

ElyC and Cyclic Enterobacterial Common Antigen Regulate Synthesis of Phosphoglyceride-Linked Enterobacterial Common Antigen

Ashutosh K. Rai, a Joseph F. Carr, a David E. Bautista, Wei Wang, b DAngela M. Mitchella

^aDepartment of Biology, Texas A&M University, College Station, Texas, USA ^bInstitute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA

Joseph F. Carr and David E. Bautista contributed equally to this work.

ABSTRACT The Gram-negative cell envelope is a complex structure delineating the cell from its environment. Recently, we found that enterobacterial common antigen (ECA) plays a role maintaining the outer membrane (OM) permeability barrier, which excludes toxic molecules including many antibiotics. ECA is a conserved carbohydrate found throughout Enterobacterales (e.g., Salmonella, Klebsiella, and Yersinia). There are two OM forms of ECA (phosphoglyceride-linked ECA_{PG} and lipopolysaccharide-linked ECA_{LPS}) and one periplasmic form of ECA (cyclic ECA_{CYC}). ECA_{PG}, found in the outer leaflet of the OM, consists of a linear ECA oligomer attached to phosphoglyceride through a phosphodiester linkage. The process through which ECA_{PG} is produced from polymerized ECA is unknown. Therefore, we set out to identify genes interacting genetically with ECA_{PG} biosynthesis in Escherichia coli K-12 using the competition between ECA and peptidoglycan biosynthesis. Through transposon-directed insertion sequencing, we identified an interaction between elyC and ECA_{PG} biosynthesis. ElyC is an inner membrane protein previously shown to alter peptidoglycan biosynthesis rates. We found $\Delta elyC$ was lethal specifically in strains producing ECA_{PG} without other ECA forms, suggesting ECA_{PG} biosynthesis impairment or dysregulation. Further characterization suggested ElyC inhibits ECA_{PG} synthesis in a posttranscriptional manner. Moreover, the full impact of ElyC on ECA levels requires the presence of ECA_{CYC}. Our data demonstrate ECA_{CYC} can regulate ECA_{PG} synthesis in strains wild type for *elyC*. Overall, our data demonstrate ElyC and ECA_{CYC} act in a novel pathway that regulates the production of ECA_{PG}, supporting a model in which ElyC provides feedback regulation of ECA_{PG} production based on the periplasmic levels of ECA_{CYC}.

IMPORTANCE Enterobacterial common antigen (ECA) is a conserved polysaccharide present on the surface of the outer membrane (OM) and in the periplasm of the many pathogenic bacteria belonging to *Enterobacterales*, including *Klebsiella pneumoniae*, *Salmonella enterica*, and *Yersinia pestis*. As the OM is a permeability barrier that excludes many antibiotics, synthesis pathways for OM molecules are promising targets for antimicrobial discovery. Here, we elucidated, in *E. coli* K-12, a new pathway for the regulation of biosynthesis of one cell surface form of ECA, ECA_{PG}. In this pathway, an inner membrane protein, ElyC, and the periplasmic form of ECA, ECA_{CYC}, genetically interact to inhibit the synthesis of ECA_{PG}, potentially through feedback regulation based on ECA_{CYC} levels. This is the first insight into the pathway responsible for synthesis of ECA_{PG} and represents a potential target for weakening the OM permeability barrier. Furthermore, this pathway provides a tool for experimental manipulation of ECA_{PG} levels.

KEYWORDS biosynthesis, enterobacterial common antigen, isoprenoids, metabolic regulation, outer membrane

Citation Rai AK, Carr JF, Bautista DE, Wang W, Mitchell AM. 2021. ElyC and cyclic enterobacterial common antigen regulate synthesis of phosphoglyceride-linked enterobacterial common antigen. mBio 12: e02846-21. https://doi.org/10.1128/mBio .02846-21.

Editor M. Stephen Trent, University of Georgia Copyright © 2021 Rai et al. This is an openaccess article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Angela M. Mitchell, amitchell@bio.tamu.edu.

Received 30 September 2021 Accepted 18 October 2021 Published 23 November 2021 The Gram-negative envelope is a complex multilayered structure comprised of the outer membrane (OM), the inner membrane (IM), and the periplasm containing a thin peptidoglycan layer (1, 2). The lipid component of the OM consists of an outer leaflet containing mainly lipopolysaccharide (LPS) and an inner leaflet containing phospholipids. A highly compact hydrophobic layer and highly hydrophilic layer formed by LPS, as well as the presence of transenvelope efflux pumps, render the OM impermeable to both hydrophobic molecules and large hydrophilic molecules (1, 3, 4).

The surge of antibiotic resistance in Gram-negative bacteria, especially in *Enterobacterales* (e.g., *Escherichia coli, Klebsiella pneumoniae*, and *Salmonella* sp.) has led to classification of five groups of *Enterobacterales* as urgent or serious threats by the Centers for Disease Control and Prevention (USA) (5–8). However, the study of the Gram-negative envelope, and specifically OM biogenesis, has led to the discovery of several antimicrobials in recent years (reviewed in references 9 and 10). Several antimicrobials have been identified targeting essential pathways in OM biogenesis including LPS biogenesis, protein secretion, OM protein biogenesis, and lipoprotein biogenesis (11–20). The continued success of this approach requires greater understanding of cell envelope biogenesis.

Enterobacterial common antigen (ECA) is a carbohydrate antigen present in the outer leaflet of the OM and in the periplasm and is conserved throughout Enterobacterales (reviewed in reference 21). The function of this molecule has remained largely unknown, in part because the biosynthesis pathways for ECA, O-antigen, and peptidoglycan overlap and in part because there are three forms of ECA that cannot currently be genetically separated (see Fig. S1 in the supplemental material). In many Enterobacterales, deleting the first gene in ECA biosynthesis, wecA, not only prevents ECA biosynthesis but also prevents O-antigen biosynthesis and increases precursor availability for peptidoglycan biosynthesis (22-25). Deletion of downstream genes in ECA biosynthesis, such as wecE or wecF, leads to accumulation of intermediates in ECA biosynthesis, interfering with peptidoglycan biosynthesis, altering cell shape, increasing envelope permeability, and activating envelope stress response systems (26–30). Three forms of ECA, LPS-linked ECA (ECA_{LPS}), cyclic ECA (ECA_{CYC}), and phosphoglyceride-linked ECA (ECA_{PG}), are made from polymerized ECA chains. As many of the genes responsible for the steps in ECA biosynthesis separating these molecules are unknown (see below), assigning functions to these separate forms remains difficult. Nevertheless, it has become clear that in Salmonella sp., ECA plays a role in acid and bile salt resistance (31, 32) and is necessary for pathogenesis in a mouse model (32–35). In addition, we have discovered a role for ECA_{CYC} in maintaining the OM permeability barrier in E. coli (36).

The polysaccharide chains of ECA consist of linear repeat units, each unit made of three sugars: GlcNAc (*N*-acetylglucosamine), ManNAcA (*N*-acetyl-D-mannosaminuronic acid), and Fuc4NAc (4-acetamido-4,6-dideoxy-D-galactose) (37, 38). Biosynthesis of ECA is initiated by attachment of GlcNAc-1-phosphate to the isoprenoid carrier, undecaprenyl-phosphate (Und-P), followed by the addition of the two remaining sugars (Fig. S1) (39–42). Und-P is a universal lipid carrier and is required for the biosynthesis of O-antigen, peptidoglycan, and capsular polysaccharides, as well as ECA (43–47). WzxE flips the complete ECA repeat unit linked to Und-P across the IM to the periplasmic face (48), and WzyE polymerizes ECA chains (49). The number of repeat units in the polymerized ECA molecule (chain length) is controlled by WzzE (50). The operon responsible for synthesis of ECA, the *wec* operon, contains the genes responsible for the steps in ECA biogenesis resulting in a polymerized ECA molecule attached to Und-PP located on the outer leaflet of the IM (39, 41, 49).

The steps through which the three forms of ECA are made from this precursor are less well understood (21). ECA_{LPS} is produced when WaaL, the O-antigen ligase, attaches ECA to the core polysaccharide of LPS (43, 51). ECA_{LPS} is presumably transported to the cell surface by the Lpt system responsible for transporting LPS to the cell surface (52). The second form, ECA_{CYC} , a cyclic carbohydrate, remains in the periplasm (29). It is generally made with precise chain length (4 repeat units in *E. coli* K-12), and WzzE is necessary for

its synthesis (29, 53, 54). The final form, ECA_{PG}, is a linear ECA chain linked to diacylglycerol through a phosphodiester bond (55). The mechanism through which ECA_{PG} is formed and transported to the cell surface is completely unknown (21, 56, 57). This lack of knowledge impairs genetic studies of ECA function as mutants cannot be made that synthesize ECA_{LPS} and ECA_{CYC} in the absence of ECA_{PG}.

Therefore, we set out to identify factors genetically interacting with the biosynthesis of ECA_{PG}. We took advantage of the competition for substrates between the peptidoglycan and ECA biosynthesis pathways to find factors interacting with ECA_{PG} biosynthesis (Fig. S1). Using transposon-directed insertion sequencing (TraDIS), we identified ElyC as a factor interacting with ECA_{PG} biosynthesis. ElyC is an IM protein with two transmembrane domains and a large C-terminal globular DUF218 domain that resides in the periplasm (58, 59). Paradis-Bleau et al. found a $\Delta elyC$ mutant displays severe growth defects at low temperatures (22°C) and high frequency of cell lysis due to decreased peptidoglycan synthesis (28). They suggested that ElyC regulates the allocation of Und-P between synthesis pathways in *E. coli*.

Here, we have explored the role of ElyC in ECA_{PG} biosynthesis. Our data demonstrate that ElyC posttranscriptionally regulates the synthesis of ECA_{PG}, greatly inhibiting its synthesis during normal growth. Furthermore, we observed that ElyC only had its full effect on ECA_{PG} synthesis in the presence of WzzE, suggesting that WzzE or ECA_{CYC} is involved in this regulatory pathway. In fact, we found that ElyC and ECA_{CYC} act together to regulate ECA_{PG} biosynthesis. Our data demonstrate that the effect of ElyC and ECA_{CYC} on ECA levels is specific to ECA_{PG} and not a result of allocation of Und-P between biosynthesis pathways. Overall, we have deciphered a novel pathway through which ElyC and ECA_{CYC} regulate ECA_{PG} biosynthesis, providing insight into the elusive function of ElyC and demonstrating that ECA_{CYC} plays roles both in maintaining the OM permeability barrier and in regulating ECA biosynthesis.

RESULTS

Identification of candidate genes interacting with ECA_{PG} biosynthesis. There are genes known to be necessary for the biosynthesis of ECA_{CYC} and of ECA_{LPS} specifically: ECA_{CYC} synthesis requires *wzzE*, while ECA_{LPS} synthesis requires *waaL* (29, 36, 43). However, the genes and reactions responsible for producing ECA_{PG}, by transferring the ECA polymer from Und-PP to form phosphoglyceride-linked ECA_{PG}, and for its surface exposure are unknown (55–57). Therefore, we set out to identify factors involved in ECA_{PG} biosynthesis, utilizing interactions between ECA and peptidoglycan biosynthesis.

The ECA and peptidoglycan pathways compete for Und-P and UDP-GlcNAc as depicted in Fig. S1 in the supplemental material (25, 60, 61). Although deletion of *wecA* causes generally mild phenotypes, deletion of later genes in ECA biosynthesis (e.g., *wecB*, *wecG*, *wecF*, or *wzxE*) causes the accumulation of ECA intermediates sequestering Und-P, disrupting peptidoglycan biosynthesis and resulting in increased permeability defects, cell shape defects, and envelope stress response activation (26–30, 62, 63). In fact, deletion of *wzyE*, the ECA polymerase, or all the flippases capable of flipping lipid III^{ECA} across the IM is lethal (29). Thus, we hypothesized that, in a strain making only ECA_{PG}, disruption or dysregulation of the next step in ECA biosynthesis (transfer of polymerized ECA from Und-PP) would also be highly unfavorable due to sequestration of Und-P inhibiting peptidoglycan biosynthesis.

Therefore, we have used TraDIS (transposon-directed insertion sequencing) (64) to compare the favorability of gene disruptions in a mutant which makes ECA_{PG} but not the other forms of ECA ($\Delta wzzE \ \Delta waaL$) with an isogenic mutant that does not make ECA ($\Delta wecA$ - $wzzE \ \Delta waaL$) and with wild-type *E. coli* K-12 MG1655. For this approach, we generated high-density transposon libraries in each of these strains and performed Illumina sequencing of the transposon junctions in the initial pooled libraries, as well as after 10 generations of growth in liquid culture. The statistical properties of each data set were similar (Table S1). We then compared the transposon junction reads per

gene between the three strains (Fig. 1A). To confirm we could detect changes in essentiality due to sequestration of Und-P, we analyzed the transposon junction reads in *wzyE*. In strains producing ECA, *wzyE* is essential; however, *wzyE* becomes nonessential when ECA synthesis is disrupted at an earlier step as accumulation of lipid III^{ECA} is prevented (29). In the ECA_{PG}-only strain and wild-type MG1655, we detected very few transposon insertion reads in *wzyE*; however, we observed similar levels of insertions to nearby genes in the strain without ECA (Fig. 1B).

To identify genes possibly involved in ECA_{PG} biosynthesis, we defined a set of criteria for genes putatively essential only when ECA_{PG} is made without the other forms of ECA (Table S2). These genes had less than 200 reads in the ECA_{PG} -only library under both growth conditions and had at least a 1-standard-deviation decrease in the ECA_{PG} only strain compared to the other two strains under both growth conditions. In addition, we limited our analysis to genes not known to be essential in wild-type *E. coli* K-12 that make proteins targeted to either the IM or the periplasm (65–67). We identified five genes that fit these criteria: *elyC*, *ynbB*, *ymiB*, *lapA*, and *yoal* (Table S2). From these hits, we confirmed the data in the literature that *ynbB* was not necessary for the synthesis of ECA_{PG} (68; unpublished data).

In this paper, we focus on *elyC* (Fig. 1C), which encodes an inner membrane protein. Previous work has shown that a $\Delta elyC$ mutant lyses at room temperature (22°C) due to a peptidoglycan synthesis defect but grows well at 37°C (28). The authors hypothesized this defect is due to competition between peptidoglycan and the ECA biosynthesis pathway, particularly at the step of allocation of Und-P. Data have also suggested that an $\Delta elyC$ mutant may have a periplasmic protein-folding defect (69) and may experience increased oxidative stress at low temperature (22°C) (70). The experiments described here were performed at 37°C.

elyC is essential in a strain producing only ECA_{PG}. To determine whether *elyC* was essential in a strain producing only ECA_{PG}, we performed genetic linkage-disruption experiments. In these experiments, a Tn10 marker genetically linked to a deletion in the gene of interest is transduced into strains, selecting for the presence of Tn10. Based on the size of DNA packaged by the P1*vir* phage, the gene deletion is cotransduced with a calculable frequency (71). If there is selection against the deletion of the gene (i.e., the gene is essential), the cotransduction frequency observed will decrease. We first measured linkage between *zbj-7230*::Tn10 and $\Delta elyC$::kan. These two markers were approximately 53% linked in wild-type MG1655 and in $\Delta waaL$ and $\Delta wzzE$ single mutants (Table 1). However, in a $\Delta wzzE \Delta waaL$ double mutant producing only ECA_{PG}, we observed only 1% linkage, demonstrating strong linkage disruption (Table 1). The linkage is restored in a complemented strain. We observed similar linkage disruption when transducing *metE3074*::Tn10 linked to $\Delta wzzE$::kan into a $\Delta waaL \Delta elyC$ mutant (Table 1). These data confirm that *elyC* is essential when ECA_{PG} is made in isolation but not in strains making two or more forms of ECA.

Interestingly, we observed only slight linkage disruption when transducing *thd*:: Tn10 Δ waaL::kan into a Δ wzzE Δ elyC strain (Table 1). We confirmed these results by rebuilding the strains from wild-type MG1655 and with two different alleles of Δ elyC (Table S3) and through direct transduction of the Δ waaL::kan allele. Although the triple deletion mutant, Δ wzzE Δ elyC Δ waaL::kan *thd*::Tn10, could be built with Δ waaL as the last deletion, the triple mutant colony size was extremely small compared to Δ wzzE Δ elyC *thd*::Tn10 colonies (Fig. S2). These data suggest that, although elyC is essential in a strain producing only ECA_{PG}, its function is somehow modified in a Δ wzzE strain allowing survival when waaL is deleted last (see below).

Deletion of elyC increases ECA_{PG} levels. After confirming *elyC*'s essentiality in a strain making only ECA_{PG}, we asked what the effect of the $\Delta elyC$ mutation was on surface exposure of ECA, as a $\Delta waaL$ strain without ECA_{PG} should not have ECA on its surface. We used a dot blot as a qualitative method (72) to detect surface-exposed ECA_{PG} and ECA_{LPS}. ECA_{CYC} is not surface exposed. Surface-exposed ECA was detected in all $\Delta elyC$ strains including the $\Delta waaL \Delta elyC$ strain (Fig. 2A). In fact, the surface-exposed ECA levels appeared higher in the $\Delta elyC$ and $\Delta waaL \Delta elyC$ strains than in the wild-type or $\Delta wzzE$

FIG 1 Screening for candidate genes interacting with ECA_{PG} biosynthesis. (A) TraDIS was used to identify genes for which disruption was unfavorable in cells making ECA_{PG} without the other forms of ECA. Scatterplots of transposon junction reads per gene are shown comparing the ECA_{PG} strain ($\Delta wzzE \Delta waaL$) with an isogenic strain without ECA ($\Delta wecA \Delta wzzE \Delta waaL$) and with wild-type MG1655. Results are shown following initial growth on plates and after 10 additional generations of growth in liquid medium. Putative ECA_{PG} biosynthesis genes are shown in yellow, *elyC* is shown in green, *wzyE* is shown in purple, and *ynbB* is shown in red. Genes deleted in one of the strains are shown in (Continued on next page)

TABLE 1 elyC is essential in strain making only ECA_{PG}

Donor	Recipient	Recipient form(s) of ECA	Na	P1 <i>vir</i> cotransduction frequency ^b
<i>zbj</i> -7230::Tn <i>10 ΔelyC</i> ::kan (AM769)	MG1655	ECA _{CYC} , ECA _{LPS} , ECA _{PG}	300	52.7%
	$\Delta wzzE$ (AM365)	ECA _{LPS} , ECA _{PG}	300	54.3%
	$\Delta waaL$ (AM366)	ECA _{CYC} , ECA _{PG}	300	53.3%
	$\Delta wzzE \Delta waaL$ (AM395)	ECA _{PG}	300	1.0%
	$\Delta wzzE \Delta waaL pBAD33-elyC^{c}$ (AM1159)	ECA _{PG}	306	62.1%
<i>metE</i> -3074::Tn <i>10 ΔwzzE</i> ::kan (AM766)	MG1655	ECA _{CYC} , ECA _{LPS} , ECA _{PG}	300	25.0%
	$\Delta elyC$ (AM743)	ECA _{CYC} , ECA _{LPS} , ECA _{PG}	300	17.3%
	$\Delta waaL$ (AM366)	ECA _{CYC} , ECA _{PG}	300	24.3%
	Δ waaL Δ elyC (AM745)	ECA _{CYC} , ECA _{PG}	300	3.0%
<i>thd</i> ::Tn <i>10 ΔwaaL</i> ::kan (AM735)	MG1655	ECA _{CYC} , ECA _{LPS} , ECA _{PG}	295	79.0%
	$\Delta elyC$ (AM743)	ECA _{CYC} , ECA _{LPS} , ECA _{PG}	300	72.3%
	$\Delta wzzE$ (AM365)	ECALPS, ECAPG	300	76.0%
	$\Delta wzzE \Delta elyC$ (AM744)	ECA _{LPS} , ECA _{PG}	232	61.2%

^aThe indicated number of transductants were analyzed. Transductants were harvested from three separate transductions.

^bP1vir was used to transduce the indicated markers into the indicated strain. Cotransduction frequency was determined by selecting the transductants for the presence of Tn10 and calculating the percentage of colonies containing the gene deletion.

^cExpression from complementing plasmid was induced with 0.2% arabinose.

 $\Delta elyC$ strains. These observations suggested that there might be an increase in a non-ECA_{LPS}, surface-exposed species of ECA in the $\Delta elyC$ mutant. As dot blots are not ideal for determining quantitative changes, we performed ECA immunoblot analyses to detect the charged forms of ECA (ECA_{PG} and ECA_{LPS}). ECA_{CYC} is not charged and cannot be observed through immunoblot analysis. We found a very large increase in linear ECA levels in both the $\Delta elyC$ and $\Delta waaL \Delta elyC$ strains (Fig. 2B; compare lanes 5 and 6 with lanes 1 and 4). Similar to the dot blot results, there was much less of an increase in ECA levels in the $\Delta wzzE \Delta elyC$ strain (lane 7). These results suggest, when *elyC* is deleted, there is a large increase in a species of ECA which is neither ECA_{LPS} nor ECA_{CYC}.

Thus, we sought to determine ECALPS levels. Wheat germ agglutinin (WGA) is a lectin protein used to detect glycans (β -GlcNAc or sialic acid multimers) in prokaryotes and eukaryotes (73-78). A beta-linked GlcNAc is present in the glycosidic bond that attaches ECA to LPS to form ECA_{LPS}, but this bond is absent in ECA_{PG}. Therefore, we have found cell surface staining of MG1655 with WGA labels only $ECA_{LPS'}$ providing a specific assay for this ECA species (Fig. S3A). Thus, we assayed WGA staining of *elyC* mutant cells and found deletion of elyC caused only a slight increase in the amount of ECA_{LPS}. This increase was similar between the $\Delta elyC$ and $\Delta wzzE \Delta elyC$ strains (Fig. 2C). There are two possible explanations for the smaller increase in ECALPS levels than linear ECA levels: (i) ElyC plays a role in ECA biosynthesis that is specific to ECA_{PG} or (ii) ECA_{LPS} levels are limited by availability of WaaL. Therefore, we overexpressed waaL in the wild-type and $\Delta elyC$ strains and assayed levels of ECA_{LPS}. Although we observed an increase in ECALPS levels when waaL was overexpressed in a wild-type strain, we did not see an increase in ECA_{LPS} level in the $\Delta elyC$ strain (Fig. S4A), demonstrating that $\Delta elyC$ is epistatic to *waaL* expression. These data suggest that the effect of ElyC is specific to ECA_{PG} biosynthesis. Overall, the immunoblot, dot blot, and WGA staining experiments demonstrate that ElyC plays a role in ECA_{PG} biosynthesis that leads to a large increase in the levels of a non-ECA_{LPS} species with deletion of *elyC*.

ElyC posttranscriptionally regulates the production of ECA_{PG} and ECA overall. There are two possible models to explain the increase in ECA observed when elyC is

FIG 1 Legend (Continued)

cyan. (B) Histograms of transposon insertion reads in *wzyE* and adjacent genes are shown as a control for detection of changes in essentiality based on Und-P availability. Transposon insertions are observed in *wzyE* only in the strain without ECA. (C) Histograms of transposon insertion reads in *elyC* and adjacent genes. Transposon insertions are observed in the strain without ECA and the wild-type strain but not in the strain making only $ECA_{PG'}$ suggesting essentiality of *elyC* in the $ECA_{PG'}$ only strain.

Α

В

26

Lane 1

2 3 4 5 6 7

10 min exposure

FIG 2 Deletion of *elyC* increases levels of ECA_{PG} . (A) The surface exposure of ECA_{PG} and ECA_{LPS} was detected through dot blot assay. Whole cells or a whole-cell lysate was probed for ECA, BamD, or RcsF. BamD acted as a negative control for surface exposure, while RcsF acted as a positive control for surface exposure. Δ wecA served as a negative control for the presence of ECA. Surface-exposed ECA was detected in all $\Delta elyC$ strains including the Δ waaL Δ elyC strain, suggesting ECA_{PG} is present on the cell surface in these strains. (B) Immunoblotting was performed to examine ECA levels and chain length. A very large increase in ECA levels was observed in $\Delta elyC$ and $\Delta waaL \Delta elyC$ strains, but less of an increase was observed in the $\Delta wzzE \Delta elyC$ strain. The nonspecific "X" band serves as a loading control. Δ wecA serves as a negative control for the presence of ECA. (C) ECA_{LPS} quantification was performed in indicated strains by WGA staining. Data are shown as fluorescence relative to OD₆₀₀. The *AwaaL* and Δ waaL Δ elyC strains serve as negative controls for the presence of ECA_{LPS}. There was a small but significant increase in ECA_{1PS} levels in the $\Delta elyC$ and $\Delta wzzE \Delta elyC$ strains compared to their parent strains. Data are shown as the mean from three biological replicates \pm standard error of the mean (SEM). *, P < 0.05 by the nonparametric Mann-Whitney test compared to *elyC*⁺ parent strain.

5

6 7 1 2 3 4 5 6 7

1 s exposure

4

2 min exposure

2 3

1

deleted. First, ElyC may decrease ECA_{PG} levels by inhibiting the production of ECA_{PG} . Second, there might be more than one step necessary to produce ECA_{PG} and ElyC is responsible for a later step leading to the accumulation of a biosynthetic intermediate that is not distinguishable from ECA_{PG} on an immunoblot. To differentiate between these models, we determined the effect of overexpressing elyC on ECA levels. In the first model, overexpression of ElyC should decrease ECA_{PG} levels, while, in the second model, overexpression of ElyC should either not effect or increase production of ECA_{PG} depending on the rate-limiting step in synthesis.

We assayed ECA levels by immunoblotting in strains overexpressing elyC in a wild-type or $\Delta wzzE$ background. We utilized the pCA24N-elyC plasmid from the ASKA collection, which expresses *elyC* under a leaky, isopropyl- β -D-thiogalactopyranoside (IPTG)-inducible promoter (79). We observed that increasing elyC overexpression in a wild-type

mbio.asm.org 7

Rai et al.

FIG 3 ElyC regulates ECA_{PG} production posttranscriptionally. (A to C) *elyC* was overexpressed from the IPTG-inducible pCA24N vector in the indicated strains. (A) Triangles indicate increasing overexpression of *elyC*. In wild-type cells, even low-level overexpression of *elyC* greatly decreased ECA levels; however, less of a decrease was observed in the $\Delta wzzE$ strain. The nonspecific "X" band serves as a loading control. "V" samples indicate strains with empty pCA24N induced with 100 μ M IPTG. Lanes 2 to 4 are induced with 0, 10, and 25 μ M IPTG, respectively. Lanes 6 to 10 are induced with 0, 10, 25, 50, and 100 μ M IPTG, respectively. (B) ECA_{LPS} quantification was performed by WGA staining, indicated by fluorescence relative to OD₆₀₀. The $\Delta waaL$ strain acts as a negative control. Overexpression of *elyC* reduced ECA_{LPS} levels, but no difference was observed between the wild-type strain and the $\Delta wzzE$ strain. (C) A bacterial luciferase reporter was used to assay the activity of the P_{wecc} promoter, the promoter for the *wec* operon containing genes for ECA biosynthesis. Despite the decrease in ECA levels observed in the $\Delta elyC$ train compared to the wild-type strain. Quantitative data are shown as the mean from three biological replicates \pm SEM. *, *P* < 0.05 by the nonparametric Mann-Whitney test; ns, *P* > 0.05 by the Mann-Whitney test.

background greatly decreased ECA levels (Fig. 3A, lanes 1 to 4). In a $\Delta wzzE$ mutant, a smaller decrease in ECA levels was observed at high IPTG concentrations (lanes 5 to 10). As with our previous results, this suggests that the removal of *wzzE* changes ElyC's effect on ECA levels. To assay the effect of *elyC* overexpression on ECA_{LPS} in the wild-type and $\Delta wzzE$ strains, we performed WGA staining and observed a decrease in ECA_{LPS} levels that was similar in the two backgrounds (Fig. 3B). We observed similar results when *elyC* was overexpressed in MC4100 (a Lac⁻ strain) (Fig. S3B) and when *elyC* was overexpressed from a pBAD33 plasmid (Fig. S3C and D). Overall, these results demonstrate that overexpressing *elyC* decreases ECA levels and ElyC is responsible for inhibiting the production of ECA_{PG} and, to some extent, ECA production overall.

We then asked whether *elyC* affects ECA levels on a transcriptional or posttranscriptional level. We constructed a reporter by cloning the promoter region of the *wec* operon into a promoterless pJW15 vector that harbors a bacterial luciferase operon (Fig. S5) (80, 81). Using this reporter, we observed no consistent decrease in P_{wec} activity with *elyC* overexpression, despite the decrease in ECA levels (Fig. 3C). We also checked the effect of *elyC* deletion on P_{wec} activity and found no increase the P_{wec} reporter activity in this strain (Fig. 3D). Overall, we observed no indication that ElyC regulates ECA levels in a transcriptional manner, making posttranscriptional regulation most likely.

FIG 4 ECA_{CYC} is involved in feedback regulation of ECA_{PG} levels. (A) The level of the linear forms of ECA was assayed in the indicated strains by immunoblotting. The Δ wecA strain serves as a negative control for ECA. The nonspecific "X" band serves as a loading control. Much less ECA_{PG} is observed in the Δ waaL strain compared to linear ECA levels in the wild-type strain. However, in the Δ wzzE Δ waaL strain, ECA_{PG} levels return to near-wild-type levels. (B) ECA_{CYC} levels were compared in Δ wecH::kan and Δ waaL Δ wecH::kan strains by MALDI-TOF. WecH is responsible for nonstoichiometric acetylation of ECA. The levels of ECA_{CYC} are comparable between the strains. (C) Model for ECA_{PG} and ECA_{CYC} levels with loss of ECA_{LYS} is shown. In wild-type cells, the three forms of ECA are produced at an appropriate ratio. When Δ waaL is deleted and ECA_{LYS} is lost, the remaining ECA is funneled into ECA_{PG} and ECA_{CYC} levels are measured to provide regulation of ECA_{PG} production and ECA_{LYS} levels overall (red arrows). (D) Activity of the P_{wec} promoter was assayed by luciferase assay in the indicated strains. P_{wec} activity does not correlate with changes in ECA levels, suggesting that the effect of ECA_{CYC} on ECA levels is posttranscriptional. Quantitative data are shown as the mean from three biological replicates \pm SEM. ns, P > 0.05 by the Mann-Whitney test.

ECA_{CYC} **acts with ElyC to regulate ECA**_{PG} **production.** Throughout our experiments, we observed that the effect of ElyC on ECA_{PG} levels was less in the absence of *wzzE*. This led us to ask whether WzzE or ECA_{CYC} was playing a role in the pathway through which ElyC regulated ECA_{PG} levels. To differentiate between the effects of WzzE and ECA_{CYC} on this pathway, we utilized the previous observation that levels of linear ECA are very low in a Δ *waaL* mutant (36). We have confirmed this effect: there is much less ECA detectable by immunoblotting in Δ *waaL* cells than in wild-type cells or a Δ *wzzE* mutant (Fig. 4A; lane 4 compared to lanes 2 and 3). However, in the Δ *wzzE* Δ *waaL* mutant the ECA levels return to near-wild-type levels (lane 5). Our initial explanation was that there was much more ECA_{LPS} than ECA_{PG} present and that the excess ECA freed by removing ECA_{LPS} was funneled into ECA_{CYC}, which is not detectable by immunoblotting. However, this did not fit well with our observations of overexpressing *elyC* in a Δ *wzzE* background (Fig. 3A and B), where we observed a large decrease in ECA_{LPS} levels but a relatively small decrease in ECA levels overall. Therefore, we purified ECA_{CYC} and

FIG 5 ElyC regulates ECA levels independently of Und-P availability. ECA_{LPS} levels were assayed by WGA staining. Data are shown as fluorescence relative to OD_{soo} . (A) *elyC* or *murA*, the first gene in peptidoglycan biosynthesis, was overexpressed from the IPTG-inducible pCA24N vector. Overexpression of *murA* increases the utilization of Und-P by the peptidoglycan biosynthesis pathway. The effect of *murA* overexpression on ECA_{LPS} levels was smaller than that of *elyC*. (B) *elyC* was overexpressed from the arabinose-inducible and fucose-repressible pBAD33(K) plasmid. *wecA* was overexpressed from the IPTG-inducible pCA24N vector. Overexpression of *wecA* increases the utilization of Und-P by the ECA biosynthesis pathway. *wecA* overexpression increases production of ECA_{LPS} in the absence of *elyC* overexpression. However, *wecA* overexpression does not suppress the decrease in ECA_{LPS} levels when *elyC* is overexpressed. Fuc, 0.05% fucose; LB, no inducer or repressor; low ara, 0.02% arabinose; high ara, 0.2% arabinose. Data are shown as the mean from three biological replicates \pm SEM. *, *P* < 0.05 by the nonparametric Mann-Whitney test; ns, *P* > 0.05 by the Mann-Whitney test.

quantified the ECA_{CYC} levels through matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectroscopy (Fig. S6). We found no effect of $\Delta waaL$ on cyclic ECA levels (Fig. 4B and Fig. S6). Thus, while the ECA_{CYC} levels remained constant, the total amount of ECA was decreased in the $\Delta waaL$ strain. That a free pool of ECA caused by the removal of ECA_{LPS} leads to decreased linear ECA levels and steady ECA_{CYC} levels demonstrates that ECA_{CYC} plays a role in regulating ECA_{PG} biosynthesis (Fig. 4C). Thus, ECA_{CYC} is involved in regulation of ECA_{PG} production. Then, we measured P_{wec} activity in $\Delta wecA$, $\Delta wzzE$, and $\Delta waaL$ strains to determine whether the regulation is transcriptional or posttranscriptional. We found that any changes in reporter activity in the mutants did not correlate with the changes in the amounts of ECA observed (Fig. 4A and D). Thus, ECA_{CYC} has a role in controlling ECA_{PG} production that appears to be through posttranscriptional regulation. Importantly, the levels of ECA are similar between the $\Delta elyC$ and $\Delta waaL \Delta elyC$ strains (Fig. 2B), and the effect of ElyC on ECA_{PG} levels is much less in the absence of *wzzE* (Fig. 2B and Fig. 3A). These data demonstrate that ElyC and ECA_{CYC} act together in this regulatory pathway.

Und-P allocation is not responsible for the effect of ElyC on ECA levels. Previous reports have shown that the overexpression of the gene responsible for Und-P synthesis or the gene responsible for the first step in peptidoglycan biosynthesis relieved peptidoglycan stress in a $\Delta elyC$ strain (28, 82). This led to the suggestion that ElyC balances Und-P use between pathways (28). It is not possible for the effect of ElyC specifically on ECA_{PG} to be caused by Und-P allocation. However, it is possible that Und-P allocation is responsible for the effect on total ECA levels.

Therefore, we asked whether the effect of ElyC on overall ECA biosynthesis was due to Und-P allocation. We compared the effect of overexpressed *murA*, the first committed step for peptidoglycan biosynthesis (61), with that of the overexpression of *elyC* to determine whether they phenocopy each other. Although overexpression of *murA* does cause a decrease in the abundance of ECA_{LPS}, it is much less than that caused by *elyC* (Fig. 5A). Both *murA* and *elyC* decrease levels of linear ECA observed through immunoblotting (Fig. S4B). This result suggests that increasing the competition for substrates may not be

FIG 6 Model for regulation of ECA_{PG} biosynthesis. Our data demonstrate that ElyC and ECA_{CYC} are part of a pathway that regulates the levels of ECA_{PG} and that ElyC can also regulate total ECA levels to a lesser extent. WzxE, WzyE, and WzzE flip completed ECA repeat units on Und-PP across the IM and polymerize the ECA molecule to a regulated chain length. We propose that ElyC and ECA_{CYC} act together to regulate the reaction that removes polymerized ECA from Und-PP and forms phosphoglyceride-linked ECA_{PG} . "?" represents the unknown enzymes(s) responsible for this reaction. As ECA_{CYC} is present in the periplasm, its levels can be assessed by ElyC to provide feedback regulation. This assessment may involve a physical interaction.

solely responsible for the effect of ElyC on ECA biosynthesis. If ElyC did act through balancing Und-P utilization, we further reasoned that overexpression of *wecA*, the first gene in ECA biosynthesis, would suppress the effect of *elyC* overexpression on ECA biosynthesis. To determine whether this was true, we overexpressed both *wecA* and *elyC* in the wild-type strain. We observed that overexpression of *wecA* increased production of ECA_{LPS} when *elyC* was not overexpressed (Fig. 5B, fucose samples). However, there was no increase in ECA_{LPS} levels with *wecA* overexpression when *elyC* was induced with low arabinose or high arabinose levels (Fig. 5B). Therefore, the effect of ElyC on total ECA levels is not through allocation of Und-P.

DISCUSSION

In this study, we have elucidated a novel pathway regulating the biosynthesis of ECA_{PG} (Fig. 6). We have provided evidence that ElyC specifically regulates the biosynthesis of ECA_{PG} by acting as an inhibitor under normal physiological conditions. Furthermore, we have revealed that full function of ElyC requires the presence of ECA_{CYC} and that ECA_{CYC} itself can regulate the level of ECA_{PG} . The mechanism of regulation by both ElyC and ECA_{CYC} appears to be posttranscriptional.

A number of studies have shown that disruption of intermediate steps in ECA biogenesis leads to isoprenoid carrier stress and peptidoglycan synthesis defects due to the accumulation of ECA synthesis intermediates on Und-P (26–30). In fact, a recent study has biochemically confirmed the accumulation of these intermediates (25). Similar defects have been observed with the disruption of O-antigen or colanic acid biosynthesis (60, 83). It is clear that the stress on peptidoglycan synthesis increases the further down the ECA biosynthesis pathway that the disruption occurs (26, 29, 60). Thus, blocking the pathway after the first sugar is added to Und-P causes very little stress, while blocking the pathway after addition of the next sugar causes cell shape defects, stress response activation, and increased permeability, and blocking the pathway after the addition of the third sugar is lethal (26–29, 30).

The possibility that, if only one form of ECA could be made, disruption of a step in ECA biosynthesis past polymerization would also be lethal led us to our TraDIS

approach to studying ECA_{PG} biosynthesis. Interestingly, we observed the most robust phenotype from increased ECA_{PG} biosynthesis rather than loss of ECA_{PG} biosynthesis, elucidating another route to sequester Und-P. Under these conditions, the transfer of ECA from Und-PP to make ECA_{PG} may become limiting, causing the buildup of polymerized ECA on Und-PP. Although we are analyzing other hits obtained in the TraDIS experiment, it is likely the phenotype of the $\Delta elyC$ mutant has a more substantial effect than the loss of ECA_{PG} synthesis itself. In this case, our data would suggest that the Und-PP released by the polymerization of ECA combined with new synthesis of Und-P is sufficient for peptidoglycan synthesis. Recent advances in the biochemical analysis of ECA biosynthesis intermediates (25) will make this an interesting area for future investigation.

With the methods of detecting ECA we have employed, we cannot exclude the possibility that the increase in ECA we observe when deleting *elyC* is due to the accumulation of polymerized ECA on Und-P, suggesting $\Delta elyC$ disrupts ECA_{PG} biosynthesis. In this model, overexpressing elyC would decrease the accumulation of ECA on Und-P, leading to lower levels of ECA observed. However, we do not feel this model fits our data well for the following reasons. (i) The ECA species observed in the immunoblot assay appears to be the major form of ECA present in the cells. To our knowledge, polymerized ECA attached to Und-P has never been detected when Und-P-linked ECA biosynthesis intermediates are investigated (25, 45). In fact, loss of the ability to make a full subunit of ECA was required to initially demonstrate that ECA is synthesized on Und-P (45). (ii) If overexpressing elyC increases conversion of Und-P-linked ECA to ECA_{PG}, an amount of ECA_{PG} should be produced equal to the amount of Und-P-linked ECA lost, leading to very little change in the amount of detectable linear ECA when elyC is overexpressed. (iii) At least some proportion of the increased ECA observed when elyC is deleted is surface exposed, and it is unlikely that there is a surface exposure mechanism for Und-P-linked ECA. (iv) Finally, accumulation of Und-P-linked ECA cannot explain the large decrease in linear ECA levels observed when waaL is deleted. Deletion of waaL prevents the production of ECA_{1PS} , removing one possible route for Und-P-linked ECA to be processed to the final forms of ECA; therefore, deletion of waaL would not be expected to decrease levels of Und-P-linked ECA.

The synthesis of ECA overall, and of ECA_{PG} in particular, occurs at the IM, a location that is physically distant from the eventual localization of ECA_{PG} at the cell surface (21). Thus, it would be difficult for the biosynthesis of ECA_{PG} to be directly regulated based on the accumulation of ECA_{PG} on the cell surface. ECA_{CYC} provides an ideal solution to this problem, allowing the biosynthesis of ECA to be assessed using a molecule located in the more accessible periplasm (29). As an IM protein with N-terminal transmembrane domains and a comparatively large periplasmic domain (58), ElyC is well situated to interact physically, as well as genetically, both with the ECA biosynthesis machinery and with ECA_{CYC}. Studies of ElyC's physical interactions are ongoing in our lab.

Given their respective localizations, we favor a model in which ElyC provides feedback regulation for the reaction(s) producing ECA_{PG} based on the levels of ECA_{CYC} present in the periplasm (Fig. 6). In this model, we speculate that ElyC undergoes constant transient interactions with ECA_{CYC} that control the activity or binding capability of ElyC. Thus, when ElyC and ECA_{CYC} interact, ElyC would become functional and inhibit the reaction producing ECA_{PG}, possibly through direct interaction with the protein(s) responsible for synthesizing ECA_{PG}. The inhibition could occur through alteration of activity or of degradation rates of the protein(s) producing ECA_{PG}. The amount or time of interaction between ElyC and ECA_{CYC} would, therefore, control how much ECA_{PG} is produced. Levels of ECA_{CYC} could in this way be constantly monitored to maintain appropriate levels of ECA production, while leaving ECA_{CYC} largely free to perform its functional roles in the cell.

In this model, it would be possible for ElyC and ECA_{CYC} to act alone. However, it is also possible that other members of the regulatory pathway exist. These pathway members would not be in our TraDIS data set if their loss did not cause a large increase

mBio

in ECA_{PG} biosynthesis (e.g., their effects are not inhibitory or they are redundant) or if the genes involved are essential due to their roles in other pathways. If there are other pathway members involved to transmit signals to the cytoplasm, the regulation of ECA_{PG} biosynthesis could also occur by controlling the levels of the protein(s) responsible for ECA_{PG} biosynthesis.

Previous work found deletion of *elyC* causes lysis of cells at room temperature in LB medium with 1% NaCl (LB Miller) (28). This lysis occurred due to a severe defect in peptidoglycan biosynthesis, which was attributed to allocation of Und-P between biosynthesis pathways. The peptidoglycan biosynthesis defect was not observed in cells grown at 37° C (28), the temperature at which our experiments were performed. Nevertheless, our results are consistent with the observation of isoprenoid stress inhibiting peptidoglycan synthesis in $\Delta elyC$ strains. Specifically, we have determined that this stress is due to the overproduction of ECA_{PG} rather than to the initial allocation of Und-P for peptidoglycan biosynthesis. In fact, our data demonstrate that the effect of ElyC overexpression on total ECA levels is epistatic to the allocation of Und-P between biosynthesis pathways (Fig. 5). Thus, the effect of ElyC on Und-P availability for peptidoglycan synthesis is due to its role in regulating the synthesis of ECA_{PG}.

Our data suggest three possible explanations for the more severe phenotype of elyC loss at lower temperatures. (i) Disruption or dysregulation of biosynthetic or transport pathways, such as protein secretion, can lead to cold-sensitive phenotypes due to slowing of the pathway at lower temperatures (84). Thus, growth at room temperature might slow ECA synthesis more than peptidoglycan synthesis, leading to increased sequestration of Und-P at lower temperatures. (ii) We have observed the chain length (number of repeat units per molecule) of ECA is less at 30°C than at 37°C (36). Thus, the same amount of ECA repeat units will be made into more final ECA molecules, increasing the amount of Und-P utilized for ECA synthesis at lower temperatures. (iii) Finally, ElyC may have an additional function at room temperature that also diverts Und-P from peptidoglycan synthesis that is not apparent at 37°C. Interestingly, Kouidmi et al. found an increase in periplasmic protein aggregation when $\Delta elyC$ cells were grown at room temperature that could be suppressed by overproduction of two periplasmic chaperones, DsbG and Spy, leading to restoration of peptidoglycan biosynthesis (69). These data may suggest an additional function for ElyC during growth at low temperatures.

The three forms of ECA are synthesized from a common precursor—polymerized ECA on Und-PP. Clearly, mechanisms are necessary to ensure the proper balance is maintained between the forms of ECA, both to support their proper functions and to avoid stress caused by dysregulation of biosynthetic pathways. WaaL, the O-antigen ligase, attaches both ECA and O-antigen to LPS (43, 85). In smooth strains that produce O-antigen, very little ECA_{LPS} is produced (43, 85, 86), suggesting that the availability of WaaL is a rate-limiting step in the production of ECA_{LPS}. Our results confirm that increasing the levels of WaaL causes more ECA_{LPS} to be produced. Our data further suggest the regulation of production of ECA_{PG} and ECA_{CYC} is dependent on feedback regulation by ElyC based on ECA_{LPS} production is largely a by-product of O-antigen synthesis. In many *Enterobacterales*, O-antigen shares an initial GlcNAc residue with ECA (43, 87, 88), which may lead WaaL to be somewhat promiscuous. Nevertheless, surface exposure of ECA_{LPS} leads to production of ECA antibodies, the consequences of which have not been fully explored (21).

Since the discovery of ECA_{CYC}, there has been longstanding debate about whether ECA_{CYC} has a role in biosynthesis of the other forms of ECA or plays its own functional role within the cell. Previously, we demonstrated ECA_{CYC} plays a role in maintaining the OM permeability barrier (36). In our current work, we show that ECA_{CYC} also plays a role in regulating the synthesis of ECA_{PG}. Thus, our work clearly indicates that ECA_{CYC} plays a dual role in the cell—both necessary for the proper function of the OM permeability barrier and involved in the regulation of ECA synthesis. This can be compared to classic

biosynthetic pathways, such as those for amino acid synthesis, where the product of the pathway, useful in and of itself, also acts to allosterically regulate its own production, maintaining a constant pool of the biosynthetic product (89). Overall, the discovery of the ElyC-ECA_{CYC} pathway controlling ECA_{PG} biosynthesis will provide a foothold in characterization of the mechanism of ECA_{PG} biosynthesis, in understanding the regulation of ECA synthesis under changing environmental conditions, and in investigating both the functional and regulatory role of ECA_{CYC}.

MATERIALS AND METHODS

Bacterial strains and plasmids. Bacterial strains, plasmids, and primers used in this study are listed in Table S4 in the supplemental material. Strains were grown at 37°C in LB Lennox medium with the necessary antibiotics: kanamycin (25 mg/liter), chloramphenicol (20 mg/liter), and tetracycline (20 mg/liter), unless otherwise noted. IPTG at the indicated concentrations (0 to 100 μ M) was used for overexpression from the pCA24N plasmid. L-Arabinose and α -D-fucose at the indicated concentrations were used to induce or repress the P_{BAD} promoter, respectively. The deletion alleles were utilized from the Keio collection (65), unless otherwise indicated. New deletion alleles were constructed using λ -Red recombineering, as has been described previously (90). Mutants were made by P1*vir* transduction (91). Markerless deletion strains were generated by flipping out the kanamycin cassette with FIp recombinase as described previously (90).

Plasmids from the ASKA library were used for overexpression experiments (79). *elyC* with its native ribosome binding site (RBS) was cloned into pBAD33 (92) through HiFi Assembly (New England Biolabs [NEB]) per the manufacturer's protocol using the pBAD33 and *elyC* (o/l pBAD33) primers (Table S4). Subsequently, the chloramphenicol resistance cassette was replaced with the kanamycin resistance cassette from pZS21 (93) using HiFi assembly and the pBAD33-*elyC* and kanR primers (Table S4). The promoter region of the *wec* operon was cloned from -500 to +20 in relation to the start codon of *wecA* upstream of the *luxCDABE* operon in the pJW15 vector (80, 81) using HiFi assembly and the Pwec and pNLP10/JW15 primers (Table S4).

TraDIS sample preparation and analysis. Transposon mutant libraries were constructed from Δ wzzE Δ waaL and Δ wecA Δ wzzE Δ waaL strains by electroporation of the EZ-Tn5 <KAN-2>Tnp transposome (Lucigen) as previously described (94). The library in wild-type MG1655 was previously described (94). About 306,000 and 186,000 individual colonies were pooled for the initial transposon library of the Δ wzzE Δ waaL and Δ wecA Δ wzzE Δ waaL strains, respectively. Liquid LB cultures were grown from the pooled libraries of mutants for 10 generations. DNA was extracted from the pooled libraries before and after growth in liquid medium using the DNeasy blood and tissue kit (Qiagen) according to the manufacturer's instructions. Next, Illumina DNA fragment libraries were prepared using the TraDIS approach and sequenced on an Illumina HiSeq 2500 sequencer, as has been described previously (64, 94). Data were analyzed and mapped to the *E. coli* K-12 genome NC_000913.3 as has been described previously (94).

Analysis of ECA levels. (i) Immunoblot analysis for linear ECA levels. ECA levels were assayed from overnight cultures, as previously described with slight modifications (36). Specifically, membranes were probed with a rabbit polyclonal anti-ECA antibody at a 1:30,000 dilution (a kind gift from Renato Morona at the University of Adelaide). Goat anti-rabbit secondary antibody conjugated to horseradish peroxidase (Prometheus) was used at a 1:100,000 dilution and detected using Prosignal Pico ECL (Prometheus) using Prosignal enhanced chemiluminescence (ECL) blotting film (Prometheus).

(ii) Dot blot for ECA surface exposure. Surface-exposed ECA was detected using a dot blot assay as has been described previously with minor modifications (72). Specifically, the following antibodies were used for detection: anti-ECA (1:5,000), anti-BamD (1:5,000), and anti-RcsF (1:5,000) (95, 96).

(iii) WGA staining for ECA_{LPS} quantification. Standard conditions for WGA staining of ECA_{LPS} were as follows. Two hundred fifty microliters of overnight culture was centrifuged for 3 min at 3,400 × g in round-bottom 96-well plates. After removing the supernatant, pelleted cells were washed with 200 μ l of 1× phosphate-buffered saline (PBS). After washing, cells were resuspended in 200 μ l of 1× PBS with a 1:100 volume of WGA-AF488 (Thermo Fisher Scientific) prepared per the manufacturer's instructions. Samples were incubated in the dark at room temperature for 10 min. Then, cells were washed twice with 200 μ l 1× PBS and resuspended in 110 μ l 1× PBS. Next, 100 μ l of each sample was aliquoted to a black-wall, clear-bottom 96-well plate where the optical density at 600 nm (OD₆₀₀) and fluorescence at excitement (Ex.) 485 nm and emission (Em.) 519 nm was recorded using a BioTek Synergy H1 plate reader autogained based on sample fluorescence. Fluorescence relative to OD₆₀₀ was calculated.

(iv) Quantification of ECA_{cyc}. For ECA_{cyc} quantification, ECA_{cyc} was purified and subjected to matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry, and the relative abundance of ECA_{cyc} between samples was calculated as has been described previously (29, 36).

P_{wec} **reporter assay.** Overnight cultures of the indicated strains containing the pJW15-P_{wec} plasmid were subcultured (1:100) into 100 μ l of fresh LB broth in a black-wall, clear-bottom 96-well plate. The plate was sealed with a Breathe-Easy sealing membrane (Sigma), and the luminescence and OD₆₀₀ of each strain were measured every 3 min for 6 h using a BioTek Synergy H1 plate reader as previously described (80, 81). Each biological replicate was performed in technical guadruplicate.

Data availability. The sequencing data are available in the Sequence Read Archive database (SRA) (https://www.ncbi.nlm.nih.gov/sra, BioProject ID PRJNA763934).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only. FIG S1, JPG file, 1.8 MB. FIG S2, JPG file, 1.3 MB. FIG S3, JPG file, 0.1 MB. FIG S4, JPG file, 0.1 MB. FIG S5, JPG file, 0.1 MB. TABLE S1, PDF file, 0.1 MB. TABLE S2, PDF file, 0.1 MB. TABLE S3, PDF file, 0.1 MB. TABLE S4, PDF file, 0.2 MB.

ACKNOWLEDGMENTS

We thank Thomas J. Silhavy and current and former members of the Silhavy and Mitchell labs for productive discussions. We thank Ryland F. Young and Randi L. Guest for critical reading of our manuscript. We thank Renato Morona (University of Adelaide) for the kind gift of anti-ECA antibody and Tracy Raivio (University of Alberta) for the kind gift of the pJW15 plasmid. We thank Tharan Srikumar, Henry Shwe, and the rest of the Princeton Department of Molecular Biology Proteomics and Mass Spectrometry core for preparation and analysis of ECA_{CYC} samples. We also thank Jessica Wiggins at the Princeton University Genomics Core Facility for library preparation and Illumina sequencing for the TraDIS experiment.

This work was supported by the National Institute of Allergy and Infectious Diseases under award number R01-AI155915 (to A.M.M.), the National Institute of General Medical Sciences under award number R35-GM118024 (to T. J. Silhavy), and Texas A&M University startup funds.

REFERENCES

- Silhavy TJ, Kahne D, Walker S. 2010. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. https://doi.org/10.1101/cshperspect .a000414.
- Sutcliffe IC. 2010. A phylum level perspective on bacterial cell envelope architecture. Trends Microbiol 18:464–470. https://doi.org/10.1016/j.tim .2010.06.005.
- Nikaido H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656. https://doi.org/10.1128/ MMBR.67.4.593-656.2003.
- Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. 2016. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:14. https://doi.org/10.3390/microorganisms4010014.
- Iredell J, Brown J, Tagg K. 2016. Antibiotic resistance in *Enterobacteria-ceae*: mechanisms and clinical implications. BMJ 352:h6420. https://doi.org/10.1136/bmj.h6420.
- Nelson RE, Hatfield KM, Wolford H, Samore MH, Scott RD, Reddy SC, Olubajo B, Paul P, Jernigan JA, Baggs J. 2021. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin Infect Dis 72:S17–S26. https://doi.org/10.1093/cid/ciaa1581.
- Nordmann P, Naas T, Poirel L. 2011. Global spread of carbapenemase-producing *Enterobacteriaceae*. Emerg Infect Dis 17:1791–1798. https://doi .org/10.3201/eid1710.110655.
- Adeolu M, Alnajar S, Naushad S, Gupta RS. 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 66:5575–5599. https://doi.org/10.1099/ijsem.0.001485.
- Lehman KM, Grabowicz M. 2019. Countering gram-negative antibiotic resistance: recent progress in disrupting the outer membrane with novel therapeutics. Antibiotics 8:163. https://doi.org/10.3390/antibiotics8040163.

- Naclerio GA, Sintim HO. 2020. Multiple ways to kill bacteria via inhibiting novel cell wall or membrane targets. Future Med Chem 12:1253–1279. https://doi.org/10.4155/fmc-2020-0046.
- 11. Imai Y, Meyer KJ, Iinishi A, Favre-Godal Q, Green R, Manuse S, Caboni M, Mori M, Niles S, Ghiglieri M, Honrao C, Ma X, Guo JJ, Makriyannis A, Linares-Otoya L, Böhringer N, Wuisan ZG, Kaur H, Wu R, Mateus A, Typas A, Savitski MM, Espinoza JL, O'Rourke A, Nelson KE, Hiller S, Noinaj N, Schäberle TF, D'Onofrio A, Lewis K. 2019. A new antibiotic selectively kills Gram-negative pathogens. Nature 576:459–464. https://doi.org/10.1038/ s41586-019-1791-1.
- Luther A, Urfer M, Zahn M, Müller M, Wang S-Y, Mondal M, Vitale A, Hartmann J-B, Sharpe T, Monte FL, Kocherla H, Cline E, Pessi G, Rath P, Modaresi SM, Chiquet P, Stiegeler S, Verbree C, Remus T, Schmitt M, Kolopp C, Westwood M-A, Desjonquères N, Brabet E, Hell S, LePoupon K, Vermeulen A, Jaisson R, Rithié V, Upert G, Lederer A, Zbinden P, Wach A, Moehle K, Zerbe K, Locher HH, Bernardini F, Dale GE, Eberl L, Wollscheid B, Hiller S, Robinson JA, Obrecht D. 2019. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576:452–458. https://doi .org/10.1038/s41586-019-1665-6.
- 13. Hart EM, Mitchell AM, Konovalova A, Grabowicz M, Sheng J, Han X, Rodriguez-Rivera FP, Schwaid AG, Malinverni JC, Balibar CJ, Bodea S, Si Q, Wang H, Homsher MF, Painter RE, Ogawa AK, Sutterlin H, Roemer T, Black TA, Rothman DM, Walker SS, Silhavy TJ. 2019. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc Natl Acad Sci U S A 116:21748–21757. https://doi.org/10.1073/ pnas.1912345116.
- Li W, Separovic F, O'Brien-Simpson NM, Wade JD. 2021. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem Soc Rev 50:4932–4973. https://doi.org/10.1039/d0cs01026j.
- Nickerson NN, Jao CC, Xu Y, Quinn J, Skippington E, Alexander MK, Miu A, Skelton N, Hankins JV, Lopez MS, Koth CM, Rutherford S, Nishiyama M. 2018. A novel inhibitor of the LolCDE ABC transporter essential for lipoprotein trafficking in Gram-negative bacteria. Antimicrob Agents Chemother 62:e02151-17. https://doi.org/10.1128/AAC.02151-17.

- Smith PA, Koehler MFT, Girgis HS, Yan D, Chen Y, Chen Y, Crawford JJ, Durk MR, Higuchi RI, Kang J, Murray J, Paraselli P, Park S, Phung W, Quinn JG, Roberts TC, Rougé L, Schwarz JB, Skippington E, Wai J, Xu M, Yu Z, Zhang H, Tan M-W, Heise CE. 2018. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561:189–194. https://doi.org/10 .1038/s41586-018-0483-6.
- Cho H, Choi Y, Min K, Son JB, Park H, Lee HH, Kim S. 2020. Over-activation of a nonessential bacterial protease DegP as an antibiotic strategy. Commun Biol 3:547. https://doi.org/10.1038/s42003-020-01266-9.
- Ho H, Miu A, Alexander MK, Garcia NK, Oh A, Zilberleyb I, Reichelt M, Austin CD, Tam C, Shriver S, Hu H, Labadie SS, Liang J, Wang L, Wang J, Lu Y, Purkey HE, Quinn J, Franke Y, Clark K, Beresini MH, Tan M-W, Sellers BD, Maurer T, Koehler MFT, Wecksler AT, Kiefer JR, Verma V, Xu Y, Nishiyama M, Payandeh J, Koth CM. 2018. Structural basis for dual-mode inhibition of the ABC transporter MsbA. Nature 557:196–201. https://doi.org/10 .1038/s41586-018-0083-5.
- Zhang G, Baidin V, Pahil KS, Moison E, Tomasek D, Ramadoss NS, Chatterjee AK, McNamara CW, Young TS, Schultz PG, Meredith TC, Kahne D. 2018. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc Natl Acad Sci U S A 115:6834–6839. https://doi.org/10.1073/pnas .1804670115.
- Moura EC, Baeta T, Romanelli A, Laguri C, Martorana AM, Erba E, Simorre J-P, Sperandeo P, Polissi A. 2020. Thanatin impairs lipopolysaccharide transport complex assembly by targeting LptC–LptA interaction and decreasing LptA stability. Front Microbiol 11:909. https://doi.org/10.3389/ fmicb.2020.00909.
- Rai AK, Mitchell AM. 2020. Enterobacterial common antigen: synthesis and function of an enigmatic molecule. mBio 11:e01914-20. https://doi .org/10.1128/mBio.01914-20.
- Rick PD, Hubbard GL, Barr K. 1994. Role of the *rfe* gene in the synthesis of the O8 antigen in *Escherichia coli* K-12. J Bacteriol 176:2877–2884. https:// doi.org/10.1128/jb.176.10.2877-2884.1994.
- Klena J, Schnaitman C. 1993. Function of the *rfb* gene cluster and the *rfe* gene in the synthesis of O antigen by *Shigella dysenteriae* 1. Mol Microbiol 9:393–402. https://doi.org/10.1111/j.1365-2958.1993.tb01700.x.
- Alexander DC, Valvano MA. 1994. Role of the *rfe* gene in the biosynthesis of the *Escherichia coli* O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. J Bacteriol 176: 7079–7084. https://doi.org/10.1128/jb.176.22.7079-7084.1994.
- Eade CR, Wallen TW, Gates CE, Oliverio CL, Scarbrough BA, Reid AJ, Jorgenson MA, Young KD, Troutman JM. 2021. Making the enterobacterial common antigen glycan and measuring its substrate sequestration. ACS Chem Biol 16:691–700. https://doi.org/10.1021/acschembio.0c00983.
- Danese PN, Oliver GR, Barr K, Bowman GD, Rick PD, Silhavy TJ. 1998. Accumulation of the enterobacterial common antigen lipid II biosynthetic intermediate stimulates *degP* transcription in *Escherichia coli*. J Bacteriol 180:5875–5884. https://doi.org/10.1128/JB.180.22.5875-5884.1998.
- Castelli ME, Véscovi EG. 2011. The Rcs signal transduction pathway is triggered by enterobacterial common antigen structure alterations in *Serratia marcescens*. J Bacteriol 193:63–74. https://doi.org/10.1128/JB.00839-10.
- Paradis-Bleau C, Kritikos G, Orlova K, Typas A, Bernhardt TG. 2014. A genome-wide screen for bacterial envelope biogenesis mutants identifies a novel factor involved in cell wall precursor metabolism. PLoS Genet 10: e1004056. https://doi.org/10.1371/journal.pgen.1004056.
- Kajimura J, Rahman A, Rick PD. 2005. Assembly of cyclic enterobacterial common antigen in *Escherichia coli* K-12. J Bacteriol 187:6917–6927. https://doi.org/10.1128/JB.187.20.6917-6927.2005.
- Jorgenson MA, Kannan S, Laubacher ME, Young KD. 2016. Dead-end intermediates in the enterobacterial common antigen pathway induce morphological defects in *Escherichia coli* by competing for undecaprenyl phosphate. Mol Microbiol 100:1–14. https://doi.org/10.1111/mmi.13284.
- Barua S, Yamashino T, Hasegawa T, Yokoyama K, Torii K, Ohta M. 2002. Involvement of surface polysaccharides in the organic acid resistance of Shiga toxin-producing *Escherichia coli* O157: H7. Mol Microbiol 43: 629–640. https://doi.org/10.1046/j.1365-2958.2002.02768.x.
- Ramos-Morales F, Prieto AI, Beuzón CR, Holden DW, Casadesús J. 2003. Role for *Salmonella enterica* enterobacterial common antigen in bile resistance and virulence. J Bacteriol 185:5328–5332. https://doi.org/10 .1128/JB.185.17.5328-5332.2003.
- Gilbreath JJ, Colvocoresses Dodds J, Rick PD, Soloski MJ, Merrell DS, Metcalf ES. 2012. Enterobacterial common antigen mutants of *Salmonella enterica* serovar Typhimurium establish a persistent infection and provide protection against subsequent lethal challenge. Infect Immun 80:441–450. https:// doi.org/10.1128/IAI.05559-11.

- Valtonen M, Larinkari U, Plosila M, Valtonen V, Mäkelä P. 1976. Effect of enterobacterial common antigen on mouse virulence of *Salmonella* Typhimurium. Infect Immun 13:1601–1605. https://doi.org/10.1128/iai.13.6 .1601-1605.1976.
- 35. Liu Q, Shen X, Bian X, Kong Q. 2020. Effect of deletion of gene cluster involved in synthesis of enterobacterial common antigen on virulence and immunogenicity of live attenuated *Salmonella* vaccine when delivering heterologous *Streptococcus pneumoniae* antigen PspA. BMC Microbiol 20:150. https://doi.org/10.1186/s12866-020-01837-0.
- 36. Mitchell AM, Srikumar T, Silhavy TJ. 2018. Cyclic enterobacterial common antigen maintains the outer membrane permeability barrier of *Escherichia coli* in a manner controlled by YhdP. mBio 9:e01321-18. https://doi .org/10.1128/mBio.01321-18.
- Männel D, Mayer H. 1978. Isolation and chemical characterization of the enterobacterial common antigen. Eur J Biochem 86:361–370. https://doi .org/10.1111/j.1432-1033.1978.tb12318.x.
- Lugowski C, Romanowska E, Kenne L, Lindberg B. 1983. Identification of a trisaccharide repeating-unit in the enterobacterial common-antigen. Carbohydr Res 118:173–181. https://doi.org/10.1016/0008-6215(83)88045-8.
- Rick P, Silver R. 1996. Enterobacterial common antigen and capsular polysaccharides, p 104–122. *In* Neidhardt FC, Curtiss R, III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (ed), *Escherichia coli* and *Salmonella*: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC.
- Barr K, Rick P. 1987. Biosynthesis of enterobacterial common antigen in Escherichia coli. In vitro synthesis of lipid-linked intermediates. J Biol Chem 262:7142–7150. https://doi.org/10.1016/S0021-9258(18)48216-6.
- 41. Rick P, Mayer H, Neumeyer B, Wolski S, Bitter-Suermann D. 1985. Biosynthesis of enterobacterial common antigen. J Bacteriol 162:494–503. https://doi.org/10.1128/jb.162.2.494-503.1985.
- Barr K, Nunes-Edwards P, Rick PD. 1989. In vitro synthesis of a lipid-linked trisaccharide involved in synthesis of enterobacterial common antigen. J Bacteriol 171:1326–1332. https://doi.org/10.1128/jb.171.3.1326-1332.1989.
- Schmidt G, Mannel D, Mayer H, Whang H, Neter E. 1976. Role of a lipopolysaccharide gene for immunogenicity of the enterobacterial common antigen. J Bacteriol 126:579–586. https://doi.org/10.1128/jb.126.2.579-586.1976.
- 44. Wright A, Dankert M, Fennessey P, Robbins P. 1967. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc Natl Acad Sci U S A 57:1798–1803. https://doi.org/10.1073/pnas.57.6.1798.
- 45. Rick PD, Hubbard GL, Kitaoka M, Nagaki H, Kinoshita T, Dowd S, Simplaceanu V, Ho C. 1998. Characterization of the lipid-carrier involved in the synthesis of enterobacterial common antigen (ECA) and identification of a novel phosphoglyceride in a mutant of *Salmonella* Typhimurium defective in ECA synthesis. Glycobiology 8:557–567. https://doi.org/10.1093/glycob/8.6.557.
- Johnson JG, Wilson DB. 1977. Role of a sugar-lipid intermediate in colanic acid synthesis by *Escherichia coli*. J Bacteriol 129:225–236. https://doi.org/ 10.1128/jb.129.1.225-236.1977.
- Ikeda M, Wachi M, Jung H, Ishino F, Matsuhashi M. 1991. The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenylphosphate phospho-N-acetylmuramoyl-pentapeptide transferase. J Bacteriol 173:1021–1026. https://doi.org/10.1128/jb.173.3.1021-1026.1991.
- Rick PD, Barr K, Sankaran K, Kajimura J, Rush JS, Waechter CJ. 2003. Evidence that the *wzxE* gene of *Escherichia coli* K-12 encodes a protein involved in the transbilayer movement of a trisaccharide-lipid intermediate in the assembly of enterobacterial common antigen. J Biol Chem 278: 16534–16542. https://doi.org/10.1074/jbc.M301750200.
- Rahman A, Barr K, Rick PD. 2001. Identification of the structural gene for the TDP-Fuc4NAc: lipid II Fuc4NAc transferase involved in synthesis of enterobacterial common antigen in *Escherichia coli* K-12. J Bacteriol 183: 6509–6516. https://doi.org/10.1128/JB.183.22.6509-6516.2001.
- Barr K, Klena J, Rick PD. 1999. The modality of enterobacterial common antigen polysaccharide chain lengths is regulated by o349 of the wec gene cluster of *Escherichia coli* K-12. J Bacteriol 181:6564–6568. https:// doi.org/10.1128/JB.181.20.6564-6568.1999.
- Schnaitman CA, Klena JD. 1993. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 57:655–682. https://doi.org/10 .1128/mr.57.3.655-682.1993.
- Putker F, Bos MP, Tommassen J. 2015. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev 39: 985–1002. https://doi.org/10.1093/femsre/fuv026.
- Erbel PJ, Barr K, Gao N, Gerwig GJ, Rick PD, Gardner KH. 2003. Identification and biosynthesis of cyclic enterobacterial common antigen in *Escherichia coli*. J Bacteriol 185:1995–2004. https://doi.org/10.1128/JB.185.6 .1995-2004.2003.

- Dell A, Oates J, Lugowski C, Romanowska E, Kenne L, Lindberg B. 1984. The enterobacterial common-antigen, a cyclic polysaccharide. Carbohydr Res 133:95–104. https://doi.org/10.1016/0008-6215(84)85186-1.
- Kuhn HM, Neter E, Mayer H. 1983. Modification of the lipid moiety of the enterobacterial common antigen by the "Pseudomonas factor." Infect Immun 40:696–700. https://doi.org/10.1128/iai.40.2.696-700.1983.
- Rinno J, Golecki J, Mayer H. 1980. Localization of enterobacterial common antigen: immunogenic and nonimmunogenic enterobacterial common antigen-containing *Escherichia coli*. J Bacteriol 141:814–821. https://doi .org/10.1128/jb.141.2.814-821.1980.
- Acker G, Bitter-Suermann D, Meier-Dieter U, Peters H, Mayer H. 1986. Immunocytochemical localization of enterobacterial common antigen in *Escherichia coli* and *Yersinia enterocolitica* cells. J Bacteriol 168:348–356. https://doi.org/10.1128/jb.168.1.348-356.1986.
- Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A. 2008. The Pfam protein families database. Nucleic Acids Res 36:D281–D288. https://doi.org/10.1093/nar/gkm960.
- Daley DO, Rapp M, Granseth E, Melén K, Drew D, Von Heijne G. 2005. Global topology analysis of the *Escherichia coli* inner membrane proteome. Science 308:1321–1323. https://doi.org/10.1126/science.1109730.
- Jorgenson MA, Young KD. 2016. Interrupting biosynthesis of O antigen or the lipopolysaccharide core produces morphological defects in *Escherichia coli* by sequestering undecaprenyl phosphate. J Bacteriol 198: 3070–3079. https://doi.org/10.1128/JB.00550-16.
- Marquardt J, Siegele D, Kolter R, Walsh C. 1992. Cloning and sequencing of *Escherichia coli murZ* and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174:5748–5752. https://doi .org/10.1128/jb.174.17.5748-5752.1992.
- Meier-Dieter U, Barr K, Starman R, Hatch L, Rick P. 1992. Nucleotide sequence of the *Escherichia coli rfe* gene involved in the synthesis of enterobacterial common antigen. Molecular cloning of the *rfe-rff* gene cluster. J Biol Chem 267:746–753. https://doi.org/10.1016/S0021-9258(18)48347-0.
- Meier-Dieter U, Starman R, Barr K, Mayer H, Rick P. 1990. Biosynthesis of enterobacterial common antigen in *Escherichia coli*. Biochemical characterization of Tn*10* insertion mutants defective in enterobacterial common antigen synthesis. J Biol Chem 265:13490–13497. https://doi.org/10.1016/ S0021-9258(18)77373-0.
- Langridge GC, Phan M-D, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G, Wain J, Parkhill J, Turner AK. 2009. Simultaneous assay of every *Salmonella* Typhi gene using one million transposon mutants. Genome Res 19:2308–2316. https://doi.org/10.1101/gr.097097.109.
- 65. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008. https://doi.org/10.1038/msb4100050.
- Goodall ECA, Robinson A, Johnston IG, Jabbari S, Turner KA, Cunningham AF, Lund PA, Cole JA, Henderson IR, Chen SL, Kline KA. 2018. The essential genome of *Escherichia coli* K-12. mBio 9:e02096-17. https://doi.org/10 .1128/mBio.02096-17.
- 67. Keseler IM, Mackie A, Santos-Zavaleta A, Billington R, Bonavides-Martínez C, Caspi R, Fulcher C, Gama-Castro S, Kothari A, Krummenacker M, Latendresse M, Muñiz-Rascado L, Ong Q, Paley S, Peralta-Gil M, Subhraveti P, Velázquez-Ramírez DA, Weaver D, Collado-Vides J, Paulsen I, Karp PD. 2017. The EcoCyc database: reflecting new knowledge about *Escherichia coli* K-12. Nucleic Acids Res 45:D543–D550. https://doi.org/10.1093/nar/gkw1003.
- Kamemoto Y, Funaba N, Kawakami M, Sawasato K, Kanno K, Suzuki S, Nishikawa H, Sato R, Nishiyama KI. 2020. Biosynthesis of glycolipid MPlase (membrane protein integrase) is independent of the genes for ECA (enterobacterial common antigen). J Gen Appl Microbiol 66:169–174. https://doi.org/10.2323/jgam.2019.05.001.
- Kouidmi I, Alvarez L, Collet JF, Cava F, Paradis-Bleau C. 2018. The chaperone activities of DsbG and Spy restore peptidoglycan biosynthesis in the *elyC* mutant by preventing envelope protein aggregation. J Bacteriol 200: e00245-18. https://doi.org/10.1128/JB.00245-18.
- Senouci-Rezkallah K. 2015. Phenotypic and transcriptional analysis appear that bacterial cell wall assembly stop by conserved inner membrane protein (ElyC) gene disruption stimulates the enterobacterial common antigen (ECA) gene cluster transcription in *Escherichia coli*. J Chem Pharm Res 7:90–99.
- 71. Wu T. 1966. A model for three-point analysis of random general transduction. Genetics 54:405–410. https://doi.org/10.1093/genetics/54.2.405.
- Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. 2014. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded

through the lumen of β -barrel proteins. Proc Natl Acad Sci U S A 111: E4350–E4358. https://doi.org/10.1073/pnas.1417138111.

- Monsigny M, Roche AC, Sene C, Maget-Dana R, Delmotte F. 1980. Sugarlectin interactions: how does wheat-germ agglutinin bind sialoglycoconjugates? Eur J Biochem 104:147–153. https://doi.org/10.1111/j.1432-1033 .1980.tb04410.x.
- 74. Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, Chang F, Weibel DB, Theriot JA, Huang KC. 2018. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559: 617–621. https://doi.org/10.1038/s41586-018-0344-3.
- Chazotte B. 2011. Labeling membrane glycoproteins or glycolipids with fluorescent wheat germ agglutinin. Cold Spring Harb Protoc 2011:pdbprot5623. https://doi.org/10.1101/pdb.prot5623.
- Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ. 2008. Cell wall peptidoglycan architecture in *Bacillus subtilis*. Proc Natl Acad Sci U S A 105:14603–14608. https://doi.org/10.1073/pnas.0804138105.
- 77. Fife DJ, Bruhn DF, Miller KS, Stoner DL. 2000. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria. Appl Environ Microbiol 66:2208–2210. https://doi.org/10.1128/AEM.66.5 .2208-2210.2000.
- Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G, Ouzounov N, Gitai Z, Shaevitz JW, Huang KC. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc Natl Acad Sci U S A 111:E1025–E1034. https://doi.org/10.1073/pnas.1317174111.
- Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. 2005. Complete set of ORF clones of *Escherichia coli* ASKA library (a complete set of *E. coli* K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299. https://doi.org/10.1093/dnares/dsi012.
- MacRitchie DM, Ward JD, Nevesinjac AZ, Raivio TL. 2008. Activation of the Cpx envelope stress response down-regulates expression of several locus of enterocyte effacement-encoded genes in enteropathogenic *Escherichia coli*. Infect Immun 76:1465–1475. https://doi.org/10.1128/IAI.01265-07.
- Wong JL, Vogt SL, Raivio TL. 2013. Using reporter genes and the *Escherichia coli* ASKA overexpression library in screens for regulators of the Gram negative envelope stress response. Methods Mol Biol 966:337–357. https://doi.org/10.1007/978-1-62703-245-2_21.
- Grabowicz M, Andres D, Lebar MD, Malojčić G, Kahne D, Silhavy TJ. 2014. A mutant *Escherichia coli* that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface. Elife 3:e05334. https://doi.org/10 .7554/eLife.05334.
- Ranjit DK, Young KD, O'Toole GA. 2016. Colanic acid intermediates prevent *de novo* shape recovery of *Escherichia coli* spheroplasts, calling into question biological roles previously attributed to colanic acid. J Bacteriol 198:1230–1240. https://doi.org/10.1128/JB.01034-15.
- Pogliano KJ, Beckwith J. 1993. The Cs sec mutants of *Escherichia coli* reflect the cold sensitivity of protein export itself. Genetics 133:763–773. https://doi.org/10.1093/genetics/133.4.763.
- Schmidt G, Jann B, Jann K. 1974. Genetic and immunochemical studies on Escherichia coli O14: K7: H–. Eur J Biochem 42:303–309. https://doi.org/ 10.1111/j.1432-1033.1974.tb03340.x.
- Whang H, Mayer H, Schmidt G, Neter E. 1972. Immunogenicity of the common enterobacterial antigen produced by smooth and rough strains. Infect Immun 6:533–539. https://doi.org/10.1128/iai.6.4.533-539.1972.
- Mäkelä PH, Jahkola M, Lüderitz O. 1970. A new gene cluster *rfe* concerned with the biosynthesis of *Salmonella* lipopolysaccharide. J Gen Microbiol 60:91–106. https://doi.org/10.1099/00221287-60-1-91.
- Mäkelä PH, Mayer H. 1974. Participation of lipopolysaccharide genes in the determination of the enterobacterial common antigen: analysis in *Salmonella* groups B and C1. J Bacteriol 119:765–770. https://doi.org/10 .1128/jb.119.3.765-770.1974.
- Sander T, Farke N, Diehl C, Kuntz M, Glatter T, Link H. 2019. Allosteric feedback inhibition enables robust amino acid biosynthesis in *E. coli* by enforcing enzyme overabundance. Cell Syst 8:66–75.e8. https://doi.org/ 10.1016/j.cels.2018.12.005.
- Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645. https://doi.org/10.1073/pnas.120163297.
- 91. Silhavy TJ, Berman ML, Enquist LW. 1984. Experiments with gene fusions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
- Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130. https://doi.org/10.1128/jb .177.14.4121-4130.1995.

- Lutz R, Bujard H. 1997. Independent and tight regulation of transcriptional units in *Escherichia coli* via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210. https://doi.org/10.1093/nar/25.6.1203.
- 94. Mitchell AM, Wang W, Silhavy TJ. 2017. Novel RpoS-dependent mechanisms strengthen the envelope permeability barrier during stationary phase. J Bacteriol 199:e00708-16. https://doi.org/10.1128/JB .00708-16.
- 95. Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. 2007. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in *Escherichia coli*. Proc Natl Acad Sci U S A 104: 6400–6405. https://doi.org/10.1073/pnas.0701579104.
- Leverrier P, Declercq JP, Denoncin K, Vertommen D, Hiniker A, Cho SH, Collet JF. 2011. Crystal structure of the outer membrane protein RcsF, a new substrate for the periplasmic protein-disulfide isomerase DsbC. J Biol Chem 286:16734–16742. https://doi.org/10.1074/jbc.M111.224865.