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Abstract: 
Malaria is a predominant infectious disease, with a global footprint, but especially severe in developing countries in the African 
subcontinent. In recent years, drug-resistant malaria has become an alarming factor, and hence the requirement of new and improved 
drugs is more crucial than ever before. One of the promising locations for antimalarial drug target is the apicoplast, as this organelle does 
not occur in humans. The apicoplast is associated with many unique and essential pathways in many Apicomplexan pathogens, including 
Plasmodium. The use of machine learning methods is now commonly available through open source programs. In the present work, we 
describe a standard protocol to develop molecular descriptor based predictive models (QSAR models), which can be further utilized for the 
screening of large chemical libraries. This protocol is used to build models using training data sourced from apicoplast specific bioassays. 
Multiple model building methods are used including Generalized Linear Models (GLM), Random Forest (RF), C5.0 implementation of a 
decision tree, Support Vector Machines (SVM), K-Nearest Neighbour and Naive Bayes. Methods to evaluate the accuracy of the model 
building method are included in the protocol. For the given dataset, the C5.0, SVM and RF perform better than other methods, with 
comparable accuracy over the test data. 
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Background:   
Malaria is endemic in many tropical and subtropical regions 
causing high mortality and morbidity. In the last 10-15 years, due to 
efforts of a global malaria eradication campaign, a significant fall 
has been observed in malaria infection cases. However, at the end 
of 2015, there were 212 million new cases of malaria and 429 
thousand deaths have been reported across the globe. The majority 
of death cases have been recorded in Africa (~92 %) and the South-
East Asia Region (~6%) [1]. 
 
Artemisinin derivatives are regarded as most effective drugs 
against malaria since the mid-1990s. In 2005, the WHO has 
recommended artemisinin-combination therapies (ACTs) be the 
first-line treatments for P. falciparum malaria worldwide [2]. The 
Artemisinin-derived molecules (ACTs) have a broad spectrum of 
activity (more than 120 targets) against many biologically 
important pathways of Plasmodium [3]. Despite their effectiveness, 

drug-resistant malaria has been emerged in many Asian and 
African countries in recent years [4]–[7]. This scenario threatens the 
worldwide efforts for complete eradication of malaria and hence it 
is imperative to identify more drug targets as well as potent drugs 
to regulate the disease before current therapeutic agents lose their 
clinical relevance. Studies reveal that one of the most promising 
targets is the apicoplast due to its involvement in many essential 
biological pathways unique to Plasmodium [8]. 
 
An apicoplast is a non-photosynthetic vestigial plastid, bounded by 
four membrane layers, which occurs in almost all apicomplexan 
parasites. It has a 35 kb circular DNA quite similar to a 
cyanobacterial genome, which encodes approximately 55-60 genes 
of unknown functionality. However, Its presence is crucial for the 
cell [9]. There are various genetic and pharmacological studies, 
which confirm its essential role in cell survival. Genome analysis of 
apicoplast indicates their role in the biosynthesis of many 
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important products including type II fatty acids, heme and iron-
sulphur cluster, and isoprenoid precursors [10]. The pathways 
related to above products are essentially similar to those of bacteria 
due to their endosymbiotic origin and entirely different from the 
pathways of the host organism. There were many antimalarial 
drugs proposed which targets cellular machinery (proteins/DNA) 
essential for cell survival ranging from replication, transcription, 
translation (parasite as well as apicoplast), fatty acid biosynthesis, 
heme, Iron-sulphur cluster and isoprenoid synthesis (exclusive to 
apicoplast). Earlier, targeting products of apicoplast gained 
popularity e.g. FASII pathway, but several genetic and 
pharmacological studies show evidence for the off-target activity of 
the inhibitor [11]. There were some successful attempts of targeting 
isoprenoid pathway [12] and heme biosynthesis [13], [14] already 
reported. Beside those anabolic pathway-based drug targets, efforts 
have been made to obstruct the cellular processes of apicoplast such 
as replication [15], transcription [16] and translation [17], as these 
processes are known to be quite similar to those of bacteria. Hence, 
antibacterial drugs are also considered as potential drugs for the 
malaria parasite. Recent reviews have listed various targets and 
related drugs [18]–[20]. A detailed view of target proteins 
summarizes pathways and drug candidates are listed in table 1. In 
the present study we are focus on predictive model building using 
bioassay data causing delayed death in malaria parasites. A 

delayed death is the very interesting phenomena where parasites 
survive, infect and multiplied but progeny is unable to infect host. 
 
With advancement in high-throughput bioassay techniques and 
computational resources, managing structural information along 
with bioactivity reading has become a well-established practice. 
This information can be utilized to screen large chemical libraries 
virtually, which reduces the cost and time for identifying potential 
drug-like molecules for further screening stages. One approach to 
applying this information is predictive model building. In recent 
years, numerous successful implementations of machine learning 
(ML) techniques are published for virtual screening of biologically 
active compounds [21]–[24]. In the present study, we employed 
various state of the art machine-learning techniques to build 
classification models using publicly available antimalarial bioassay 
data with known inhibitory effect against apicoplast formation. 
 
To build a robust predictive model we define best practices for data 
cleaning, preprocessing, feature selection and model building, 
which are described in this manuscript. A schematic overview of 
the model building workflow can be seen in Figure 1, and is 
described in detail in the next section. The methods are applied on 
datasets to build models against targets specific to the apicoplast. 

 

 
Figure 1: Workflow adopted for the current study. The initial dataset is in SDF format. Descriptors are calculated, and preprocessing-I is 
applied regardless of data and the applied Machine Learning (ML) method. The preprocessed data was subjected to Recursive Feature 
Elimination (RFE) based feature selection method to obtain the best feature subset for model building. The input data is prepared 
according to the selected feature set, and preprocessing-II was applied which solely depends on best practices suggested by caret package 
for the underlying ML method. The model building step includes hyper parameter optimisation, cross-validation and best model selection 
steps. The output is a model file which can be further used for prediction of unlabelled compound libraries. The preprocessing and model 
building step has been carried out by using R and the caret package. 
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Figure 2: The ROC plots for different classifiers with AUC values. The higher AUC values indicates better prediction power of concerned 
machine learning method. 
 
Methodology      
Data 
In the present study, we used cell-based bioassay data [AID-
504832] downloaded from PubChem [25]. The dataset consists of 
305,803 compounds including 18,126 biologically active compounds 
against apicoplast formation in Plasmodium falciparum. The dataset 
of active and inactive compounds are obtained as 2D Structure Data 
Format (SDF) and converted into 3D SDF file using the corina 
package [26]. 
 
Descriptor Generation and Data Preparation 
2D and 3D descriptors were generated for active and inactive 
compounds using descriptor calculation package, PaDEL v2.18 [27]. 
It calculates 1786 different descriptors. In our study, we calculated 
only 1D, 2D and 3D descriptors (without PubChem fingerprint 
descriptors). The redundant and missing entries have been 
removed from the datasets. We also excluded near zero variance 

and highly correlated values (>= 0.80) from the data, as they do not 
provide any improvement to the learning. After applying the above 
preprocessing step 173 predictors remained for model building. All 
preprocessing steps were done using R version 3.2.0 [28]. 
 
Feature Selection 
Feature selection has many important aspects including a reduction 
in dimensionality of data, storage requirement and learning time. 
We used the R-caret package for feature selection called "Recursive 
Feature Elimination (RFE)" [29], [30]. This method uses various 
functions for selecting the best feature subset from the available 
feature set, which is sufficient to characterize a hidden pattern from 
the data set responsible for defining a class. We used the random 
forest based function with 3-fold cross-validation to select the best 
feature subset. We obtained a set of 50 features, which are sufficient 
for the classification task. 
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Table 1: Antimalarial drugs with targets 

 
Table 2: Performance of various models on train and test data sets (boot632 re-sampling, 10-fold cross validation repeated 10 times. Values 
are up to 2 significant points.) 

ROC Accuracy Sensitivity Specificity Precision F1-score MCC Kappa Method 

Train Test Train Test Train Test Train Test Test Test Test Test 

GLM 0.82 0.82 0.75 0.75 0.74 0.74 0.76 0.76 0.76 0.75 0.50 0.50 

RF 0.92 0.88 0.87 0.80 0.86 0.79 0.88 0.82 0.82 0.80 0.61 0.61 

C5.0 0.92 0.88 0.87 0.80 0.86 0.78 0.88 0.83 0.82 0.80 0.61 0.61 

SVM 0.90 0.88 0.83 0.81 0.82 0.80 0.84 0.82 0.82 0.81 0.63 0.63 

KNN 0.86 0.85 0.79 0.78 0.79 0.77 0.79 0.78 0.78 0.77 0.55 0.55 

 
Table 3: Model performance on previously unseen data. The bioassays under study were first cross-checked for common compounds used 
for model building. Only previously unseen compounds are used for model performance. 

AID-488745 AID-488752 AID-504848  

Predicted 
 
Active 

Predicted 
 
Inactive 

Predicted 
 
Active 

Predicted 
 
Inactive 

Predicted 
 
Active 

Predicted 
 
Inactive 

GLM 114/154 613/800 106/134 684/883 547/966 188/223 

RF 129/154 621/800 118/134 684/883 564/966 187/223 

C5.0 126/154 608/800 117/134 669/883 599/966 182/223 

KNN 95/154 412/800 82/134 448/883 534/966 149/223 

SVM 139/154 516/800 123/134 558/883 593/966 185/223 

 

Pathway /Process Targets Drugs Source(s) 

Replication GyrA, GyrB Fluoroquinolone, Ciprofloxacin, Clindamycin,  
Doxycycline, Novobiocin, Coumermycin,chloroquine 

[15],[18],[19],[31], [32] 

Transcription RpoB, RpoC1, RpoC2 Rifampin, Thiostrepton, Doxycycline, Tetracycline, 
Clindamycin 

[16],[18],[33][33], [34] 

Translation Pf1F-1, 23s rRNA, GTPase,  
Aminoacyl tRNA - 
synthetase,PTC 

Macrolides, Thiostrepton, Chloramphenicol,  
Lincosamides, Micrococcin, 
Mupirocin,Indolmycin 

[17],[18],[20],[35], [36] 

Fatty acid 
biosynthesis 

FASII, FabH, FabI,  
β-ketoacyl-ACP sythetase I and 
II 

Thiolactomycin, Cerulenin, Triclosan [18] 

Isoprenoid synthesis DOXP reductoisomerase Fosmidomycin  [12] 

Heme Synthesis Dehydratases Herbicides [13],[14] 
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Classifiers   
We used R-caret package for employment of various state of the art 
ML methods for the predictive model building including 
Generalized Linear Model (GLM), K-Nearest Neighbour (KNN), 
Support Vector Machine (SVM), Random Forest (RF), and C5.0 
decision tree (C5.0). The input data set was randomly divided into 
training and test set with a 1:4 ratio. From the training data 25% 
data is kept for validation set and the remaining 75 % training data 
is used for model building. Each model is built using 10 fold cross-
validation (repeated 10 times) with "boot632" re-sampling method 
to check the robustness of the model. During cross-validation, each 
ML method is fine-tuned over a range of respective parameter 
values. The best model was selected using performance over the 
validation set and used for performance evaluation with test data. 
  
Statistical Measures for Performance Evaluation 
Various statistical performance measures are employed to evaluate 
models. Sensitivity (TP/TP+FN) measures the correctly identified 
positive cases while Specificity (TN/TN+FP) measures the correctly 
identified negative cases. Precision (TP / TP+FP) is a measure of 
the fraction of retrieved instances that are relevant; Accuracy 
(TP+TN/TP+TN+FP+FN) on the other hand measures the 
proximity of being true. A Receiver Operating Characteristic (ROC) 
is another widely used measure for classification model evaluation. 
The Area Under Curve (AUC) is used to evaluate the model (Figure 
2). The Kappa value also provides evidence of the goodness of 
model. The Kappa value is a metric that compares an observed 
accuracy with an expected accuracy (i.e. .by random chance). Its 
values lie between 0-1. The higher the value, the better the model is. 
MCC values are indicator of quality of binary (two-class) 
classification model. Its value lies between -1 to 1. The positive 
value indicates better model. 
 
Results & Discussion     
The datasets used in our study was a confirmatory bioassay. The 
initial 2D dataset (18,126 active - 98878 inactive) was subjected to 
3D conversion, and then 2D and 3D molecular descriptors were 
calculated. There were a total of 905 descriptors computed. Some 
compounds, which failed to convert in 3D or to produce molecular 
descriptors, are discarded from the study. After descriptor 
calculation 18109 active and 98878 inactive compounds are retained 
for preprocessing-I. The first step of preprocessing-I is a removal of 
missing values. In the present study, we removed all columns 
having equal to more than 10 % missing values, which resulted in 
the exclusion of 20 columns. Again we removed all such rows 
having any missing values. The benefit of two level missing value 
handling is we can keep as many as samples for model building. 
The second preprocessing-I step is an elimination of near zero 
values (NZV). The descriptors having a majority of only a single 
value across the column does not contribute to model's prediction 
power while increasing the cost in terms of computational time. 
Hence, it is one of the best practices, applied for data cleaning. 
There were 420 descriptors removed during this process, and 465 

descriptors were retained. We also removed highly correlated data 
points (cutoff >= 0.8) which resulted in the exclusion of 292 
descriptors thus after preprocessing-I only 173 descriptors 
remained. The preprocessed data was subjected to feature selection. 
We implemented RFE based feature selection procedure to obtain 
best feature subset. The feature subset selected using 3 fold cross-
validation, over a different size of feature subset ranging from 40 to 
173 with an interval of 5. The best subset obtained on feature subset 
of size 50 by maximum accuracy achieved. Those 50 features were 
utilized as input dataset features for model building. 
      
The preprocessing-II step includes splitting of data into train and 
test set. Other steps are optional and depend on the 
recommendation for ML method under study. To address the class 
imbalance problem, we applied down sampling of the data 
(random sampling has been done to bigger class and choose 
samples equal to a smaller class). The validation set consist of 25 % 
cases of the training set and model was evaluated using 10 fold 
cross-validation to obtain the best robust model. The model's 
performance measures were checked on test data set and shown in 
Table 1. RF and C5.0 outperform the rest while GLM gives the 
poorest result. SVM (RBF) also gives an excellent result. The ROC 
curve analysis (Figure 2) and Cohen’s kappa values and MCC 
values also strengthen the above observations. In ROC analysis 
C5.0, RF and SVM outperform the rest while GLM has lowest AUC 
value which again supports the superiority of C5.0, SVM and RF 
classifiers. The kappa value of C5.0, SVM and RF are also high and 
comparable as well. The SVM, C5.0 and RF classifiers perform 
almost equally well and possess almost similar performance over 
test set. 
 
The QSAR model built can be used to screen the potential 
molecules for next phase screening. The models built in these 
studies will be available on request. To check the robustness of 
created model we additionally screen various related bioassay 
dataset [ID-488745, AID-488752, and AID-504848]. The results are 
summarized in Table 3. 
 
The present study can be further extended. The dataset used in the 
study, are a set of compounds, which inhibit apicoplast formation 
by targeting cellular processes like replication, transcription and 
translation hence can be used to screen only those libraries, which 
possess similar targets. Second, we did not evaluate many powerful 
machine-learning methods like boosting, bagging, neural network 
and other hybrid classifiers. Hence exploring other machine 
learning methods with different feature selection and generation 
may be investigated. Third, the prediction task requires a same 
computational environment used for model building. 
 
Conclusion 
In the present study, we have defined best practices for predictive 
model building in cheminformatics. Briefly, the initial dataset is 
normally present in a suitable format such as mol or sdf. If the sdf 
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has only 2D information, it is converted to 3D information. The 
descriptor calculation is followed by a preprocessing step, which is 
split, into two tracks, the second of which is optional and depends 
on classifier used. The preprocessed input data is subjected to 
feature selection and best feature subset containing data set is used 
for model building purpose. The model-building step supports 
parallel computation, which ensures minimum time for a model 
generation with tuned parameters. The best model is chosen based 
on cross-validation results and prediction is done using best model. 
 
The workflow is applied in the predictive model building of 
biologically active inhibitor molecules against apicoplast formation. 
Such predictive models are essentially required to facilitate rapid 
first level selection of potential drug-like molecules. We compared 
the performances of few state of the art machine learning 
techniques and also applied context based data pre-processing, 
feature selection, and Cross-validation which are known for 
significant influence over model performance and robustness. The 
under sampling of data and parallel computation results in smaller 
computational time with overall good results. In our study RF, C5.0 
and SVM performed very well and achieved comparable predictive 
power. All predictive models and R-scripts are available freely on 
request.  
      
References   
[1] World Health Organization, World Malaria Report. 2016. 
[2] World Health Organization, Guidel.Treat. Malar. 2010 
[3] Wang J et al. Nat Commun, 2015, 6: 10111. [PMID: 26694030] 
[4] Noedl H et al. N. Engl. J. Med., 2008, 359: 2619. [PMID: 

19064625] 
[5] Das D et al. N. Engl. J. Med., 2010, pp. 455. [PMID: 19641202] 
[6] Phyo AP et al. Lancet, 2012, 379: 1960. [PMID: 22484134] 
[7] Ashley EA et al. N. Engl. J. Med., 2014, 371: 411. [PMID: 

25075834] 
[8] Ralph SA et al. Drug Resist. Updat, 2001, 4: 145. [PMID: 

11768328] 
[9] Ekland EH et al. FASEB J., 2011, 25: 3583. [PMID: 21746861] 
[10] Ralph SA et al. Nat. Rev. Microbiol, 2004, 2: 203. [PMID: 

15083156] 
[11] Shears MJ et al. Mol. Biochem. Parasitol, 2015, 199: 34. [PMID: 

25841762] 

[12] Lell B et al. Antimicrob. Agents Chemother, 2003, 47: 735. 
[PMID: 12543685] 

[13] Bonday ZQ et al. Nat. Med., 2000, 6: 898. [PMID: 10932227] 
[14] Nagaraj VA et al. PLoS Pathog, 2013, 9(8). [PMID: 23935500] 
[15] Goodman CD et al. Mol. Biochem. Parasitol, 2007, 152: 181. 

[PMID: 17289168] 
[16] Dahl EL et al. Antimicrob. Agents Chemother, 2006, 50: 3124. 

[PMID: 16940111] 
[17] Gupta A et al. Mol. Microbiol, 2013, 88: 891. [PMID: 23614815] 
[18] Mukherjee A and Sadhukhan G. C., J. pharmacopuncture, 

2016, 19: 7. [PMID: 27280044] 
[19] Milton ME and Nelson SW, Mol. Biochem. Parasitol, 2016, 208: 

56. [PMID: 27338018] 
[20] Goodman CD et al. Trends Parasitol., 2016, 32: 953. [PMID: 

27793563] 
[21] Schierz AC, J. Cheminform., 2009, 1: 21. [PMID: 20150999] 
[22] Lowe R et al. Mol. Pharm., 2010, 7: 1708. [PMID: 20799726] 
[23] Melville JL et al. Comb. Chem. High Throughput Screen, 2009, 

12: 332. [PMID: 19442063] 
[24] Singh H et al. Biol. Direct, 2015, 10: 10. [PMID: 25880749] 
[25] Wang Y et al. Nucleic Acids Research, 2009, 37. [PMID: 

19498078] 
[26] SCH and Jens Sadowski G, CORINA 3D Structure Generator, 

2003. 
[27] Yap CW, 2010. [PMID: 21425294] 
[28] R Development Core Team, R Found. Stat. Comput, 2015, 1: 

409. 
[29] Kuhn AM et al. J. Stat. Softw., 2008, 28: 1. 
[30] Kuhn M, Caret vignettes, 2012, 1. 
[31] Onodera Y et al. J Antimicrob Chemother, 2001, 47: 447. 

[PMID: 11266418] 
[32] Dahl EL and Rosenthal PJ, Antimicrob. Agents Chemother, 

2007, 51: 3485. [PMID: 17698630] 
[33] Gray MW and Lang BF, Trends Microbiol, 1998, 6: 1. [PMID: 

9481814] 
[34] McConkey GA et al. J. Biol. Chem., 1997, 272: 2046. [PMID: 

8999899] 
[35] Haider A et al. Mol. Microbiol., 2015, 96: 796. [PMID: 

25689481] 
[36] Pradel G and Schlitzer M, Curr. Mol. Med., 2010, 10: 335. 

[PMID: 20331433] 
Edited by P Kangueane 

Citation: Bharti & Lynn, Bioinformation 13(5): 154-159 (2017) 
License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License 

 
 
 
 
 
 
 


