and 3
standard deviation limits. Bottom: Loading plot. Each column is the
loading value of the descriptor block, the error bars represent 95%
confidence intervals as estimated by jack-knifing.
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Figure 3 depicts several characteristics of the descriptor
blocks. The conventional descriptor types (RDKit, CDK,
Dragon, PaDEL, alva_add) show very large fractions related
to a single joint component, which represents molecular
size (see below). On the other hand, the fingerprints (ECFP4,
Morgan, unity, MACCS) as well as cddd show very small
explained variance per component, which is due to their
design to cover large chemical spaces using a limited
number of (orthogonal) dimensions. We therefore decided
to analyze the fingerprints in a separate model (see
Supporting Information for details). Except the ECFP4 and
Morgan blocks, which are very similar by design, i. e., both
using the Morgan algorithm,[45,46] all these blocks contribute
unique information in terms of many fine-grained (i. e., low
R2) components. This nature of the fingerprints renders
them more useful for large data sets (thousands of
molecules).

For the conventional descriptors we fitted a new MOCA
model on the blocks RDKit, CDK, QM, PaDEL, Dragon, and
including cddd as a new type of descriptor with similar
properties like fingerprints in terms of number of compo-
nents and explained variance. In total, this model (M2) was
constructed on 6181 variables, separated into 6 blocks. The
overview of explained variance (R2) is presented in Figure 4.

The general trends of model M1 were preserved: The
first component is globally joint and explains a major part
(up to 46% for CDK) of the variance in each block. It is
related to molecular size, since many descriptors in the
conventional packages are size-dependent, e. g. topological
descriptors counting atoms or bonds. The second compo-
nent is related to aromaticity and flexibility, e.g. the number
of aromatic rings or the fraction of sp3-hybridized carbon
atoms. Qualitatively, the first components resemble the
ones of the original ChemGPS PCA model,[24] although there
is some entanglement, as can be shown with bivariate
correlation analysis (see Supporting Information). For exam-
ple, the scores of the first joint component of M2 and the

first principal component of the original ChemGPS PCA
model have a correlation coefficient exceeding 0.95.

Interestingly, Winter et al.[4] observed similar trends in
the PCA space of the cddd descriptors on their original data
set. The first and second principal components from the
cddd space are highly correlated to molecular weight and
logP, respectively. These cddd descriptors are completely
data-driven based on SMILES input strings and not biased
by the selection of descriptors or descriptor packages.

The scores plots for the first 4 components of model M2
are shown in Figure 5. The size of the circles indicates how
much the scores differ between the single blocks. This plot
can be used to drill down into deeper analysis for
compounds of interest. For example, we identified a
polyacetylene with large differences in scores between the
blocks. Its large conjugated π-system causes special elec-
tronic properties, which are reflected in higher levels of
theory, but overlooked by many topological descriptor
types. The two extreme molecules on the bottom right
quadrant of the plot represent two oligopeptides. However,
despite their high numerical score values in the first two
components, they do not distort the model.

The loading plots for the first two components are
presented in Figure 6. Many of the CDK descriptors are
strongly and mostly related to molecular size (joint
component 1), e.g. the heavy atoms count and the bonds
count. In contrast, the cddd descriptor loadings are spread
relatively evenly, describing combinations of components 1
and 2 as well. Many are clustered at the origin but
contribute to higher components instead. This is due to the
design of the embedded cddd space, which is constructed
based on a dimensionality reduction technique and there-
fore does not over-represent particular molecular features
like the molecular size. Interestingly, the QM descriptors
include some loading values, which are unlike the bulk of
the other descriptors, e.g. hardness (HOMO/LUMO energy
difference), H_ring (COSMO-RS energy correction due to

Figure 3. Overview of explained variance (R2) for the MOCA model
M1 on the ChemGPS data set with 11 descriptor blocks.
Segmentation reflects explained variance per joint (green) and
unique (blue) component. Numbers of the major components are
displayed in grey.

Figure 4. Overview of explained variance (R2) for the MOCA model
M2 on the ChemGPS data set with 6 descriptor blocks. Segmenta-
tion reflects explained variance per joint (green) and unique (blue)
component. Numbers of the major components are displayed in
grey.
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ring atoms), or H_vdW (COSMO-RS van-der-Waals energy
term). These descriptors could potentially add valuable
information for predictive or descriptive tasks, that cannot
be replaced with the other descriptor types.

One of the main goals of our analysis is the detection of
redundancy in the descriptor data, such that descriptors
could be removed from the data table prior to predictive
modelling tasks, to reduce the risk of spurious chance
correlations. From the above analysis it becomes clear that
a large fraction of descriptors is related to molecular size
and can be removed. Alternatively, the degrees of freedom
can be reduced by dimensionality reduction techniques like
PCA or hierarchical modelling. However, hierarchical ap-
proaches miss out on the opportunity to align multi-block
components to identify more subtle commonalities.

Additionally, we wanted to test whether whole pack-
ages could be removed to reduce the computational and
manual effort for descriptor calculation. The obvious way of
block-wise elimination is time consuming and can be
misleading – e.g. removal of the QM block does not alter
the R2 values of the remaining blocks but removes a
significant amount of unique information (see Supporting
Information Section 3). We therefore propose the fraction of
explained variance by joint components (R2Xj) in the full
model as a first step selection criterion: the information
from blocks with high R2Xj (large green bars in the R2
overview plot) is redundant and can be approximated by
the other packages. The explained variance by unique
components indicate structure in the data of a single block,
which is unique for this block. The remaining fraction of the
unexplained variance might contain unique information as
well. We compiled a summary of this information for model
M2 in Table 3. In addition to the pure R2Xj values, we
propose a metric that takes the maximum correlation to the
joint component of any other block into account as a
weighting factor. With this redundancy metric R (equa-
tion (1)) we estimate how well information from the target
block is covered by the joint component of all the other
blocks A.

RT ¼
X

j

R2Xj;T*max correl tj;A ; tj;T
� ��

�
�
�

� �

(1)

The highest R2Xj and redundancy values were found for
the RDKit and CDK blocks. One of these packages can be
removed without losing much information. Additionally,
other factors like license costs, computation time, or

Figure 5. Scores plot for the first 4 components of MOCA model
M2, colored by molecular weight. The size of the circle represents
concordance of the individual descriptor blocks. A large circle
means high deviations between blocks.

Table 3. Comparison of descriptor packages and their explained variance by joint components in model M2.

RDKit CDK cddd QM Dragon PaDEL

number of descriptorsa 74 45 512 40 3868 1642
explained variance by joint components, R2X 0.68 0.74 0.33 0.56 0.60 0.54
explained variance by unique components, R2Xu 0.00 0.11 0.19 0.08 0.14 0.19
redundancy RT 0.65 0.73 0.32 0.52 0.59 0.54
costs (licenses, labour time)b 5 5 5 1 3 4
explainability (interpretation, reversibility)b 3 3 3 4 2 2
a After removal of constant values. b Personal choice of the authors. Criteria and scores depend on the use case and reflect personal
preferences. Other criteria might be added; scores range from 0 (worst) to 5 (best).
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explainability of the descriptors can be taken into consid-
eration. Of course, these “soft” criteria depend on the use
case and the availability of software tools and should be re-
assessed for each project individually. Nevertheless, we

provided suggestions based on personal preferences in
Table 3.

Another important criterion is the total number of
descriptors in one package. Exclusion of larger packages
reduces the final number of descriptors most efficiently. On

Figure 6. Loadings plot for MOCA model M2, highlighting the blocks separately.
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the other hand, larger packages tend to contribute more
unique variance at the same time. For a fairer comparison,
larger packages could be split into sub-blocks of compara-
ble size based on their underlying theoretical concept or
molecular properties. However, this is beyond the scope of
this article and currently limited by computational costs,
which scale more than linearly with the number of blocks.
For our example project below, i. e. analysis of the Pesticides
data set, we decided to leave out the CDK block due to its
high redundancy value.

Another question we pursued, was whether the compu-
tationally expensive and labor-intensive QM descriptors add
value? MOCA model (M2) constructed 3 unique compo-
nents for this block. Prominent descriptors with high
loadings into these components are for example hydrogen
bond donor capability, polarizability, dipole moment, and
the sigma profiles of the COSMO-RS solvation model. These
variables describe the intermolecular interactions of the
molecules with their environment and apparently contain
unique information, which is not covered by the other
descriptor packages. If the modelled properties are ex-
pected to depend on these features, it might be worth the
effort to include the QM descriptors.

3.3 Analysis of Descriptor Blocks for an Example Project
Including Biological Data (Pesticides Data Set)

We applied our learnings from the ChemGPS data set to the
Pesticides data set as an example project, which is relevant
for crop protection chemistry and environmental safety. In
addition to the calculated molecular descriptors, this set
includes biological data in the form of 7 ecotoxicological
study endpoints (see Table 1). Figure 7 shows the scores
and loadings of a principal component analysis of these
endpoints. Overall, the explained variance (R2X) of the PCA
model with two components is 0.7, which means there are
trends among the experimental variables. This can be
expected due to known inter-species correlations reported
before (see references[47–50]). The highest correlation coef-
ficient we found in our data set is between fish and
daphnid with 0.8. The first component indicates higher
toxicity towards all species and a higher tendency for
bioaccumulation. The second component differentiates
between algae and aquatic plants on the one hand (higher
values) versus rats and birds on the other hand (lower
values). It can also be seen from the scores plot (Figure 7,
top) that insecticides have a higher tendency to be toxic for
the investigated species than other indications (insecticides
are in the right half of the scores plot). Herbicides are often
more toxic to aquatic plants and algae as compared to rats
and birds (top quadrants). Fungicides do not show a clear
prevalence towards any species (center of the scores plot).

Thus, the PCA confirms the common assumption that
the different property profiles of insecticides on one side
and herbicides and fungicides on the other side reflect their

different toxicities. Ideally, herbicides are systemic, penetrat-
ing into plants and being transported to their target
proteins. This requires them to be soluble in water. On the
other hand, insecticides need to be protected from the
efficient metabolic capacity of insects, leading to a reduced
number of aromatics, an increased number of halogens and
consequently a loss of systemicity. Hence, on average
insecticides have a higher lipophilicity and a lower water
solubility than herbicides and fungicides.[51] The tendency of
herbicides to be more toxic to aquatic plants and algae
than to rats and birds can be explained by the fact that
important herbicidal modes of action like the photosyn-
thesis system are not present in rats or birds.

Moving forward to the MOCA analysis of the Pesticides
set, we obtained a very similar model compared to model
M1 using all descriptors (not shown), indicating trans-
ferability of the results. This is mainly because both sets
cover a relatively broad and similar molecular property
space. We thus reduced the model to 5840 descriptors from

Figure 7. Principal Component Analysis (PCA) on the bio block of
the Pesticides data set. Top: scores plot. Bottom: loadings plot. PC1
and PC2 represent 51% and 21% explained variance, respectively.
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the 5 software packages we identified as most relevant for
the ChemGPS data set. The structure of the model is
qualitatively similar to the previous model M2. However,
using default settings, the model did not include any
components from the biological block. This is due to the
very small size and the noisiness of the bio block. Since we
were particularly interested in the correlations with the bio
block, we relaxed the strictness of the model (loading
length limit of � 0.2 instead of � 0.03), such that the joint
components are constructed also from less strictly corre-
lated features and include smaller blocks as well. We thus
obtained model M3, which contains 3 joint components
with contributions from the bio set (Figure 8). The intra-

component correlation between the bio block and the
other blocks for these 3 components is around 0.6 to 0.7
(Pearson's correlation coefficient r2), indicating that the bio
block is indeed related to the other blocks (see Table S2
and score correlation matrix in the Supporting Information).

In total, the joint components cover an explained
variance of nearly 80% of the bio block, without any unique
bio components (Figure 8), which demonstrates that linear
QSAR models should be able to capture a large fraction of
the variance in the experimental data. For the descriptor
blocks the coverage of explained variance is similar to
models M1 and M2 on the ChemGPS data set.

The first model component is globally joint and strongly
related to molecular size and overall biological activity, in
line with the ChemGPS MOCA models M1/M2 and the PCA
on the biological variables. Descriptors with high loadings
are for example molecular volume, surface area or number
of (heavy) atoms. All biological variables have positive
loadings (0.5 to 0.9). This component has by far the highest
coverage of explained variance across all blocks, with 0.3
for the conventional and QM blocks and 0.5 for the bio
block. Typically, these size descriptors appear to be
important features also for many other QSAR models for
biological activities (author‘s experience; see also[52]). One

mechanistic explanation is their relation to thermodynamic
or physico-chemical properties like solubility (bigger mole-
cules must displace more solvent molecules and are there-
fore less soluble), higher lipophilicity, or larger contact
surfaces for molecular interactions. From the bio block, the
loadings of the aquatic organisms are higher than for birds
and rats. Thus, the component confirms that molecular size
is especially related to higher biological activity in aquatic
organisms.

The second joint component is related to bond
saturation: compounds with only single bonds vs. com-
pounds with many aromatic rings or double bonds. It is not
joined with the bio block. The scores plot of the two first
joint components is shown in Figure 9.

The other two components joint with the bio block
(number 8 and 15) cover only a small fraction of explained
variance in the bio block (0.17 and 0.09, respectively) and
even less for the other blocks (from 0 to 0.02). We plotted
the loadings from the bio variables and the scores side by
side (Figure 10). This allows easy comparison because
molecules on one end of the scores plot have high loadings
from variables on the same end of the loadings plot. The
loadings from the organisms are clustered in a similar way
as in the PCA model above (birds/rats vs fish/daphnid vs
aquatic plants/algae) indicating a differentiation between
the organisms (Figure 10, top). The scores plot (Figure 10,
bottom) shows that component 8 separates insecticides
(top quadrants) from herbicides (bottom quadrants), where-
as for component 15 there are 3 outlier molecules (left)
sticking out from the rest: difethialone, flocoumafen, and
difenacoum. These are active ingredients of rodenticides
and thus show high toxicity towards rats. The loadings of

Figure 8. Overview of explained variance (R2) by blocks for MOCA
model M3. Segmentation reflects explained variance per joint
(green) and unique (blue) component. Numbers of the major
components are displayed in grey.

Figure 9. Scores plot of joint components 1 and 2 of the Pesticides
MOCA model M3, colored by molecular weight. The size of the
markers indicates differences between individual blocks.
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the descriptors are generally low for both components,
with a maximum of 0.43 (P-117_Dragon) and 0.34 (cddd_
248) for components 8 and 15, respectively. We did not
identify any outstanding molecular features, which could
provide a clear explanation for the different biological
activities from this analysis.

3.4 Towards Predictive Models

In preparation of developing predictive QSAR models, we
were also interested in a systematic approach to check for
correlations with the experimental bio block. A simple
correlation analysis between single bio variables and the
most correlated descriptors has two major disadvantages: a)
high levels of noise, i. e. we would find many descriptors
which are only correlated by chance due to the sheer
number, and b) correlation to differences between species
would be overlooked. Instead, we analyzed the joint
components of the MOCA model M3, which are of much
lower dimensionality (lower risk of spurious chance correla-
tion), provide a rough mechanistic interpretation, and can

represent differences between species like components 8
and 15.

We calculated predictivity scores for each joint compo-
nent as the product of the explained variance in the bio
block (R2Xj,T) and the correlation coefficient between score
vectors from the bio block (tj,T) and the descriptor block
(tj,A), as obtained from the score correlation matrix. We
propose to use the sum over all components as overall
predictivity score PA for a particular block A (equation (2).

PA ¼
X

j

R2Xj;T* correl tj;A ; tj;T
� ��

�
�
�

(2)

For the bio block the correlation is 1 and the score value
thus corresponds to the explained variance. We summar-
ized our analysis in Table 4. The predictivity score is an

indicator for the fraction of explained variance in the whole
target block, without having to build a separate model for
each block. We confirmed this approach by building OPLS
regression models for each descriptor block (last row in
Table 4). The predictivity scores agree very well with the
explained variance R2Y(bio) of the OPLS models.

Component 1 (“overall ecotoxicity”) is joint over all blocks.
Only two blocks contribute to all 3 joint components: cddd and
PaDEL, with cddd being the block with a smaller number of
variables and higher R2Y in the OPLS model. Thus, we conclude
that the cddd descriptors are the most versatile individual block
for modeling this ecotoxicological data set. This conclusion is
corroborated by the results of a detailed investigation of PLS
models of both the full target bio block and each target with
each descriptor block (Supporting Information, Table S3).

Heading towards predictive models, the attempt to cover
all 7 ecotoxicological endpoints at once is probably too difficult
a task. However, it can be beneficial to address related
endpoints in a multi-task approach, which can improve
predictivity and robustness of the models.[53] Based on Figure 7,
suitable pairs are fish and daphnid, algae and aquatic plants, or
birds and rats. Indeed, models based on fish and daphnid
toxicity have already been reported.[54,55] Exemplarily, we built a
PLS model for the fish and daphnid endpoints. Without any
further optimization the explained variance R2Y of 0.782 (cross-
validated 0.523) indicates a good starting point for model
development. Reduction of the descriptors to the cddd block

Figure 10. Top: Loadings plot of joint components 8 and 15 of the
Pesticides MOCA model M3, showing only the bio variables.
Bottom: Scores plot for this model, colored by indication.

Table 4. Correlation metrics for individual blocks and components
with respect to the target bio block in model M3.

component bio RDKit cddd QM Dragon PaDEL

tj[1] 0.52 0.32 0.35 0.32 0.37 0.35
tj[8] 0.17 0.07 0.13 0 0.13 0.12
tj[15] 0.09 0 0.07 0 0 0.06
pred. score PA 0.78 0.40 0.54 0.32 0.50 0.54
R2Y(bio) from OPLS
2-block, 3 pred. LV

– 0.38 0.54 0.27 0.46 0.46
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leads to an insignificant drop in R2Y to 0.758 (cross-validated
0.548). For the QM block this drop was more severe, to 0.506
(cross-validated 0.383). As might be expected from the first
component of the MOCA model being related to the molecular
size, using only the molecular weight as single X variable can
already explain 0.271 of the variance (cross-validated 0.251).
Overall, these findings represent a promising starting point for
the development of predictive QSAR models. However, a
detailed description of model development is out of scope for
this article and subject to future work.

3 Conclusions

Data tables for multivariate analysis or machine learning
projects are often naturally organized in blocks of data,
although this structure frequently is not exploited. We used
Multiblock Orthogonal Component Analysis as a navigation
tool to explore such a data table for QSAR modelling tasks,
where each block contains chemical representations in the
form of molecular descriptors calculated with frequently used
software packages.

Applied to the set of ChemGPS reference molecules, which
were selected to represent chemical space in a broad and
robust way for principal component models, we were able
understand more about the nature of the descriptor packages
and (re-)discovered trends in the underlying data: A large
fraction of the conventional molecular descriptor types are
correlated with molecular size, lipophilicity, aromaticity, and
flexibility, which have consistently been identified as important
discriminators between molecules and trends in the data, see
e.g. the original ChemGPS publication,[23] deep learning
projects,[4] and many QSAR models.[52] Care must be taken
during QSAR model development to not let molecular size,
which is overly represented in descriptor space, take away
attention from other important properties, especially when
using automated approaches. This can be achieved by
removing correlated descriptors from the data table or with
hierarchical modelling methods as dimensionality reduction
techniques.

Additionally, MOCA was helpful for deciding, which soft-
ware packages could potentially be removed from the project
on a general level, i.e. without peeking at predictive perform-
ance for a specific task. We proposed a redundancy score and
identified the CDK and RDKit KNIME nodes as candidates for
removal without losing much information. Also, the additional
descriptors in a new release of the alvaDesc software and an
internal set of descriptors turned out to not add significant
amounts of new information. On the other hand, the recently
developed cddd descriptors, which were derived from a deep
learning translation task, seem to have promising potential,
which can be seen at one glance in the R2 plot: high
orthogonality (low R2X values per component), covering most
joint components (and thus other descriptor packages), adding
unique information, and relatively low dimensionality.

We compiled a second data set consisting of crop
protection chemicals with a relatively dense availability of 7
ecotoxicological endpoints. Some trends exist within this data
set, e.g. a high correlation between toxicity towards fish and
daphnids. We used MOCA to analyse correlations between
these biological activities and the molecular descriptor blocks.
Almost 80% of the variance in the bio block was attributed to
joint components with the descriptor blocks, which indicates
that (linear) QSAR models should be feasible. The model
structure is comparable to the model on the ChemGPS set. The
first joint component has again very high fractions of explained
variance across all blocks and is related to molecular size and
the overall ecotoxicity, especially towards aquatic organisms.
Two other joint components of the bio block describe more
specific properties of the data set like a differentiation between
species or influence of rodenticides. These trends can then be
linked to molecular descriptors in a more detailed analysis
leading to mechanistic interpretations where feasible.

In preparation of predictive modelling, we propose a
predictivity score based on the joint components of the MOCA
model, to indicate the most predictive descriptor blocks for the
biological properties. The cddd descriptors appeared to be
most suitable, considering the correlation and coverage of joint
components as well as the number of descriptor variables.

Overall, we consider MOCA a useful tool to explore data
sets for QSAR modelling block-wise by groups of descrip-
tors. One single MOCA model can already indicate multiple
important trends regarding similarity of descriptor pack-
ages, molecular properties, clustering or outlier molecules,
and predictivity of descriptor sets.

Disclosure Statement

SS and MS are employees of Bayer AG, a manufacturer of
pharmaceuticals, agricultural, and consumer health chem-
icals. LE is employee of Sartorius Stedim Data Analytics AB,
a distributor of data analytics software.

Acknowledgements

Tomas Skotare and Stefan Rännar for support with the
analysis of MOCA components. Floriane Montanari and
Robin Winter for discussions on the cddd descriptors.

Conflict of Interest

SS and MS are employees of Bayer AG, a manufacturer of
pharmaceuticals, agricultural, and consumer health chem-
icals. LE is employee of Sartorius Stedim Data Analytics AB,
a distributor of data analytics software.

Research Article www.molinf.com

© 2021 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2022, 41, 2100165 (13 of 15) 2100165

Wiley VCH Dienstag, 12.04.2022

2205 / 228700 [S. 277/279] 1

www.molinf.com


Data Availability Statement

The data tables containing the calculated descriptors as
well as 3D molecular structures are openly available via
figshare: https://doi.org/10.6084/m9.figshare.c.5446677.

SIMCA® is available in a demo-version, so the interested
reader can reproduce our results.

References

[1] R. Todeschini, V. Consonni, Molecular Descriptors for Chemo-
informatics, Wiley-VCH, Weinheim, 2009.

[2] A. Mauri, V. Consonni, R. Todeschini in Handbook of Computa-
tional Chemistry, Springer International Publishing, Cham,
2017.

[3] K. V. Chuang, L. M. Gunsalus, M. J. Keiser, J. Med. Chem. 2020,
63, 8705.

[4] R. Winter, F. Montanari, F. Noé, D.-A. Clevert, Chem. Sci. 2019,
10, 1692.

[5] S. Riniker, G. A. Landrum, J. Cheminf. 2013, 5, 26.
[6] F. Grisoni, V. Consonni, R. Todeschini in Computational Chemo-

genomics (Ed.: J. B. Brown), Humana Press, New York, 2018, pp.
171–209.

[7] T. Stepišnik, B. Škrlj, J. Wicker, D. Kocev, Comput. Biol. Med.
2021, 130, 104197.

[8] S. Wold, N. Kettaneh, K. Tjessem, J. Chemom. 1996, 10, 463.
[9] A. Berglund, M. C. de Rosa, S. Wold, J. Comput.-Aided Mol. Des.

1997, 11, 601.
[10] J. A. Westerhuis, T. Kourti, J. F. MacGregor, J. Chemom. 1998,

12, 301.
[11] K. Tøndel, J. O. Vik, H. Martens, U. G. Indahl, N. Smith, S. W.

Omholt, Chemom. Intell. Lab. Syst. 2013, 120, 25.
[12] J. Gabrielsson, H. Jonsson, C. Airiau, B. Schmidt, R. Escott, J.

Trygg, J. Chemom. 2006, 20, 362.
[13] A. Höskuldsson, K. Svinning, J. Chemom. 2006, 20, 376.
[14] S. Hassani, H. Martens, E. M. Qannari, M. Hanafi, A. Kohler,

Chemom. Intell. Lab. Syst. 2012, 117, 42.
[15] M. Tenenhaus, V. E. Vinzi, Y.-M. Chatelin, C. Lauro, Comput. Stat.

Data Anal. 2005, 48, 159.
[16] B. Liquet, P. Lafaye de Micheaux, B. P. Hejblum, R. Thiébaut,

Bioinformatics 2016, 32, 35.
[17] M. Bylesjö, D. Eriksson, M. Kusano, T. Moritz, J. Trygg, The Plant

Journal 2007, 52, 1181.
[18] E. F. Lock, K. A. Hoadley, J. S. Marron, A. B. Nobel, Annals Appl.

Stat. 2013, 7, 523.
[19] M. Schouteden, K. van Deun, S. Pattyn, I. van Mechelen,

Behavior Research Methods 2013, 45, 822.
[20] T. Löfstedt, J. Trygg, J. Chemom. 2011, 25, 441.
[21] T. Löfstedt, D. Hoffman, J. Trygg, Anal. Chim. Acta 2013, 791,

13.
[22] T. Skotare, R. Sjögren, I. Surowiec, D. Nilsson, J. Trygg, J.

Chemom. 2020, 34, e3071.
[23] L. Eriksson, E. Johansson, N. Kettaneh-Wold, J. Trygg, C.

Wikstrom, S. Wold, Multi- and Megavariate Data Analysis, 2nd
Edition, Umetrics AB, Umea, Sweden, 2006.

[24] T. I. Oprea, J. Gottfries, J. Comb. Chem. 2001, 3, 157.
[25] K. A. Lewis, J. Tzilivakis, D. J. Warner, A. Green, Human and

Ecological Risk Assessment: An International Journal 2016, 22,
1050.

[26] RDKit: Open-source cheminformatics, available from http://
www.rdkit.org, 2020.

[27] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, E.
Willighagen, J. Chem. Inform. Comput. Sci. 2003, 43, 493.

[28] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T.
Meinl, P. Ohl, C. Sieb, K. Thiel, B. Wiswedel, in Studies in
Classification, Data Analysis, and Knowledge Organization
(GfKL), Springer, 2007.

[29] Sybyl Version X 2.1 – Discovery Software for Computational
Chemistry and Molecular Modelling, including UNITY fingerprint
tools 2004.

[30] TURBOMOLE V7.0.1, a development of University of Karlsruhe
and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBO-
MOLE GmbH, since 2007; available from http://www.turbomole.-
com 2016.

[31] F. Eckert, A. Klamt, AIChE J. 2002, 48, 369.
[32] F. Eckert, A. Klamt, COSMOtherm, Version C3.0, Release 16.01

2015.
[33] Dragon v7.0: Software for Molecular Descriptor Calculation

2017.
[34] C. W. Yap, J. Comput. Chem. 2011, 32, 1466.
[35] A. Mauri, in Ecotoxicological QSARs. Methods in Pharmacology

and Toxicology (Ed.: K. Roy) Humana, New York, NY, 2020, pp.
801–820.

[36] SIMCA 16, available from www.sartorius.com/umetrics 2020.
[37] J. E. Jackson, A User’s Guide to Principal Components, John

Wiley, New York, 1991.
[38] S. Wold, K. Esbensen, P. Geladi, Chemom. Intell. Lab. Syst. 1987,

2, 37.
[39] L. Eriksson, T. Byrne, E. Johansson, J. Trygg and C. Wikström,

Multi- and Megavariate Data Analysis – Basic Principles and
Applications, 3rd Ed., Umetrics, Malmö, 2013.

[40] S. Wold, M. Sjöström, L. Eriksson, Chemom. Intell. Lab. Syst.
2001, 58, 109.

[41] L. Eriksson, J. Trygg, S. Wold, J. Chem. 2014, 28, 332.
[42] J. Trygg, S. Wold, J. Chemom. 2002, 16, 119.
[43] S. Wiklund, E. Johansson, L. Sjöström, E. J. Mellerowicz, U.

Edlund, J. P. Shockcor, J. Gottfries, T. Moritz, J. Trygg, Analyt.
Chem. 2008, 80, 115.

[44] L. Eriksson, J. Rosén, E. Johansson, J. Trygg, Mol. Inf. 2012, 31,
414.

[45] H. L. Morgan, J. Chem. Doc. 1965, 5, 107.
[46] D. Rogers, M. Hahn, J. Chem. Inf. Mod. 2010, 50, 742.
[47] X. J. Zhang, H. W. Qin, L. M. Su, W. C. Qin, M. Y. Zou, L. X.

Sheng, Y. H. Zhao, M. H. Abraham, Sci. Total Environ. 2010, 408,
4549.

[48] S. Raimondo, D. N. Vivian, M. G. Barron, Web-based interspecies
correlation estimation (Web-ICE) for acute toxicity: user manual;
Office of Research and Development. US Environmental Protec-
tion Agency, Gulf Breeze, FL, USA 2010.

[49] L. Y. Fan, D. Zhu, Y. Yang, Y. Huang, S. N. Zhang, L. C. Yan, S.
Wang, Y. H. Zhao, Ecotoxicol. Environ. Saf. 2019, 177, 25.

[50] K. Bouhedjar, E. Benfenati, A. K. Nacereddine, SAR QSAR
Environ. Res. 2020, 31, 785.

[51] E. D. Clarke, J. S. Delaney, CHIMIA Internat. J. Chem. 2003, 57,
731.

[52] L. Mamy, D. Patureau, E. Barriuso, C. Bedos, F. Bessac, X.
Louchart, F. Martin-laurent, C. Miege, P. Benoit, Crit. Rev.
Environ. Sci. Technol. 2015, 45, 1277.

[53] F. Montanari, L. Kuhnke, A. ter Laak, D.-A. Clevert, Molecules
2019, 25, 44.

[54] A. Kienzler, M. Halder, A. Worth, Toxicol. Environ. Chem. 2017,
99, 1129.

Research Article www.molinf.com

© 2021 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2022, 41, 2100165 (14 of 15) 2100165

Wiley VCH Dienstag, 12.04.2022

2205 / 228700 [S. 278/279] 1

https://doi.org/10.6084/m9.figshare.c.5446677
https://doi.org/10.1021/acs.jmedchem.0c00385
https://doi.org/10.1021/acs.jmedchem.0c00385
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1002/(SICI)1099-128X(199609)10:5/6%3C463::AID-CEM445%3E3.0.CO;2-L
https://doi.org/10.1023/A:1007983320854
https://doi.org/10.1023/A:1007983320854
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-128X(199809/10)12:5%3C301::AID-CEM515%3E3.0.CO;2-S
https://doi.org/10.1016/j.chemolab.2012.10.006
https://doi.org/10.1002/cem.1009
https://doi.org/10.1002/cem.1011
https://doi.org/10.1016/j.chemolab.2011.06.001
https://doi.org/10.1016/j.csda.2004.03.005
https://doi.org/10.1016/j.csda.2004.03.005
https://doi.org/10.1111/j.1365-313X.2007.03293.x
https://doi.org/10.1111/j.1365-313X.2007.03293.x
https://doi.org/10.3758/s13428-012-0295-9
https://doi.org/10.1016/j.aca.2013.06.026
https://doi.org/10.1016/j.aca.2013.06.026
https://doi.org/10.1021/cc0000388
https://doi.org/10.1080/10807039.2015.1133242
https://doi.org/10.1080/10807039.2015.1133242
https://doi.org/10.1080/10807039.2015.1133242
https://doi.org/10.1021/ci025584y
https://doi.org/10.1002/aic.690480220
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1002/cem.2581
https://doi.org/10.1002/cem.695
https://doi.org/10.1021/ac0713510
https://doi.org/10.1021/ac0713510
https://doi.org/10.1002/minf.201200158
https://doi.org/10.1002/minf.201200158
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci100050t
https://doi.org/10.1016/j.scitotenv.2010.07.022
https://doi.org/10.1016/j.scitotenv.2010.07.022
https://doi.org/10.1016/j.ecoenv.2019.03.111
https://doi.org/10.1080/1062936X.2020.1810770
https://doi.org/10.1080/1062936X.2020.1810770
https://doi.org/10.2533/000942903777678641
https://doi.org/10.2533/000942903777678641
https://doi.org/10.1080/10643389.2014.955627
https://doi.org/10.1080/10643389.2014.955627
https://doi.org/10.3390/molecules25010044
https://doi.org/10.3390/molecules25010044
www.molinf.com


[55] A. Furuhama, T. I. Hayashi, H. Yamamoto, SAR QSAR Environ.
Res. 2018, 29, 725.

Received: June 17, 2021
Accepted: November 24, 2021

Published online on December 8, 2021

Research Article www.molinf.com

© 2021 The Authors. Molecular Informatics published by Wiley-VCH GmbH Mol. Inf. 2022, 41, 2100165 (15 of 15) 2100165

Wiley VCH Dienstag, 12.04.2022

2205 / 228700 [S. 279/279] 1

https://doi.org/10.1080/1062936X.2018.1513423
https://doi.org/10.1080/1062936X.2018.1513423
www.molinf.com

