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Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in
understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and
capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and
designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs
that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of
research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern.
This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to
improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant
spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
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Introduction
The main advantages of using mice in research include (1) their
small size and very prolific nature, (2) the numerous commonali-
ties existing between mice and humans in terms of physiology
and pathobiology, (3) the well-characterized genomes and
immune responses, and (4) the availability of advanced tech-
nologies for genetic and other experimental manipulations.1,2

Despite the advantages, there is ongoing controversy surrounding
the reproducibility and translatability of mouse models of dis-
ease.3–5 Given the immune diversity within the human popula-
tion, a perfect model relevant to all humans may be neither an
achievable nor a reasonable expectation. However, it is possible
to strive for relevant and reproducible translational models and
to expect experimental designs to address specific research

questions. Criticisms of mouse models (mouse blaming) are not
always justified. Many factors contribute to study outcomes and
reproducibility. These include genetic diversity; microbial, hus-
bandry, and other environmental factors; experimental interven-
tions; etc.2 Increasing the awareness of the immunobiological
variations among inbred mice and their substrains as well as
other factors that may impact immune responses in mice will
help improve both the validity and reproducibility of mouse-
based research. Attention to these aspects is warranted in experi-
mental design, data interpretations, and reporting of research on
immunity, disease, and therapeutic interventions.6,7

This review aims to provide a useful compendium of re-
sources and references for those investigators who seek to
familiarize themselves with key concepts of mouse immunology
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and translate those notions into the experimental setting. The
most relevant sources of immune diversity of the laboratory
mouse are here emphasized with a focus on immune sufficient
genetic variations, immunologically relevant spontaneous muta-
tions, autoimmune phenotypes, and selected induced immune
deficiencies.

Mouse Nomenclature
Accurate mouse nomenclature is mission critical to scientific
communication.8–10 Nomenclature “rules” for mice genes, strains,
and substrains were recommended by scientists to the scientific
community in the 1940s and 1950s. The first committees on stan-
dardized genetics nomenclature11 and on standardized strain
nomenclature for mice12 included Nobel laureate George Snell.
Early publications provided guidelines for gene and strain nomen-
clature, a list (database) of strains and substrains, and a list (data-
base) of abbreviations for the researchers or institutions
maintaining the mice.12 The list of abbreviations became the “lab-
oratory codes” (lab codes) that are currently curated by ILAR
(http://dels.nas.edu/global/ilar/lab-codes) and are available to pro-
ducers and researchers at no charge. The lab code identifies the
mouse source and becomes part of its name. The 1963 revision
includes a listing of named genes, including histocompatibility al-
leles for many of the common strains. Subsequent committees
updated the guidelines and included lists of inbred strains, sub-
strains, and known genetic variants.13–19 These publications are
enlightening regarding the history and research use of contempo-
rary mouse strains. They indicate recognition by the scientific
community of the research implications of genetic and pheno-
typic variations, and reflect scientists’ concerns for accurate
communication in published research. In 1972, a recommenda-
tion was published for standardized nomenclature for outbred
stocks of laboratory animals of various species.20 These recom-
mendations gained traction for mice and rats, but far less for
other species. Current gene nomenclature “rules” for mice
(International Committee on Standardized Genetic Nomenclature
for Mice: http://www.informatics.jax.org/mgihome/nomen/
strains.shtml), rats (Rat Gene Nomenclature Committee: https://
rgd.mcw.edu/nomen/nomen.shtml), and human genes (HUGO
Gene Nomenclature Committee: http://www.genenames.org/)
are available online. Guidance for mouse strains, genes, alleles/
mutations as well as tutorials and assistance can be ac-
cessed from Mouse Genome Informatics Nomenclature sites
(http://www.informatics.jax.org/mgihome/nomen/gene.shtml).
Recommendations for reporting animal research include correct
nomenclature because it communicates key research-relevant ele-
ments of the strain or substrain history and genetics, genetic modi-
fications, backcrossing or intercrossing, and other information.21–23

Inbred Mouse Strains: Immune Relevant
Genotypes and Phenotypes
The immune sufficient common inbred mouse strains are
genetically well characterized, with genome projects on more
than 30 strains.24,25 Divergent susceptibilities of inbred strains
to infections, diseases, and tumor rejection were recognized
early in strain development. Characterization of these varia-
tions has exposed research-relevant Th1 or Th2 biases, diver-
sity in major histocompatibility complex (MHC) haplotypes,
natural killer (NK) cell repertoires, hemolytic complement
(complement component 5 or C5) activity, and toll-like receptor
(TLR) function, among others.7,26,27 Table 1 and Supplementary
Table 1 summarize some of the well-characterized immune

relevant variations among immune sufficient common inbred
mouse strains. Investigations on how penetrance and expres-
sivity of immune phenotypes vary across different genetic
backgrounds have enabled the discovery of key strain-related
genetic modifiers that specifically enhance or suppress the
manifestation of immunological disorders. This genetic source
of diversity can be ultimately ascribed to a number of possible
genetic alterations/variations including polymorphic alleles,
unique quantitative trait loci (QTL) intervals, or specific haplo-
types.28–36 The influence of the inbred genetic background per-
vades many if not all the experimental contexts considered in
this review.

Immune Relevant Variations Among Substrains

Substrains with quite similar names harbor important genetic
(and other) variations that are increasingly recognized.55,74–76

C57BL/6N and C57BL/6J substrains diverged in 1951, so acquisition
of mutations among colonies inbreeding at different sites is
unsurprising. As illustrated in Table 2, some immune relevant
genetic variations among C57BL/6 substrains include a Nlrp12
mutation in C57BL/6J mice and a Dock2 mutation in C57BL/6NHsd
mice from certain colonies.55,77 The Nlrp12 gene primarily controls
neutrophil chemotaxis in response to bacterial invasion. C57BL/6J
mice carry a missense, loss of function mutation (Nlrp12C57BL/6J)
and are more susceptible to certain bacterial infections compared
with other C57BL/6 substrains harboring the wild-type Nlrp12
allele.55,73 More concerning may be when mutations arise within
a substrain (of the same name) with colonies maintained at dif-
ferent sites. The Dock2Hsd mutation was revealed when reduced
splenic marginal zone B cells and increased numbers of CD8+ T
cells were identified in C57BL/6NHsd (and derived mutant mice)
relative to other C57BL/6N mice.77–79 Subsequently, Envigo tested
their mice and reported that this mutation (Dock2Hsd) was present
in 6 of their 19 C57BL/6NHsd colonies (http://www.envigo.com/
assets/docs/c57-customer-communication-2-final-9jun16.pdf).
Many research programs maintain in-house colonies of geneti-
cally engineered animals and “wild-type” background strains that
warrant genetic quality assurance (QA) testing and breeding strat-
egies to minimize effects of random mutations and genetic drift.
(https://www.jax.org/jax-mice-and-services/customer-support/
technical-support/breeding-and-husbandry-support/colony-
planning; https://www.taconic.com/quality/genetic-integrity/
colony-management/).

Influence of Genetic Background

Influences of background strain(s) warrant consideration when
working with spontaneous or genetically engineered mutations.
Many genetically engineered mice (GEM) have mixed or unde-
fined genetic backgrounds that can affect research results.
When spontaneous or experimentally induced mutations are
transferred congenically from the line of origin onto a different
(generally inbred) background strain, penetrance and expressiv-
ity of the phenotype may be positively or negatively affected by
the recipient genome as well as by remnants of the “donor”
genome (i.e., chromosomal regions flanking the mutant allele
included in the congenic interval).87–90

In immunodeficient strains, genetic and phenotypic contri-
butions from background strains have research implications
that may not be well known to those who are new to working
with these mice. An internet search for commercially available
immunodeficient mice bearing the Prkdcscid (scid) or Foxn1nu

(nude or nu) mutations returns more than 20 strains of each on
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inbred or non-inbred backgrounds, some with quite similar
names but with immune variations relevant to their genetic
backgrounds (and with quite different costs that can influence
purchasing decisions).91–93 Variation in “leakiness” in scid mice

on different genetic backgrounds is a well-known example.
Leakiness refers to the tendency of scid mice to produce some
functional B and T cells as they age and are increasingly exposed
to environmental antigenic stimuli. Under similar experimental

Table 1 Selected Immune Relevant Genetic Variations in Common Inbred Mouse Strains

Gene symbol

Mouse strain Ahr Ctse Hc Il2 Il12b Mx1 Mx2 Naip5 Nlrp Nlrp12 Oas1b Sirpa Slamf Slc11a1 Tcrb-v8 Tlr4 TH-bias

A/J b-2 N/A Hc0 N/A N/A Ø S R N/A Ø N/A N/A R N/A N 2

AKR/J d N/A Hc0 N/A N/A Ø N/A R N/A Ø N/A N/A R N/A N 1

BALB/c b N N N/A N/A Ø R S N/A Ø L29V 2 S N N 2

CBA b-2 N/A N/A N/A N/A Ø N/A S N/A Ø N/A N/A R N/A N 1

C3H/HeJ b-2 N N N/A N/A Ø N/A S N/A Ø N/A N/A R N/A Lps-d 1

C3H/HeN b-2 N/A N N/A N/A Ø N/A N/A N/A Ø N/A 1 R N/A N N/A

C57BL/6 b-1 Ø N N N Ø R R V Ø N 1 S N N 1

C57BL/10ScCr N/A N/A N N/A N Ø N/A N/A N/A Ø N/A N/A S N/A Lps-del 1

DBA/1J b N/A N N/A N/A Ø N/A N/A N/A Ø N/A N/A S N/A N 1

DBA/2J d N/A Hc0 N/A N/A Ø N/A R N/A Ø N/A 2 R N/A N 2

FVB/N FVB/NJ N/A N/A Hc0 N/A N/A Ø N/A S N/A Ø N/A N/A N/A Ø N N/A

MRL/MpJ N/A N/A N m1 N/A Ø N/A N/A N/A Ø N/A 2 N/A N/A N N/A

NOD/ShiLtJ N/A N/A Hc0 m1 N/A Ø N/A R N/A Ø S 2 R N/A N N/A

NZB d N/A N N/A N/A Ø N/A N/A N/A Ø N/A 2 R N/A N N/A

NZW N/A N/A N N/A N/A Ø N/A N/A N/A Ø N/A 2 S N/A N N/A

NZM2410 N/A N/A N N/A N/A Ø N/A N/A N/A Ø N/A 2 N/A N/A N N/A

SJL/J d N/A N m1 P Ø N/A N/A N/A Ø N/A N/A R Ø N 1

SWR d N/A Hc0 N/A N/A Ø N/A S N/A Ø N/A N/A R Ø N N/A

129 d N N N/A N/A Ø R S N/A Ø N/A N/A R N N 1

Ahr (aryl hydrocarbon receptor) activates expression of phase I and II metabolizing enzymes (e.g., Cyp450) and is important in cellular growth and differentiation; b1,

b2 and b3 alleles are considered metabolically responsive alleles not linked to autoimmunity whereas d alleles are metabolically nonresponsive and associated with

autoimmune susceptibility.37–40

Ctse (cathepsin E) plays a role in antigen processing for MHC class II.41

Hc (hemolytic complement) plays a role in innate immune responses; Hc0 mice are null for this allele.42,43

Il2 (interleukin 2) is a key immune signaling cytokine; Il2m1 allele has a hypoactive polymorphism in the Il2 gene.44

Il12b (interleukin 12b) polymorphisms (P) have been associated with autoimmune disorders in humans.45–47

Mx1 and Mx2 (MX dynamin-like GTPase 1 & 2) play a role in viral resistance; in most inbred mouse strains, these are not expressed.48,49

Naip5 (NLR family, apoptosis inhibitory protein 5) plays a key role in early innate immune responses mediated by the inflammasome; allelic polymorphism deter-

mines susceptibility to intracellular bacteria (Naip5Lgn1s = sensitive, Naip5Lgn1r = resistant).50–52

Nlrp (nucleotide-binding oligomerization domain-like receptors aka NOD-like receptor proteins) has a key role in pathogen-associated molecular patterns

detection.53

Nlrp12 (NACHT, LRR and PYD domains-containing protein 12) has an important role in inflammasome and activation of caspase 1; it also controls neutrophil che-

motaxis in response to bacterial invasion.54–56

Oas1b (2’-5’ oligoA synthetase family 1b) plays a role in innate immunity to eliminate viral RNA; most inbred mouse strains carry the susceptibility allele that en-

codes for a nonfunctional protein.57

Sirpa (signal-regulatory protein alpha); in BALB/c mice it has a single polymorphism in the IgV domain (L29V), which enhances binding to human CD47, decreas-

ing macrophage phagocytosis; in NOD mice, the increased affinity for human CD47 is driven by a deletion of 2 amino acids in domain 1.58,59

Slamf [signaling lymphocytic activation molecule (SLAM) family] plays a role in self-tolerance;60 haplotype 2 is associated with autoimmune susceptibility.61–63

Slc11a1 [solute carrier family 11 (proton-coupled divalent metal ion transporters), member 1] transporter that regulates iron homeostasis and impacts on the abil-

ity to control intracellular pathogens by phagocytes.64

Tcrb-V8 (T cell receptor beta, variable 8) plays a role in auto-immune disease susceptibility; in some strains, this is not expressed and is associated with increased

susceptibility to autoimmune disease.65–67

Tlr4 (Toll-like receptor 4) has a role in innate immune responses, in particular responses to LPS;68–70 the mutant alleles Tlr4Lps-d and Tlr4Lps-del are not functional.

Th-bias; mice have TH-1 and TH-2 biases in their immune responses.71,72

N/A, no data; N, wild type (normal); NOD, nonobese diabetic; Ø, not expressed nonfunctional or hypofunctional gene product; P, polymorphism; R, resistance poly-

morphism; S, sensitive polymorphism; V, variable.
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conditions, leakiness is greater on the C57BL/6 and BALB/c back-
grounds, low on the C3H/HeJ background, and very low on the
nonobese diabetic (NOD) background.93 Genetic factors contribut-
ing to “less sensitivity” to antigenic stimuli (and therefore less
leakiness) include TRL4 deficiency in the C3H/HeJ mouse and
impaired MHC-dependent antigen presentation in the NOD/ShiLtJ
mouse.94,95 Especially relevant to human xenografts, NOD mice
possess a unique signal-regulatory protein alpha (Sirpa) polymor-
phism with higher affinity for the human CD47 that results in a
sustained “don’t-eat-me” signal and improves engraftment of
human cells in NOD-scid and NOD-scid-derived mice.58

Autoimmune-susceptible strains develop spontaneous auto-
immune disorders such as immune-mediated (Type 1-like) dia-
betes and systemic lupus erythematosus (SLE)-like conditions.
The proclivity to develop experimentally induced autoimmune
conditions, such as experimental autoimmune encephalitis
(EAE) and collagen-induced arthritis (CIA), is also greatly influ-
enced by the mouse’s genetic background.31,96–99 The NOD mouse
model for Type 1 diabetes (T1D) (e.g., NOD/ShiLtJ and NOD/
MrkTac mice) is characterized by the development of a T cell-
mediated immune response to pancreatic islet proteins (including
insulin and chromogranin) similar to humans with T1D.100–102

Their diabetic phenotype is polygenic with a significant contri-
bution, as in humans, by their MHC polymorphisms.44,103–105

NOD mice have a unique MHC class II lacking expression of I-
Eα and I-E surface protein, and expressing I-Ag7MHC class II
allele that is structurally and functionally similar to the
human T1D susceptibility allele, DQ8.106,107 Other contributors

to the autoimmune phenotype include a hypoactive variant of
their IL-2 gene (Il2m1), Sirpa and Cd93 polymorphisms, lack of
C5 (conferred by homozygosity for Hc0), and absence of com-
plement factor H-related protein C (CFHR-C).43,44,105,108–110

Genetic and phenotypic variations among the NOD substrains
have been identified.111

Spontaneous lupus-like conditions in mice are associated
with mutations such as Faslpr and Yaa and are influenced by
genetic background.28–36 Inbred strains that spontaneously
develop lupus-like conditions include MRL/MpJ, BXSB/MpJ, NZB,
NZW, NZBWF1 (aka NZB/W), NZM2410, and Palmerston North
(PN/nBSwUmabJ).112,63,113,114

MRL/MpJ inbred mice are autoimmune prone and spontane-
ously develop an autoimmune phenotype as they age. A sponta-
neous mutation in the Faslpr gene in this strain resulted in the
substrain MRL/MpJ-Faslpr, which develops signs of autoimmunity
much earlier in life than the parent MRL/MpJ strain.115–118 MRL/
MpJ-Faslpr mice have a short lifespan (>50% mortality by 6
months old). They develop lymphoproliferative disease, immune
complex glomerulonephritis, lupus-like skin disease, arthritis,
and vasculitis.115,120–123 It has been demonstrated that onset and
severity of symptoms associated with the Faslpr mutation is
strain dependent. For example, the Faslpr mutation results in a
lymphoproliferative disease that on MRL/MpJ background is
more severe than on the C57BL/6J background, but less severe
than on the C3H/HeJ background.28,29,31,124 In contrast, immune
complex pathologies including glomerulonephritis, vasculitis,
and arthritis are more severe and initiate earlier with the Faslpr

Table 2 A Few B6 Substrains and Genetic Variations

B6 Substrain Source Dock2 Nlrp12 Nnt Snca Mmrn1 Crb1

J

C57BL/6J Jackson N Ø Ø N N N
C57BL/6Ja Charles River N/A N/A Ø N N N
C57BL/6JOlaHsd Hsd/Envigo N/A N/A N Ø Ø N
C57BL/6JRccHsd Hsd/Envigo N/A N/A N N N N
C57BL/6JBomTac Taconic N/A N/A N N N N
C57BL/6JRj Janvier N/A N/A N/A N/A N/A N/A

N

C57BL/6ByJ Jackson N N/A N N N Ø
C57BL/6NHsd Hsd/Envigo Some Ø N/A N N N Ø
C57BL/6NRj Janvier N N/A N/A N/A N/A N/A
C57BL/6NCrl Charles River N N/A N N N Ø
C57BL/6NTac Taconic N N/A N N N Ø
C57BL/6NCr NCI N/A N N/A N/A N/A N/A

References 77–79 55,73 80,81 82–84 82–84 85,86

Adapted/updated from https://www.envigo.com/resources/data-sheets/envigo-68-c57bl6-enhanced-technical-data-sheet_screen.pdf

Dock2 = the protein encoded by this gene belongs to the CDM protein family. It is specifically expressed in hematopoietic cells and is predominantly expressed in

peripheral blood leukocytes. The protein is involved in remodeling of the actin cytoskeleton required for lymphocyte migration in response to chemokine signaling. It acti-

vates members of the Rho family of GTPases, for example RAC1 and RAC2, by acting as a guanine nucleotide exchange factor (GEF) to exchange bound GDP for free GTP.

Nlrp12 = This gene encodes a member of the CATERPILLER family of cytoplasmic proteins. The encoded protein, which contains an N-terminal pyrin domain, a

NACHT domain, a NACHT-associated domain, and a C-terminus leucine-rich repeat region, has an important role in inflammasome and activation of caspase 1, it

also controls neutrophil chemotaxis in response to bacterial invasion.

Nnt = nicotinamide nucleotide transhydrogenase; this gene encodes an integral protein of the inner mitochondrial membrane. The enzyme couples hydride

transfer between NAD(H) and NADP(+) to proton translocation across the inner mitochondrial membrane.

Snca = alpha synuclein; one in a family of structurally related proteins that are prominently expressed in the brain, particularly in areas associated with learning

and adaption. The exact function of alpha synuclein is not yet known.

Mmrn1 = multimerin 1; multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports

platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen.

Crb1 = retinal degeneration 8; the rd-8 mutation is due to a single base pair mutation in the CRB1 gene. This gene when mutated in humans is linked to macular

degeneration and other age-related vision loss. Mice with this mutation are nearly blind by the time they are 8 weeks of age.

N/A, no data; N, wild type (normal); Ø, not expressed, nonfunctional or hypofunctional gene product.
aJ mice distributed by Charles River in EU
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mutation on the MRL/MpJ background than on either the C57BL/
6J or the C3H/HeJ background. Predisposition to the development
of autoimmune and/or lymphoproliferative lesions in these
strains has been mapped to a number of possible other genetic
variations.28–36 Interestingly, when compared with C57BL/6J and/
or C3H/HeJ mice, the MRL/MpJ strain harbors diverse polymorphic
alleles, unique QTL, or specific haplotypes that render this back-
ground more susceptible to autoimmune manifestations.28–32 As
an example, low to no expression of CFHR-C in MRL/MpJ may
contribute to the immune hyperresponsiveness typical of this
strain.109

BXSB/Mp mice are a recombinant inbred (RI) strain originating
from a cross between a C57BL/6J female and a SB/Le male,
also developed by Murphy125,126 in his work on autoimmune
conditions (lab code Mp). They develop a lupus-like disorder
that is accelerated in males and is attributed primarily to the
Y-associated autoimmune accelerator locus (Yaa) of the SB/
Le male founder. Yaa is a 4-mb translocated region from
the X chromosome that includes multiple genes, among
which Tlr7 seems to be the major contributor to the pheno-
type.127–129

NZB mice develop a variety of autoimmune phenotypes
characterized by hypergammaglobulinemia with elevated cir-
culating autoantibodies (including anti-DNA antibodies and
anti-thymocyte antibodies), Coombs positive hemolytic ane-
mia, and immune complex glomerulonephritis. NZB mice also
manifest a lymphoproliferative disorder involving the B1 subset
of B cells. This condition progresses to lymphoma/leukemia,
with similarities to human familial chronic lymphocytic leuke-
mia.130–134 NZW mice develop autoantibodies and glomerulone-
phritis, with a female predisposition.135 F1 hybrid offspring of
NZB females and NZW males (also referred to as NZB/W)
develop a life-limiting autoimmune condition characterized by
high levels of antinuclear antibodies, hemolytic anemia, pro-
teinuria, and progressive immune complex glomerulonephritis
that is more severe in females.136–138 NZB/W autoimmune phe-
notypes map to multiple susceptibility loci, including Sle, Lbw,
and Wbw loci and polymorphisms in Tnf, Nkt2, and Cd93, and
are linked to a low to no expression of CFHR-C.110,111,139

NZM2410 mice (New Zealand Mixed strain 2410, e.g.,
NZM2410/J https://www.jax.org/strain/002676) derive from NZB/
W backcrossed to NZW mice then selected for lupus-like
nephritis deaths and inbred. They bear the NZW histocompati-
bility haplotype H2z (Ku, Au, Sz, Dz). Males as well as females
develop autoimmune glomerulonephritis at an early age, and
this strain has been especially useful in mapping lupus suscep-
tibility loci.138,140–142

Important Spontaneous Mutations
Supplementary Table 2 gives a comprehensive overview for most
of the well-known murine immune relevant mutations that
exhibit Mendelian inheritance. Historically, identification of the
genetic basis for spontaneous Mendelian (monogenic) phenotypes
was attained via forward genetics approaches to confirm that the
heritable trait (phenotype) maps to a specific locus. Additional
molecular investigations, including sequencing, are applied to
define the mutation further.88,143 An advantage of forward genet-
ics is the relatively unbiased approach that requires no assump-
tions or hypotheses regarding the molecular basis of the trait or
phenotype. An historical and illustrative example in immunology
is the characterization of TLR4, first recognized as the main sen-
sor for lipopolysaccharides (LPS) thanks to studies conducted on
the spontaneously TLR4 deficient C3H/HeJ mice, and closely

related TLR4 sufficient substrains.95 A null mutation Tlr4lps-del

mapping to the same site was identified later in the C57BL/10ScCr
substrain of the C57BL/10 mouse and is now available as C57BL/
10ScNJ.144,68 Similarly, the role of Foxp3 as an essential transcrip-
tion factor for the development of regulatory T cell (Tregs) was
first revealed via the analysis of mice with the spontaneous scur-
fy mutation (Foxp3sf).145

Hereditary immune deficiencies related to spontaneous reces-
sive scid, Lystbg (bg or beige), and Btkxid (xid) mutations have been
valuable in the study of orthologous conditions in humans and
other animals.146 The scid and nu (nude) mutations have been
especially important for their utility in studying engrafted human
tissues in the context of xenotrasplantation experiments.147

Hereditary hyperimmune or autommune conditions related
to spontaneous recessive Faslpr (lpr, lymphoproliferation) and
Faslgld (gld, generalized lymphoproliferative disease) mutations
in an important cell death pathway have also been informative.
Mice homozygous for either mutation develop lymphoprolifera-
tive and autoimmune phenotypes. The (recessive) lpr mutation
at the Fas locus compromises the FAS-mediated apoptosis
pathway.115,123,148,149 The (recessive) gld point mutation is in
the Fas ligand (Fasl) locus, and homozygosity for this mutation
also compromises FAS-mediated apoptosis. The gld mutation
arose spontaneously in C3H/HeJ mice, resulting in the C3H/HeJ-
Faslgld substrain.150,151

Interactions Among Mutations
Table 3 summarizes genetic and phenotypic characteristics
of some of the widely used mice that carry multiple sponta-
neous immune relevant mutations. Before the advent of
modern genetic engineering capabilities, interbreeding to
combine multiple hereditary disorders was used to study
phenotypic manifestations of gene interactions and to over-
come limitations of the single mutation models, particularly
in mice used for xenotransplantation experiments.89 As an
example, scid-beige mice homozygous for both the Prkdcscid

and Lystbg alleles were generated to combine the impaired B
and T cell development of the Prkdcscid mouse with the defec-
tive NK cell function associated with the Lystbg mutation.
These mice are not only severely immunodeficient, but they
also lack the “leaky” phenotype of the Prkdcscid animals. The
cooperation between the 2 mutations remarkably improves
xenotransplantation compared with the single mutation in
the Prkdcscid mouse.152,153

Combinations of multiple mutations have proved useful in
understanding the epistatic interactions among immune rele-
vant genes. Double-mutant mice homozygous for both Faslpr

and the Foxn1nu are an example. The congenital T cell defi-
ciency that characterizes the Foxn1nu mutation is sufficient to
abolish the autoimmune and lymphoproliferative phenotype
associated with the Faslpr allele. This finding was consistent
with the significant abrogation of the phenotype achieved by
neonatal thymectomy in MRL/MpJ-Faslpr/J mice, and provided
early support for the hypotheses regarding the T cell depen-
dence of the Faslpr-associated autoimmune and lymphoproli-
ferative condition.89,154–157 Other important immunodeficient
models featuring combinations of spontaneous and induced
mutations along with specific strain-related immune variations
are further discussed in a companion article by Simons and col-
leagues in the present issue of the ILAR Journal and include the
well-known NSG and NOG mice. Both models carry a slightly
different targeted mutation of Il2rg combined with the Prkdcscid

mutation on different NOD inbred sublines.
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Table 3 Overview of Immunologically Relevant Mouse Models that Combine Multiple Spontaneous Mutations

Allelic
combination

Background
strain/s

Phenotype References

Faslgld/Faslgld

Btkxid/Y
C3H/HeJ Btkxid decreases the severity of B cell manifestations associated with Faslgld including

hypergammaglobulinemia, generation of anti-DNA autoantibodies and systemic
immune-complex disease; no impact on T cell dependent Faslgld phenotype and
lymphadenopathy.

89

Faslpr/Faslpr

Btkxid/Y
MRL/MpJ Btkxid decreases the severity of B cell manifestations associated with Faslpr

including hypergammaglobulinemia, generation of anti-DNA autoantibodies
and systemic immune-complex disease; no impact on T cell dependent Faslpr

phenotype and lymphadenopathy.

89,158,159

Faslpr/Faslpr

Foxn1nu/Foxn1nu
C57BL/6J Foxn1nu prevents the development of Faslpr-induced lymphadenopathy,

unregulated B cell activation, hypergammaglobulinemia, anti-DNA
autoantibodies and systemic immune-complex disease (a similar effect is
obtained via neonatal thymectomy confirming the T cell dependency of Faslpr

phenotype).

89,154–156

Faslpr/Faslpr

Prkdcscid/Prkdcscid
MRL/MpJ; C.B-17 Faslpr rescues the developmental deficit of thymic T cells associated with Prkdcscid;

no effect on the B cell deficit caused by Prkdcscid.

160

Faslpr/Faslpr

X/Yaa
MRL/MpJ; C57BL/6J Yaa causes accelerated onset and increased severity of Faslpr-induced

autoimmune condition and lymphadenopathy.

161,162

Foxn1nu/Foxn1nu

Lystbg/Lystbg
C57BL/6J; N:NIH(S) Lystbg contributes defective NK cells to the T cell-deficient background associated

with Foxn1nu; reduced NK cell activity does not seem to impact on the
engraftment rate and growth of xenotransplanted human tumor cell lines.

89,163

Foxn1nu/Foxn1nu

Btkxid/Y or Btkxid/Btkxid
N:NIH(S) Defective T (Foxn1nu) and B (Btkxid) cell function and/or maturation; spectrum of

the immune abnormalities is very similar to the one characterizing Prkdcscid

mutants; severe depletion of both B and T cell domains in the spleen and
lymph nodes; limited production of immunoglobulins; females showing high
incidence of both lymphomas and ovarian granulosa cell tumors.

89,164–166

Foxn1nu/Foxn1nu

Lystbg/Lystbg

Btkxid/Y or Btkxid/Btkxid

N:NIH(S); KSN Defective T (Foxn1nu), NK (Lystbg) and B (Btkxid) cell function and/or maturation; high
incidence of multicentric lymphoblastic lymphoma; compared to single Foxn1nu

mutants, improved engraftment rate and growth of xenotransplanted human
tumor cell lines.

89,167,168

Dh/Dh+

Foxn1nu/Foxn1nu
N:NIH(S) Combined athymia and asplenia; defective T cell maturation and function;

reduced B cell number; hypogammaglobulinemia; increased incidence of
spontaneous mammary tumors compared to single-mutant founder lines.

89,169

Lystbg/Lystbg

X/Yaa
SB/Le Lystbg attenuates severity and progression of Yaa-linked autoimmune condition

resulting in prolonged survival and lack of immune complex
glomerulonephritis; possible role of Lyst in B cell development and activation.

89

Btkxid/Y
X/Yaa

BXSB Btkxid prolongs survival and decreases the severity of B cell manifestations
associated with Yaa including immune complex glomerulonephritis,
hypergammaglobulinemia, autoantibody levels and lymphoid hyperplasia.

170

Prkdcscid/Prkdcscid

Lystbg-J/Lystbg-J
C.B-17 Defective T, B (Prkdcscid) and NK (Lystbg) cell function and/or maturation; reduced

level of B cell leakiness; possible role of Lyst in B cell development and
activation.

152,153

Prkdcscid/Prkdcscid

Hrhr/ Hrhr
SCID Hairless
Outbred (Crl:SHO)

Impaired B and T cell development (Prkdcscid) associated with diffuse hair loss/
alopecia (Hrhr).

171

Foxp3sf/Foxp3sf

Foxn1nu/Foxn1nu
129/RI; BALB/c Foxn1nu prevents the development of Foxp3sf-induced autoimmune disease

including anemia, multisystemic immune/inflammatory cell infiltrates,
hypergammaglobulinemia, lymphadenopathy and splenomegaly (a similar, but
less potent, effect is obtained via neonatal thymectomy confirming the T cell
dependency of Foxp3sf phenotype).

172,173

Foxn1nu/Foxn1nu

Map3k14aly/Map3k14aly
BALB/cAJcl;
C57BL/6J

Athymia combined with lack of secondary lymphoid organs including lymph
nodes, splenic white pulp, Peyer’s patches and isolated lymphoid organs;
severe immunodeficiency with impaired humoral and cell- mediated immune
responses; preserved intestinal γδ-IEL subset; confirmation that thymus and
secondary lymphoid organs are not an essential requirement for the
development of γδ-IEL.

174

IEL, intraepithelial lymphocytes; NK, natural killer.
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Table 4 Induced Immunodeficiencies (Intended Experimental Interventions)

Inducers Possible Effects on the Immune and Other Systems References

Physical: irradiation

γ rays and X rays Suppression of bone marrow resulting in marrow atrophy and pancytopenia. 182,237–244

High dose: decreased splenic and thymic weights; loss of cortical thymocytes; decreased
splenic CD4+ and CD8+ T cells; decreased circulating CD3+ cells.

Chronic low dose: prolonged life span in mice homozygous for the lymphoproliferation
spontaneous mutation (Faslpr); increased CD4+ cells; suppression of IL6 and IL17, and up-
regulation of Tregs in CIA mice; suppression of pro-inflammatory cytokines, reduction of
CD8+ T cells, and induction of Tregs in murine EAE model.

Other: acute radiation syndrome and death in Prkdcscid mice and Prkdc dxnphmice (both are
highly susceptible to ionizing radiations); radiation induced-thymic lymphoma in both male
and female mice on a C57BL/6 background and NFS mice; radiation induced-myeloid
leukemia in male RF mice (RF/J, RFM) and male CBA mice (CBA/Ca, CBA/Cne, CBA/H);
induction of persistent oxidative stress in murine intestinal epithelium with potential for
neoplastic transformation by heavy ion radiations; radiation-induced cataract; increased
osteoclast activity and bone loss; radiation nephropathy.

α and β particles Release of DAMPs; activation of DCs; systemic and long-lasting T cell-mediated antitumor
response in tumor-bearing mice; efficacy of α and β emitter-labeled monoclonal antibodies
against fungal infections in mice.

245–247

Other: radiation nephropathy.

UVB Immunosuppressed contact hypersensitivity (Xpa deficient mice); inhibited intra-tumor
migration of NKs and CD8+ T cells (Xpa deficient mice); depressed delayed hypersensitivity
in immunized mice; enhanced contact hypersensitivity and skin graft rejection in mice with
dermal Langerin+ DCs.

248–254

Narrowband (NB)-UVB: increased intestinal Tregs, and decreased severity of inflammatory
lesions in mouse models of allogeneic GVHD.

UVA High dose: increased IFNγ, IL12, and heme oxygenase; inhibited increment of IL10 from UVB
exposure.

255–258

Medium dose: NO-mediated depletion of epidermal Langerhans cells; impaired development
of skin memory CD8+ T cells in a mouse model of contact hypersensitivity.

Chemical agents

Endogenous and exogenous
glucocorticoids

Direct and receptor-mediated immunosuppression: attenuated DC activity; decreased DC
number (apoptosis, tissue redistribution); enhanced inflammation; thymic atrophy
(decreased DP thymocytes); dampened T cell activation (interference with TCR signaling);
suppressed responses of TH1 and TH17 cells; reduced immunoglobulins.

259–265

Other: osteopenia, decrease in bone formation rate and mineral apposition rate in skeletally
mature and young mice; osteoporosis in CD-1 mice (mouse model of glucocorticoid-induced
osteoporosis); cleft palate in A/J mice.

Cyclophosphamide (CYP;
Cytoxan)

Direct immunosuppression: depletion of CD8+ resident DCs in murine spleen and lymph
nodes, with subsequent decrease in Treg suppressive function; neutropenia; depletion of
suppressor or regulatory T cells in diabetic NOD mice.

266–273,200

Other: enhanced antitumor efficacy by promoting proliferation/activation of adoptively
transferred B and T cells after CYP-induced lymphodepletion in mice; reduced diversity of
the fecal microbiota; hemorrhagic cystitis in C57BL/6 and DBA/2 mice; chronic cystitis in
DBA/2 (CYP model of bladder pain syndrome); short root lengths and early apical foramen
closure during molar root development in ICR mice; suppressed osteoblastogenesis and
osteoclastogenesis in C57BL/6 male mice.

5 FU Direct immunosuppression: depletion of MDSCs, and stimulation of TH17 cells, IL17
production by CD4+ T cells, and tumor growth; no altered levels of circulating B, T, and NK
cells.

207,208

Tacrolimus (FK506) Receptor-mediated immunosuppression: immunosuppressive effects on CD4+ T cells; marked
tumor-promoting effect (topical tacrolimus) with decreased CD4/CD8 ratio; reduced
inflammation in models of allergic rhinitis, conjunctivitis and arthritis.

211–215

Other: nephrotoxicity.

Cyclosporin A (CsA) Receptor-mediated immunosuppression, reversible inhibition of T cell proliferation and
proinflammatory immune reactions; blockage of all the changes resulting from intercellular
signaling and cross-talk between DCs to T cells.

209,210

Continued
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Induced Immunodeficiencies
The mouse immune system can be modulated (regulated or
disrupted) intentionally (and unintentionally) through experi-
mental interventions such as exposures to irradiation, chemi-
cal compounds, microbial organisms (including virus,
bacteria, and their toxins), or biological agents as well as
through surgical manipulations. Immune suppression by
these means has been especially useful in experiments of en-
grafted tissues or tumors and to study the immune response
against specific infections or neoplasms. Examples from the
major categories of intended experimental interventions to
induce specific perturbations of the mouse immune system
are summarized in Table 4.

Ionizing and Ultraviolet Radiation

Ionizing radiation is a historically important method to sup-
press or ablate immunity. The peculiar vulnerability of the he-
matolymphoid tissue to ionizing radiation results in extensive
lymphoid depletion and sustained myeloablation. For this rea-
son, ionizing radiation remains an important immunosuppres-
sive intervention allowing the engraftment of xenotransplants/
allotransplants, including, for example, tumors or human hae-
matopoietic stem cells for the generation of mice with human-
ized immune system.175,176 Sensitivity to irradiation has been
linked to the capacity to repair radiation-induced DNA double-
strand breaks. Immunodeficient mice harboring the Prkdcscid al-
leles are particularly radiosensitive due to the scid mutation

Table 4 Continued

Inducers Possible Effects on the Immune and Other Systems References

Rapamicin Receptor-mediated immunosuppression:
Inhibition of mTOR: suppressed T cell activation, proliferation, and development of FoxP3+
cells; suppression of DC maturation, B cell activation, neutrophil chemotaxis and uptake of
antigen by APCs.

274,275

Other: increases lifespan.

Busulfan; Treosulfan Direct immunosuppression:
Busulfan: highly myelosuppressive, minimally immunosuppressive; diminished NK cell
activity; late-stage (residual) bone marrow injury; stimulation of neuroinflammation
through MCP-1.

276–280

Treosulfan: high persisting myeloablation in BALB/c mice; more effective depletion of splenic
B and T cells.

Physical: Surgical

Thymectomy Thymectomy (post-natal day 2-5): autoimmune hemolytic anemia, thyroiditis, gastritis,
oophoritis, orchitis, and prostatitis at puberty due to lack of Tregs.

232

Splenectomy Systemic immune unresponsiveness; absence of tolerance after ocular injections of antigen in
F4/80-deficient mice; retardation of tumor growth in melanoma-bearing mice.

281–285,236

Biological agents

Anti-thymocyte globulin (ATG) Depletion of naïve T cells; less effective on memory T cells in NOD mice. 283,229

Prevention of autoimmune encephalomyelitis through expansion of myelin antigen-specific
Foxp3+ Tregs in a murine EAE model.

β-1,3-Glucan Increased IL2, TNFα, IL17, IFNγ, and lymphocytes in mice treated with aflatoxin B1. 284

CpG oligodeoxynucleotides In murine models of infections: TH1 cytokine expression, activation of DCs, NK, and B cells.
Combined therapy with monoclonal antibodies: increased NK cell activity.

Bacterially derived ADP-
ribosylating enterotoxins

CT toxin produced by Vibrio cholera: secretion of TH2 cytokines, maturation of DCs, generation
of Th2 and regulatory T cells, active suppression of TH1 responses.

230,285,291

LT enterotoxin from E. coli: mixed TH1/TH2 immune response.

Anti-lymphocyte serum (ALS) Long-term abrogation of autoimmunity in overtly diabetic NOD mice. 286

Monoclonal antibody (mAb)
therapy

Anti-mouse CD20 mAbs: depletion of mature B cells; reduction of CD4+ T cells, but
maintainance of the interactions, functions, and migration of DCs and CD4+T cells;
unaffected CD8+ T cell reactivity; absent release of inflammatory cytokines with effects on
T cells.

287–289

Anti-mouse CD4 mAbs: depletion of CD4+ T cells; expansion of CD8+ T cells with an effector
phenotype and of tumor-reactive CD8+ T cells; compromised anti-tumor immune memory.

Anti-mouse CD8 mAbs: depletion of CD8+ T cells; decreased infiltration of CD4+ cells,
neutrophils, and macrophages; downregulation of IL1β, IL6, TNFα, CXCL1, CCL2 and up-
regulation of IL4 in a mouse model of wound healing.

APCs, antigen-presenting cells; CIA, collagen-induced arthritis; CT, Cholera toxin; DAMPs, damage-associated molecular patterns; DCs, dendritic cells; DP, double pos-

itive; EAE, experimental autoimmune encephalitis; GVHD, graft-versus-host disease; LT, heat labile toxin; MCP-1, monocyte chemoattractant protein 1; MDSCs,

myeloid-derived suppressor cells; NK, natural killer cell; NO, nitric oxide; Tregs, regulatory T cells.
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that affects repair of radiation-induced DNA double-strand
breaks.177,178 Susceptibility to irradiation varies among mice,
with strains such as the C57BL/6, A/J, and C3H/HeMs being
highly resistant and other strains such as BALB/c being highly
sensitive.177,179 A hypomorphic Prkdc allele (Prkdcdxnph), identi-
fied in BALB/c strains, seems to have an important role in BALB/
c susceptibility to ionizing radiation.178,180,181 Some detail on
irradiation tolerance, variations, and dosage protocols is avail-
able from the sources of mice that are commonly irradiated
(https://www.taconic.com/taconic-insights/oncology-immuno-
oncology/rodent-irradiation-considerations.html; https://www.
jax.org/jax-mice-and-services/find-and-order-jax-mice/most-
popular-jax-mice-strains/immunodeficient-mouse-and-xenograft-
host-comparisons). In addition to considering strain sensitivity
when determining radiation dosage, calibration of the irradia-
tor is also important, as there is considerable decay over time
and actual dosage may differ between studies or between
irradiators.

Immune-suppressive effects of high-dose γ-irradiation are
well known.182 High-dose γ-irradiation differentially affects the
diverse populations of mouse lymphocytes with B cells recog-
nized as more radiosensitive than T cells.183 Repeated low-dose
gamma irradiation also has profound immunomodulatory ef-
fects and is linked to a robust Th2 skewing that may mitigate
autoimmune conditions that are dependent on a Th1 response.
Suppression of pro-inflammatory cytokine production, reduced
CD8+ CTLs, and up-regulation of Tregs also have been demon-
strated in certain experimental conditions, including CIA and
EAE.184

Overwhelming infections remain an important cause of mor-
tality of irradiated experimental animals and clinical patients.
Mice with defective adaptive immunity including nude, scid and
NOD scid mice can effectively control common opportunistic
agents such as Pseudomonads, until myeloablative effects of irra-
diation or other interventions eliminate their innate immunity as
well.185 Effects of ionizing radiation on other tissues, and on
developing or proliferating cells, influence morbidity and mortal-
ity of research mice. Radiation impact on developing brain, bone,
eyes and teeth as well as on heart, lung, kidney, may complicate
interpretation of disease or death related to rejection, GVHD, or
other research endpoints.186–195

Ultraviolet (UV) radiation effects on local skin immunity are
especially relevant to research on photocarcinogenesis or
inflammatory skin conditions.196–198 Effects vary with dose,
duration of exposure and wavelength composition.196–198 UV
radiation primarily affects adaptive immunity, and has been
used to induce and promote skin photocarcinogenesis, and to
modulate the immune response in diverse experimental immu-
noinflammatory conditions of the skin.196–198

Chemicals

Experimental use of chemicals also has been and remains an
important method to suppress or ablate immunity. Examples
including metals, aromatic hydrocarbons and other environmen-
tal contaminants, and antimicrobial agents are summarized in
Table 4. Alkylating agents that affect chromosomal DNA through
formation of phosphodiesters and DNA-DNA crosslinks, are
widely used. Cyclophosphamide (CYP), a cytotoxic alkylating
agent used in the treatment of neoplastic and autoimmune dis-
eases, is also exploited to induce neutropenia in the context of
infectious disease studies.199 Mice with impaired granulocyte pro-
duction and/or leukocyte function secondary to CYP are more
prone to develop systemic disease upon experimental infection

with environmental opportunists such as Pseudomonas aeruginosa
or Cryptococcus neoformans.200,201 CYP has both immunomodula-
tory and immunosuppressive effects.202 Immunosuppression in
mice appears to result from the induction of apoptosis in acti-
vated B and T cells as well as NK cells.203 At low doses, CYP may
enhance immune responses to tumor antigens attributed, at least
in part, to suppression of Tregs.204 Similarly, the alkylating agent
busulfan is used as conditioning regimen to enhance engraftment
of xenotrasplanted hematopoietic stem cells.205,206 Other impor-
tant agents include 5-fluorouracil (5FU), which selectively de-
pletes tumor-associated myeloid-derived suppressor cells
(MDSCs) promoting the activation of tumor-specific CD8+ T
cells.207,208 Calcineurin inhibitors (CNI), such as tacrolimus and
cyclosporine A, directly inhibit Tregs function, by inhibiting pher-
ipheral Tregs generation, and less directly by limiting IL2 produc-
tion, in preventing transplant rejection and to treat a variety of
autoimmune conditions.209–215 Glucocorticoids are important clin-
ically and experimentally for their anti-inflammatory and immu-
nosuppressive effects.216

A variety of experimental interventions including hor-
mones, antimicrobials, nanoparticles, etc., have immunomodu-
latory effects that may not be intended or expected, especially
by investigators who are new to using them in mice. For exam-
ple, estrogens (and synthetic estrogens such as diethylstilbes-
trol) and androgens have immunosuppressive effects that affect
both adaptive and innate immunity.217–220 Nanoparticles, usually
studied as a drug delivery method or biomedical imaging tool
(e.g., metallic nanoparticles), are typically taken up by macro-
phage/monocyte cells and may act either as immunostimulants
or as immunosuppressants and may have additional immune ef-
fects related to imaging methods such as MRI or μCT.221 The un-
ique physicochemical characteristics of nanoparticles influence
their interactions with host’s immune system and determine the
overall immunotoxicologic profile.222,223

Biologics

Biologics with immune modulating properties have been
exploited in the experimental context to target specific func-
tions of the mouse immune system and achieve definite pre-
clinical endpoints.

Antibody-mediated depletion of cell lineage-specific immune
effector cells has been used to delineate their roles in innate and
adaptive immunity, in rejection, GVHD, and other condi-
tions.216,224–226 Anti-thymocyte globulin (ATG), is another impor-
tant immunosuppressive agent that specifically depletes T cells
from peripheral blood and lymphoid organs in NOD mice; it is
also used in the modulation of graft rejection and autoimmune
disorders in mice.227,228 Glucans, CpG oligodeoxynucleotides
(CpG ODN) and bacterial enterotoxins have been used as prophy-
lactic or therapeutic interventions to modify immune responses
to infections or vaccination, or to counteract effects of immuno-
toxic agents (see Table 4).229,230

Surgical

Thymectomy or splenectomy are the traditional surgical meth-
ods to alter immunity. Thymectomy in neonatal or adult ani-
mals has profound effects on T cell development and continues
to be an important procedure in studies of T cell ontogeny, tol-
erance and education. Neonatal thymectomy experiments
offered early evidence of the existence of Tregs as these mice
develop autoimmune disease shortly after the removal of thy-
mus.231 Thymectomy is also used to investigate the dynamics
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of extrathymic T cell development.232 However, mice exhibit a
relatively high frequency of functional thymic tissue in ectopic
locations, especially in close proximity to the thyroid gland
(also known as cervical thymus). While ectopic thymi may be
small, they can be confounding source of T cells. They are re-
ported to be more common in NOD and BALB/c mice compared
to C57BL/6 mice.232,233

Splenectomy has been used to study the role of the spleen
in infectious disease, peripheral antigen tolerance, and tumor
growth.234 In cancer, some splenectomy studies implicate the
spleen in promoting tumor antigen tolerance.234,235 while
others demonstrate a role of the spleen in maintaining an
effective antitumor immune response and prevention of meta-
static disease.236

Induced Autoimmune and Hyperimmune
Conditions
Autoimmune diseases arise when there is poor control of self-
reactive lymphocytes and cytokine production, or disrupted
regulatory T cell and effector T cell balance. While underlying
genetic polymorphisms predispose to immune hyperrespon-
siveness, manifestation of disease often requires additional
triggers such as microbial infections, dysbiosis, or tissue dam-
age. Once initiated, cytokines participate in disruptions of
immune tolerance by altering the balance between T-effector
functions and T-suppressor functions.290–292 Strain-related var-
iations in innate and adaptive immunity affect penetrance,
onset and severity of disease.7,27,89,293,294 Modifiers such as
Slamf-haplotype 2 seem relevant to autoimmunity in MRL/MpJ
mice and not so relevant on other backgrounds such as BALB/
c.60–62 The complexity of autoimmune conditions in mice has
many parallels with human and, because of a more granular
characterization of strain genetics, may have much to offer to
our understanding of the human conditions and interventions
for them.295,296 Two examples are discussed here.

Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an immune-mediated destruction
of the synovial lining of the joints, with devastating effects on
underlying cartilage and bone. Susceptibility to the induction of
rheumatoid arthritis-like conditions in mice, using type II
collagen-induced arthritis (CIA) or proteoglycan-(aggrecan)-
induced arthritis (PGIA), depends on multiple susceptibility al-
leles and QTL.96,297,298 The disease in mice and in humans is
polygenic and complex. MHC H2 subtypes seem to have more
impact on CIA than on PGIA susceptibility, and PGIA suscepti-
bility is influenced by multiple genes.96,298,299 Strains expressing
the H-2q and the H-2r haplotypes are most susceptible to CIA.
DBA/1 (H-2q) are sensitive to CIA but insensitive to PGIA. BALB/
c (H-2d) mice are not so susceptible to CIA but are highly sus-
ceptible to PGIA.96,297,299 In contrast, DBA/2 (H-2d) are resistant
to arthritis induction by either method, implicating roles for
strain associated modifier genes.299,300 Non-MHC QTL associ-
ated with susceptibility to CIA and/or PGIA localize to regions
on mouse chromosomes 2, 3, 7, 15, and 19 that contain multiple
candidate genes with known immune functions.299

Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory demyelinating
disorder with a spectrum of disease manifestations. While
disease is associated with certain genetic polymorphisms,

environmental triggers as well as sex hormones have roles in dis-
ease development.290,301 A spontaneous mouse model of MS has
not been identified. But various aspects of MS are recapitulated by
experimental autoimmune encephalomyelitis (EAE), classically
induced “actively” by immunization with immunodominant
myelin epitope components in combination with immunosti-
mulants, or induced “passively” by adoptive transfer of preac-
tivated myelin-specific T cells into naïve mice.98,302–305

EAE in mice was first reported in 1975, and the SJL/J and C3H/
HeJ strains were identified as susceptible strains.98,294,302–304,306

SJL/J mice are used to model features of relapsing-remitting MS,
and their susceptibility is associated with several polymorph-
isms, including hyper-responsive IL12 and hypo-active IL2 and
IL4.67,306,307 Additionally, C57BL/6, DBA1, and C3H/HeJ strains
also are sensitive to induction of EAE.98,294,308

GEM models such as transgenic mice bearing human TCR
and T cells targeting myelin-specific antigens (e.g., myelin basic
protein) have been informative,309 as has immune-mediated
demyelination associated with infections by Theiler’s Mouse
Encephalitis Virus, a Picornavirus, in susceptible SJL/J and resis-
tant C57BL/6.310–312 Demyelination with certain strains of
Mouse Hepatitis Virus (MHV), a coronavirus, has been used to
model features of MS in susceptible C57BL/6 and BALB/c mice.
This is primarily a virus-mediated cytolytic phenomenon, and
SJL/J resistance is attributed to their spontaneous mutation in
Ceacam1, whose protein product is an important receptor for
neurovirulent MHV strains.313–315

Other Immunomodulators and Unintended
Experimental Consequences
Environmental Factors

Table 5 summarizes examples of immune effects of common
environmental factors including husbandry conditions, micro-
biota, as well as effects caused by experimental or therapeutic
interventions. These examples illustrate why reporting of envi-
ronmental and husbandry conditions and specifics of experi-
mental or therapeutic interventions is warranted in scientific
publications. Microenvironment refers to the immediate physi-
cal environment surrounding the animal such as the cage, pen,
or stall. Macroenvironment refers to the physical environment
of the secondary enclosure (e.g., a room, a barn, or an outdoor
habitat).323 A multitude of factors in the microenvironment and
macroenvironment can be stressors. Stressors activate the
hypothalamic-pituitary-adrenal axis, in turn increasing circu-
lating glucocorticoids. In mice, corticosterone is the primary
stress-induced glucocorticoid. Corticosterone elevations (and
corticosterone-mediated lymphocytolysis) are expected with
stressors such as adverse environmental conditions, shipping,
handling, social stresses, noise, vibration, etc.317–319 Responses
to stressors also vary with mouse strains.320,321

Caging
Common contemporary caging options are open top, static mi-
crosiolators (filter top cages), and individually ventilated caging.
Suspended wire caging is less common today but may be scien-
tifically justified to prevent coprophagy and ingestion of drugs
or metabolites in feces. Individually ventilated caging is
increasingly available with advantages in terms of barrier pro-
tection of the animals, lower bioburden, and cage changing fre-
quency and with concerns in terms of microenvironment
temperature, humidity, wind, and dust. Temperature, vibration,
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Table 5 Other Immunomodulators, Including Unintended Immune Consequences of Husbandry and Environmental Factors, Clinical and
Experimental Interventions

Immunomodulators Possible Effects on the Immune and Other Systems References

Environmental factors

Housing conditions

Caging Individual ventilated cages (compared to static microisolator caging): decreased bioburden
and risk of intercage infection spread; increased cold stress; decreased circulating
leukocytes; decreased intracage ammonia levels and correlated nasal pathology.

322–325

Bedding Experimentally relevant parameters influenced by the type of bedding: higher
intracage ammonia levels with reclaimed wood pulp bedding; corncob bedding
associated with decreased efficiency of feed conversion in mice fed a high-fat diet;
hepatotoxicity associated with vermiculite and unbleached pulp from pine and
eucalyptus; hepatic and mammary carcinogenesis associated with aromatic red
cedar bedding; altered estrogen signaling mainly due to BPA residues; corncob
bedding associated with increased aggressivity and social stress in females;
drastically lower endotoxin levels and bioburden associated with paper bedding.

323,342,352–357,366

Single or group housing and
social stressors

Group housing: negative social events associated with lower lymphocyte
proliferation; lower level of antigen-specific IgG; granulocytosis; lymphopenia,
higher predisposition to tumor development and progression, huddling associated
with amelioration of cold stress.

326–330

Individual housing: decreased antibody production; worsened allergic skin reaction;
increased cold stress.

Environmental enrichment Reduced stress levels; reduced oxidative stress; enhanced NK antitumor functions;
enhanced macrophage chemotaxis and phagocytosis; improved capacity to clear
systemic microbial infection; enhanced lymphocyte chemotaxis and proliferation;
increased lifespan.

331–336

Temperature and humidity Thermoneutral housing temperature (26°–34°C): reduced tumor formation, growth
rate and metastasis due to increased CD8+ T cells; reduced myeloid-derived
suppressor cells and Tregs.

327,328,337–341,473–476

Sub-thermoneutral housing temperature (20°–26°C): suppressed immune responses;
increased therapeutic resistance of tumor and GVHD severity; suppressed myeloid
cells function; alternative activation of macrophages.

Elevated humidity: increased bioburden; high ammonia levels due to expansion in
urea-converting microflora.

Environmental noise and vibration Altered tumor resistance; immunosuppression; reduced body weight; reduced
fertility.

348–351,477

Inappropriate handling; untrained
personnel

Increased risk of infection associated with inappropriate PPE and insufficient
sterilization of equipment; pain, discomfort and stress associated with frequent/
improper handling.

316

Altered light-dark cycle Suppressed immune response; decreased splenic T cells; continuous illumination
associated with decreased CD8+ and CD4+ cells in thymus and lymph nodes.

343–345

Dim lights Elevated nighttime light exposure in male mice associated with worsened
inflammation and weight gain under high-fat diet regimen.

478

Diet and water modifications

Caloric restriction Immune effects: reduced H2O2, TNF α, IL6, IL2, IL10, NO, IFNγ; decreased macrophage
activation; impaired NK cell function; reduced IgA in small intestine and serum
IgG.

363,478–483

Other effects: increased lifespan; reduced age-related morbidities.

Protein-energy malnutrition Impaired proliferation CD8+ T cells; modulation of intestinal IgA responses to
rotavirus; increased duodenal γδ IELs; increased production of jejunal
proinflammatory cytokines in response to bacteria.

484–486

Prolonged fasting (48–120 h) Stress response due to activation of hypothalamic-pituitary-adrenal axis; thymic
atrophy (apoptosis of cortical DP thymocytes).

487

High-fat diet (in C57BL/6 mice) Suppression of delayed hypersensitivity; altered intestinal microbiota with
stimulation of mucosal immunity; altered systemic metabolomes; inflammation
of adipose tissue with release of adipokines, cytokines, and chemokines, and
propagation of a chronic inflammatory state (inflamobesity).

488–490

Continued
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Table 5 Continued

Immunomodulators Possible Effects on the Immune and Other Systems References

Chlorella vulgaris supplementation CYP-treated mice: reinstated lymphocyte proliferation and macrophage phagocytic
activity; stimulation of IL2, IL12, TNFα, IFNγ, NK cell cytotoxicity; decreased splenic
necrosis.

491

Polyunsaturated fatty acids
supplementation

Dietary DHA and AA associated with improved allergen-induced dermatitis as
consequence of increased FoxP3+ T cells, elevated IL10, and decreased TNFα.

492

Water acidification Switch from normal tap water to acidified water associated with severe and long-
lasting stress.

343

Nutritional deficiencies

Zinc deficiency Thymic atrophy (loss of DP thymocytes); accelerated lymphopenia with loss of
antibody and cell-mediated responses; decreased number of pre-B cells, better
survival for pro-T cells and mature DP and CD8+ T cells; increased myeloid lineage
in bone marrow.

493–496

Vitamin A deficiency Decreased ILC3 and antibacterial responses; compensatory expansion in IL-13-
producing ILC2 and increased anti-helminth responses; intestine devoid of CD4+
and CD8+ T cells; lower salivary IgA levels and increased serum IgG response in
mouse model of influenza; decreased mucosal antigen-specific IgA responses.

497–499

Vitamin D deficiency VDR-deficient mice: increased mature DCs in skin draining lymph nodes; decreased
Th1-cell responses and induction of IL10-producing Tregs.

500

Diet and water contaminations

Estrogenic endocrine-disruptors Isoflavones (genistein): thymic atrophy; suppression of delayed hypersensitivity;
decreased splenic NK cells; decreased IFNγ in response to bacterial infection.

365,366,501–503

Mycotoxins (aflatoxins, deoxynivalenol, zearalenone): elevated IgA and IgE; kidney
mesangial IgA deposits; polyclonal activation of IgA secreting cells; IgA
autoantibody.

BPA (cages, water bottles): lupus-like syndrome (C57BL/6 mice); allergic airway
disease (BALB/c mice).

Halogenated aromatic
hydrocarbons (PCDFs;PCDDs)

Contaminated food and bedding: inhibited innate and adaptive immune responses;
atrophy of lymphoid organs; TCDD targets thymic lymphoblasts.

364,504,505

Metals (As, Cd, Pb, Hg, Se) Complex immune-modulating effects (immunosuppression and
immunostimulation).

504,506

As: decreased DCs in mediastinal lymph nodes of influenza A-infected C57BL/6
mice.

Microbial status, pathogens, and biosecurity

MHV MHV-3-infected C57BL/6: impairment of pre-B cells maturation and B cells functions. 507–509

A59-infected BALB/c: transient lymphocyte apoptosis in the thymus.
MHV-JHM-infected BALB/cByJ: functionally altered CD4+ and CD8+ T cells, and APCs.

Sendai virus Interference with macrophage and their phagocytic activity, NK cells, and T and B
cell function; increased isograft rejection.

507,510–513

MNV Lethal infection in mice deficient for STAT1 and IFN receptors; alteration of
immune/inflammatory parameters in diverse mouse models including Mdr1a
deficient animals infected with Helicobacter bilis interfering with dendritic cell
function and cytokine responses; infection of wild-type mice associated with mild
intestinal inflammation, splenic red pulp expansion, and white pulp activation.

514–516

MuHV-1 Loss of splenic T and B cells; interference with key coordinating role of DCs;
functional impairment of macrophages and loss of response to cytokines; altered
responses to mitogens, antigens, increased allograft rejection, delayed type
hypersensitivity responses, and clearance of other pathogens; formation of anti-
cardiac autoantibodies.

440,517–520

MuHV-3 Thymic necrosis (specific targeting of CD4+ T cells in newborn mice); autoimmune
gastritis in BALB/c and A strain; autoimmune oophoritis and production of
antibodies to thyroglobulin.

413,440,521

MPV Suppressed proliferation (spleen, popliteal lymph node), increased proliferation
(mesenteric lymph node) in ovalbumin-primed mice; altered alloreactive T cells

522,523

Continued
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Table 5 Continued

Immunomodulators Possible Effects on the Immune and Other Systems References

and abnormal CD8+ T cell rejection of tumors and skin allografts (BALB/c);
rejection of syngeneic grafts.

MVM MVM: oncolytic, cytotoxic, replicative cancer inhibitor; deregulation of the Raf
signaling cascade.

415,524

MVMi: depressed myelopoeisis in neonatal BALB/c; depletion of hemopoietic
precursors, leukopenia, and compensatory erythropoiesis in adult and neonate
SCID mice.

Murine retroviruses Insertional mutagenesis (with reintegration of endogenous retroviruses or
transposition of retroelements): immune relevant mutation such as Foxn1nu, Lepob,
Faslpr.

439–443,448,525–529

Endogenous retroviruses in pancreatic islets: contribution to immune-mediated
insulitis NOD mice.

LP-BM5-infected C57BL/6 mice: lymphadenopathy, splenomegaly;
hypergammaglobulinemia; T and B cell dysfunctions; late appearance of B cell
lymphomas; opportunistic infections.

LCMV LCMV disease: all pathological alterations following infection are immune-mediated;
prototype for virus-induced T-lymphocyte-mediated immune injury and for
immune complex disease; protection from LCMV-induced disease conferred
through immunesuppression; noncanonical type I IFN signaling responsible for
lethality in LCMV-infected Stat1 deficient mice.

530–532

MHV-68 Experimental infections of laboratory mice to study the pathogenesis of human
lymphoproliferative disorders associated with EBV.

422,426–430

Bacteria Mortality/morbidity (sepsis) in immune deficient mice: Pseudomonas aeruginosa,
Klebsiella spp., E coli; potentially any bacteria in severely immunocompromised
mice.

375,378,381,440,451,533

Abscesses: Staphylococci, Pasteurella pneumotropica.
Skin disease/morbidity: Corynebacterium bovis, Staphylococci.
Mycoplasma arginini: suppurative arthritis in Prkdcscid mice inoculated with
contaminated cell lines.

Fungi Pneumocystis murina: respiratory disease and mortality in immunodeficient mice. 378,381,534–536

Candida spp.: recent reports associated with immune deficiency/suppression and or
use of antimicrobials.

Biosecurity in immunodeficient
mice

High risk of Pneumocystis carinii infection in T cell-deficient mice including Foxn1nu,
Prkdcscid mice and immune impaired GEMs; immunodeficient traits in mutant mice
masked by the immune/inflammatory response associated with chronic γ-
herpesvirus infection; MNV infection in Atg16l1-deficient mice associated with
Paneth cell abnormalities; murine papillomavirus associated with proliferative
lesions at the mucocutaneous junctions of Foxn1nu mice; mousepox recrudescence
following immunosuppression and transmission to naïve mice.

375,400,537–540

Biosecurity: contaminated
biologicals

Rodent pathogens (latent infections): contaminated serum with mousepox. 378,410,434,451,452,541

Human pathogens: contaminated human cell lines (humanized mice and patient
derived xenografts mice).

Mycoplasma arginini: suppurative arthritis in Prkdcscid mice (contaminated cell lines).

Modulation of the microbiome SFB associated with the development of IL17 and IL22-producing CD4+ T cells (TH17
cells) in the intestinal lamina propria of germ-free mice.

386,387,405,406

Tritrichomonas muris: associated with elevated TH1 response in the cecum of naive
WT mice and accelerated colitis in Rag1-deficient mice after T cell transfer.

Drugs administered for clinical or experimental purposes

Tamoxifen-inducible Cre/loxP
system (Cre-ERT2)

Estrogen-dependent and -independent tamoxifen immunomodulatory effect; shift
from a TH1- to a TH2-mediated immune response.

458,459

Tetracycline/doxycycline-inducible
Tet-Off/Tet-On system

Doxycycline-dependent modulation of immune and inflammatory functions
including allotransplant rejection, response to LPS, neutrophil chemotaxis;
tetracycline/doxycycline-induced dysbiosis.

461,462,472

Nitrosamines, nitrates, nitrites
(mutagens, carcinogens)

DMN: suppression of both humoral and cell-mediated immunity. 542–544

ENU: lymphoma (AKR/J, C58/J, C57BL/6J, NOD/LtJ); myeloid malignancies (SWR/J,
DBA/2J); thymic lymphoma with/without K-ras mutations.

TMP-SMX TMP-SMX alone: no effect on hematopoiesis or immune cell functions. 545

Continued
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and microbial burden (discussed further below) are among the
variables with expected immune effects.322–325

Housing density
Co-housing or group housing of mice is practical and economi-
cal with compatible animals that do not fight and kill each
other before study endpoints. Single housing can be required,
especially for male mice to survive to study endpoints. Co-
housing vs single housing effects on stress and immunity vary
with strain, sex, and other conditions.326–329

Enrichment
Enrichment for shelter, nesting, and gnawing have variable ef-
fects that are often associated with strain, sex, and other condi-
tions. In general, provision of nesting material helps to reduce
the level of stress and influences positively several immune
parameters including NK cell antitumor functions.331–336

Temperature humidity
Current temperature recommendations for mouse housing of
22–26°C are below the mouse thermoneutral zone of 30–32°C.

Table 5 Continued

Immunomodulators Possible Effects on the Immune and Other Systems References

TMP-SMX synergized with zidovudine: anemia, thrombocytopenia, lymphopenia,
and neutropenia, decreased splenic macrophages, suppressed AC-dependent T
cell responses.

Ivermectin Immunomodulation of T-helper cells; decreased recruitment of immune cells and
cytokines in a model of asthma; unintended activation of tamoxifen-regulated Cre
fusion protein in T cells.

460,546,547

Estrogens (for engraftment of
estrogen-dependent tumors)

Increased splenic neutrophils (estrogen-treated C57BL/6 mice); enhanced IFNγ
expression; thymic atrophy (DERKO mice); myelosuppression (decreased
pluripotent hematopoietic stem cells).

501,548–552

Synthetic estrogens (DES): altered thymic T cell differentiation through interference
with positive and negative selection processes in prenatally exposed mice;
functionally defective NK cells and increased tumor susceptibility in neonatally
exposed female mice.

Other: increased trabecular bone mineral density, fat reduction and increased
uterine weight (DERKO mice); fibro-osseous lesions (bone marrow replacement by
fibrovascular stroma (KK/HlJ and NZW/LacJ female mice).

Androgens (for engraftment of
androgen-dependent tumors)

Androgen stimulation: thymic involution resulting from decreased colonization of
bone-marrow-derived stem cells; loss of thymic epithelial cells; thymocyte
apoptosis; inhibition of CD4+ T cell differentiation through upregulation of
phosphate Ptpn1; erythroid hyperplasia.

553–556

Castration: enhanced CD8+ T cell vaccine response to prostate-specific antigens.

Streptozotocin Early lymphopenia in both blood and spleen; relative increased Tregs in spleen,
peripheral blood, and lymph nodes; delayed islet and skin allograft rejection.

557

NPs Suppression of systemic humoral immunity (multi wall carbon nanotubes);
inhibition of T cell-mediated immunity (iron oxide NPs, fuellerene 60);
myelosuppression (Sb2O3, Co, ZnO, TiO2 NPs); allergic reactions (Ag NPs); anti-
inflammatory activity and inhibition of cellular responses induced by IL1B (citrate-
coated gold NPs).

558–563

Other experimental interventions

Cre/loxP Activation of STING antiviral response by endonuclease activity of Cre recombinase. 457

CRISPR-Cas9 Adaptive immune response against Cas9. 458,459

Tetracycline/doxycycline-inducible
Tet-Off/Tet-On system

Apoptotic response in activated lymphocytes resulting from DNA binding by
tTA/rtTA.

464

Classical reporter molecules Increase in the CTL response against transplanted eGFP-expressing leukemia cells in
BALB/c mice; IFNγ response to the dominant CTL epitope of Luc, with consequent
restricted growth and metastatic activity of the reporter-labelled tumor cells in a
mouse model of mammary adenocarcinoma; antigen specific activation of T cells
to the reporter gene β-galactosidase, with loss of transgene expression.

465–470,564,565

AA, arachidonic acid; AC, accessory cell; BPA, Bisphenol A; CTL, cytotoxic T lymphocyte; CYP, cyclophospharmide; DCs, dendritic cells; DERKO, double ER knockout

mice; DES, diethylstilbestrol; DP, double positive; DHA, docosahexaenoic acid; DMN, dimethylnitrosamine; EBV, Epstein-Barr virus; eGFP, enhanced green fluorescent

protein; ENU, N-ethyl-N-nitrosourea; GVHD, graft-versus-host disease; IBD, inflammatory bowel disease; IELs, intra-epithelial lymphocytes; ILC3, type 3 innate lym-

phoid cells; ILC2, type 2 innate lymphoid cells; LCMV, lymphocytic choriomeningitis virus; Luc, luciferase; MHV, mouse hepatitis virus; MHV-68, murine gammaher-

pesvirus 68; MNV, murine norovirus; MNM, minute virus of mice; MPV, mouse parvovirus; MuHV-1, murid herpesvirus 1 (mouse cytomegalovirus); MuHV-3, murid

herpesvirus 3 (mouse thymic virus); NKs, natural killer cells; NPs, nanoparticles; PPE, personal protective equipment; rtTA, reverse tetracycline-controlled transactiva-

tor protein; SFB, segmented filamentous bacteria; TCDD, 2,3,7,8-tetrachlorodibenzodioxin; TMP-SMZ, trimethoprim/sulfamethoxazole; Tregs, regulatory T cells; tTA,

tetracycline-controlled transactivator protein; VDR, vitamin D receptor.
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The “mild” cold stress caused by standard sub-thermoneutral
housing temperatures affects immune responses, tumor growth,
and other experimental outcomes. Huddling and nest building
are methods of behavioral thermoregulation used by mice under
cold stress. Recommended relative humidity is 55%± 10%.
Humidity levels vary with type of caging, season, and geographic
location. Higher humidity is associated with increased levels of
ammonia and bioburden with severe impairment of respiratory
mucosal immune response and increased risk of opportunistic
infections, respectively.327,328,337–342

Illumination (Light)
Circadian and light effects on immunity are recognized in many
species, including humans and mice. Albino animals have high-
er light sensitivity, and a number of common mouse strains are
blind with retinal degeneration but still exhibit responses to
light and light cycles.343–345 Dysregulation of circadian rhyth-
micity in mice induces a generalized proinflammatory mac-
rophage activation and exacerbates diet-induced systemic
insulin resistance and glucose intolerance. A balanced circa-
dian rhythm is also critical to maintain immune homeostasis
via the immunoregulatory activity of the neurohormone
melatonin.346,347

Noise vibration
While a number of common mouse strains are deaf or become
deaf with age, hearing mice perceive and respond to sounds
outside of human ranges. Noise and vibration are shown to
cause stress, induce corticosterone, and negatively affect repro-
duction.348–351

Bedding
While contemporary commercial contact bedding materials
tend to be far more standardized with more quality control and
freedom from contaminants than previously, contaminants
with potential effects on research outcomes can still occur in
bedding material. Dust, ammonia levels, fungal spores, phy-
toestrogens, and endotoxins in bedding also have implications
for diverse research. Regional variation among bedding mate-
rial has implications for various research areas, including
immunology, with corncob bedding more available in the
United States than in the European Union and other sites, and
with hardwoods, cellulose, or paper being other common op-
tions. The relative palatability of or preference for a bedding
over the intended diet may affect consumption of the
diet.323,352–357

Diet
Contemporary commercial research diets also are far more
standardized with more quality control than previously, and
nutritional deficiencies are unlikely on contemporary commer-
cial diets. Nutritional requirements for mice, including ade-
quate levels of nutrients,358 minerals,359 and vitamins,360 exist
as do guidelines for contaminants in laboratory rodent
diets.361,362 Possible contaminants with immunomodulatory ef-
fects include industrial chemicals (e.g., PCBs, PCDDs, and
PCDFs), pesticides (e.g., DDT), metals, nitrosamines, endocrine-
disrupting compounds, and mycotoxins. However, contami-
nants are identified in contemporary diets and are a concern
for biomedical research and regulatory toxicology.363,364

Endocrine-disrupting phytoestrogen-rich ingredients, espe-
cially soy and alfalfa, as primary protein sources are expected

in natural ingredient (aka grain-based or cereal-based) diets.
Phytoestrogens are recognized to have influences on rodent
reproduction, immunity, cardiovascular, neoplastic, and other
conditions.365,366 Animal byproducts, bone meal, and fish meal
are used in many natural ingredient diets and are a source of
nitrites and nitrosamines.363,367

Poor reporting of research-relevant diet factors such as dif-
ferences between purified and natural ingredient diets have at-
tracted attention and concern recently.10,358,368 Research diets
are frequently provided ad libitum to rodents on shorter term
studies. Diet restriction in long-term studies usually improves
survival and reduces neoplastic, kidney, inflammatory, and
other lesions.369–371

Water
Contemporary water sources and delivery methods frequently
include reverse osmosis, filtration, hyperchlorination, acidifica-
tion, or some combination of these, delivered by water bottles,
glass, or various plastics, tinted or untinted, and/or automated
watering systems.

Acidification became a common practice for research ro-
dents to control opportunistic bacteria (especially P. aeurogino-
sa) causing morbidity mortality in immune-deficient rodents
that were further immunosuppressed by irradiation that fur-
ther compromised or eliminated their innate immunity. Water
treatments including administered drugs can affect water con-
sumption and have immune or other effects that warrant re-
porting in publications.343,372–374

Husbandry and Biosecurity
Special husbandry needs of immunodeficient mice are largely
related to protection from agents that may cause morbidity and
mortality. Such agents may be harbored by clinically “healthy”
immune sufficient mice, or possibly by human handlers, and
may be transferred by common equipment and other fomites.
Proximity to immune sufficient mice or to any mouse cohort
with different microbial status warrants special procedures and
policies for sanitation and sterilization of caging, feed, water
and other materials, sequence of animal handling, and micro-
bial surveillance. GEM models may also manifest unexpected
immunodeficiencies.375 Immunomodulatory effects by com-
mon agents (Table 5) demand that immune relevant research
must pay greater attention to microbial exclusion lists and defi-
nition of the specific pathogen free (SPF) status in the vivarium
as well as in reporting. Use of the term SPF requires specifica-
tion of the excluded agents.316,376–378

Some of the most concerning opportunistic agents in con-
temporary immunodeficient mice, such as Staphylococcus xylosus,
Corynebacterium bovis, and Pneumocystis murina, are fairly com-
mon and usually subclinical in immune sufficient mice.379–384

(see also Table 5)

Microbiota and Microbiome

Autochthonous (commensal and symbiotic) microbiota
Systemic and mucosal immunity in mice are influenced by the
intestinal flora (microbiota).27,375,385 The intestinal microbiota
are important to effective mucosal immunity and to immune re-
sponses beyond the gut. As an example, segmented filamentous
bacteria (SFB) have been identified as an important antigenic
stimulus in inducing Th17 responses, and murine Th17 re-
sponses are blunted in mice that lack SFB.395 Also SFB are shown
to influence neuroinflammation in EAE models, diabetes
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susceptibility in NOD mice, and development of autoimmune
arthritis in some models.387–390 SFB normally colonize the distal
small intestine of infant mice and decline with the maturation
of the mucosal barrier and local IgA levels.391 In mice with defi-
cient adaptive immunity or Ig production, or mice specifically
deficient in IgA, SFB persist with expanded distribution through-
out the small intestine.392,393 SFB are difficult to propagate
in vitro and have not been included in the standardized commu-
nities of intestinal microbiota (e.g., Altered Schaedler flora) spe-
cifically maintained in some sources of laboratory mice to
uniform the influence of microbiota on the experimental condi-
tions. In this context, SFB are not expected in immune deficient
mice from certain commercial vendors that maintain the mice
in isolators with defined or highly restricted flora.394,395

Strain-associated and vendor-dependent differences in
the gut microflora of laboratory mice have been identified
and are implicated in variability in research results (see
Table 5).378,385,396–400 Flora with more Bacteroides spp. and
Parabacteroides spp. such as Parabacteroides distasonis may
mitigate DSS-induced colitis.401 Mice of similar strains but
from sources with more simplified or restricted microbiota,
lacking SFB, have quite different dendritic cell profiles and
Th17 responses.402 In several immune relevant GEM includ-
ing IL10, T cell receptor alpha, and IL2 knockout mice, intesti-
nal inflammation also is substantially influenced by
intestinal microbiome.403,404 Enteric protists are common in
mice (but usually excluded from commercial sources) and
also have been shown to influence Th17 and Th1 responses
as well.405,406 The microbiota or autochthonous microflora of
research animals are increasingly recognized as highly
research relevant. The restricted microflora of naïve mice
from reputable commercial sources have been presented as a
research concern, but their well-characterized microbiota
also represent an opportunity for this area of immune rele-
vant research.407–408

Allochthonous (noncommensal) agents
Morbidity, mortality, and other adverse or confounding effects of
infectious agents on research have led to great effort and expense
toward microbial definition and exclusion by commercial sources
of mice and for quarantine and surveillance by research pro-
grams to protect animals and research from infections.410

Immune deficient mice are notoriously susceptible to disease and
death from pathogens and opportunists. The same agents in
immune sufficient mice may result in subclinical infections or a
spectrum of disease phenotypes that are influenced by genetic
background, age, sex, and other factors. But any agent detected
by an immune system can be expected to elicit an immune
response, or “immunomodulate.” Table 5 summarizes examples
of microbial effects on immunity and particular concerns for
morbidity andmortality in immune deficient mice.411,412

Viruses with selective tropisms for immune cells include
some of the murine parvoviruses, herpesviruses, and retroviruses.
Many of the parvoviruses infecting mice are lymphocytotropic,
altering both CD4+ and CD8+ T cell-mediated responses during
acute infection.378,413,414 Although long-term immune effects may
not be identified with natural infections by some parvoviruses,
significant immunomodulation is well documented with infection
by others (Table 5).378 Parvoviruses replicate in actively dividing
cells and are studied as oncolytic agents in combined anti-cancer
therapies.415 Several mouse parvoviruses were identified origi-
nally as contaminants in biological materials such as tumor cell
lines. They remain among the most common agents identified in

research mice, pet store and feral mice, and biological materials.
Despite the usual absence of clinical signs in parovirus-infected
mice, these agents should be especially concerning in immune
relevant and cancer studies.409,416–420

Although mouse herpesviruses are not expected in contempo-
rary research colonies, mice are host to several lymphocytotropic
herpesviruses that are reported in pet store and feral mice.421,422

Mouse thymic virus infection in newborn mice causes thymic
necrosis, with selective targeting of T cells, and transient immuno-
suppression.413 This agent or a close relative was recently classified
under the genus Roseolovirus similar to human roseoloviruses.423,424

Murine cytomegalovirus is used to model human cytomegalovirus
infection and targets hematolymphoid tissues and salivary glands.
Disease manifestations vary with the genetic background.425

Occult (seronegative) murine cytomegalovirus infection has been
shown to affect responses to allografts.426

Murine gammaherpesvirus 68, a natural pathogen of bank
voles, is related to human gamma herpesviruses Epstein-Barr
virus (EBV) and Kaposi sarcoma-associated herpesvirus and is
used to study the pathogenesis of gammaherpesviruses in
experimentally infected mice. However, Mus musculus ssp. are
not the natural host, and horizontal transmission between lab-
oratory mice is not expected.422,426–430 EBV is a human B-
lymphotropic gamma herpesvirus that infects more than 90%
of the human population. Human infections are subclinical
(latent) when effectively controlled or can result in infectious
mononucleosis or malignancies such as Burkitt’s lymphoma,
nasopharyngeal carcinoma, Hodgkin’s lymphoma, and post-
transplant lymphoproliferative disorders. Immunodeficient and
humanized mice have been informative preclinical tools for
studying the pathogenesis of some of the conditions associated
with EBV.431–433 EBV-induced post-transplant lymphoproliferative
disorders are also increasingly recognized to complicate research
with human patient derived xenografts in severely immunode-
ficient mice434–436 and may be amenable to suppression of human
lymphocyte proliferation in the donor tissue.437,438

Exogenous retroviruses and active endogenous retroviruses
have lymphocyte tropisms and roles in immune modulation
and lymphoproliferative conditions as well as in mammary car-
cinogenesis, sarcoma development, and lymphomagenesis.
Exogenous horizontally transmitted retroviruses have been
eliminated from commercially available mice but are identified
in wild mice. Insertional mutagenesis with reintegration of
endogenous retroviruses or transposition of retroelements has
resulted in spontaneous mutations including some immune
relevant ones such as Foxn1nu, Lepob, and Faslpr.439–441 Mice in-
fected with LP-BM5 (defective) murine leukemia virus develop
murine acquired immunodeficiency syndrome and have been
widely used as a preclinical model to study the pathogenesis of
human retroviral infections (Table 5).442,443 Lifelong expression
of viral proteins encoded by endogenous retroviruses/retroele-
ments may be responsible for most of the spontaneous
immune-mediated conditions observed in some inbred strains
during aging, including glomerulonephritis and polyarteri-
tis.440,444 Strain-specific variations in the composition and
activity of endogenous retroviruses/retroelements and immune
response against retroviral antigens also play a role in the sus-
ceptibility of specific mouse backgrounds to experimental auto-
immune conditions including SLE and T1D.445–448

While the parvoviruses, herpesviruses, and exogenous ret-
roviruses have been eliminated from commercial sources of
contemporary laboratory mice because of disease or other con-
founding effects on research, recent interest in the “normal”
immunity of wild or pet store mice may render these agents, as
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well as historically important mouse disease problems and
zoonotic concerns, more relevant.449,450

Biological Materials

Biological materials, including transplantable tumors, cell lines,
serum, embryos, and gametes, can harbor a diversity of mouse
viruses (parvoviruses, ectromelia virus, MHV, lactose dehydroge-
nase elevating virus, and retroviruses), human viruses, and bacte-
ria, notoriously the Mycoplasmas.420,451,452 They therefore
represent a substantial concern as a source of pathogens and
microbial confounders, especially in studies that involve immuno-
deficient rodents. Reporting recommendations plead for QA of cell
lines: genetic QA (authentication to confirm the identity of the cell
lines), and microbial QA (to assure freedom from pathogens).453–456

Unintended Consequences of Genetic Engineering
Strategies

Genetic engineering strategies have immune effects that may
have unintended or unexpected consequences for diverse
research areas.

Cre/loxP-based DNA recombination technology is used for
conditional (tissue-specific) gene targeting. The endonuclease
activity of Cre recombinase, including the “illegitimate” target-
ing of the numerous pseudo-loxP sites across the mouse
genome, results in the strong induction of an antiviral
response. This is due to the recruitment of the specific cytosolic
DNA sensor stimulator of interferon genes (STING), concurrent
with Cre-dependent DNA damage and the accumulation of
cytoplasmic DNA fragments. Given the primary role of STING
in the activation of antiviral immune pathways (including
type-I IFN), Cre expression can impact multiple immune para-
meters in Cre/loxP-based mouse models. Appropriate Cre-only
controls may help in distinguishing signal from noise.457

The tamoxifen-inducible Cre/loxP system (Cre-ERT2) allows
site- and time-specific gene targeting in the mouse. Tamoxifen
has immune relevant effects, as well as toxic and genotoxic ef-
fects. The estrogen-dependent and -independent effects of tamox-
ifen have been demonstrated to promote a shift from a Th1- to a
Th2-mediated immune responses. Such effects can especially
impact allergy and autoimmune models involving activation of
Th1-mediated immunity (e.g., EAE and some SLE models).458,459

Recently, oral ivermectin treatment has been specifically linked to
the unintended activation of Cre-ERT2 system in T cells.460

Tetracycline-controlled transcriptional activation (Tet-
Off/Tet-On) systems allow site-specific, reversible, and dose-
dependent control of gene expression in mice. Doxycycline (a
tetracycline derivative) is administered or withdrawn to reg-
ulate target gene expression. Doxycycline in mice interferes
with and modulates immune and inflammatory responses
relevant to allotransplant rejection, response to LPS, and
neutrophil chemotaxis, among others.461–463 Recent works
have also unveiled the effect of doxycycline on murine gut
microbiota and how the resulting dysbiosis might affect the
immune response in diverse experimental settings.461–463

DNA binding by tetracycline/doxycycline-controlled Tet-
transactivator (tTA) and its reverse is apparently sufficient to
induce apoptosis in activated lymphocytes. These findings
indicate that a major experimental bias exists in the use of
the Tet-On/Off system for lymphocyte targeting as the
approach may (1) limit the extent of the adaptive immune
reaction and (2) favor the outgrowth of apoptosis-resistant
subpopulations of lymphoid cells.464

Expression of fluorescent or enzymatic reporters driven by
gene-specific regulatory elements is used to study in vivo or
ex vivo activity and distribution of specific molecular targets or
mutant alleles in GEM models. However, an increasing number
of studies show that reporters can be highly immunogenic.
Indeed, response of the mouse immune system against classi-
cal reporter molecules (including enhanced green fluorescent
protein, luciferase, and β-galactosidase) has been demon-
strated. The inherent immunogenicity of reporter gene’s pro-
ducts depends on different factors including the mouse’s
background strain as well as level of expression and tissue dis-
tribution/accumulation. It is therefore extremely important to
consider carefully any potential variable associated with the
use of genetic reporter systems for immunological studies in
mice.465–470

Even the most recent and sophisticated strategies for
genome editing, including the revolutionary CRISPR-Cas9 sys-
tem, have demonstrated experimental caveats influencing the
immune system. In addition to the potential immunogenicity
of viral vectors in viral delivery systems, human and mice have
demonstrated preexisting adaptive immunity to Cas9 homolo-
gues expressed by common bacteria such as Staphylococcus
aureus and Streptococcus pyogenes. The inherent immunogenicity
of Cas9 is a concern not only for the preclinical application of
the CRISPR-Cas9 system, but also for its potential clinical use
as gene therapy strategy.471,472

Future Directions in Mouse Immunology
Human Surrogate/“Avatar” Approaches

Options to take advantage of humanized mice and other ani-
mals to study human derived immune elements in nonhuman
surrogates are reviewed elsewhere. These present a diversity of
opportunities for better understanding of human disease con-
ditions as well as a number challenges that also may be infor-
mative if approached critically and scientifically.431,566,567 For a
comprehensive overview on this topic, readers are encouraged
to consult the contribution from Simons et al. in the present
issue of the ILAR Journal.

Genetic Approaches

Options to take advantage of the spectrum of mouse genetic
and immune diversity include factorial study design and
Collaborative Cross (CC)-derived RI strains and Diversity
Outbred (DO) mice. In a factorial study design, significance can
be achieved with relatively small “n” from several strains
selected for informative differences in immune relevant geno-
types and phenotypes.568,569 Recognizing that an inbred strain
represents an intentionally limited fraction of the spectrum of
genetic variability of laboratory mice not designed or suited to
model immunological endpoints at a population scale,570,571

the CC-derived RI strains represent the genetic variability
across the 7 major families of mice and offer fairly new options
for dissecting genetic and molecular mechanisms of immunity
and disease.572,573 The CC is a mouse reference population with
high allelic diversity constructed by a breeding strategy that
systematically outcrosses 8 founder strains, followed by
inbreeding to obtain new RI strains. Five of the 8 founder
strains are “classical” laboratory strains including 129S1/SvImJ,
A/J, C57BL/6J, NOD/ShiLtJ, and NZO/HlLtJ. Three founder strains
are “wild-derived”: CAST/EiJ, PWK/PhJ, and WSB/EiJ. Currently
available CC RI lines are distributed through consortia (e.g.,
http://csbio.unc.edu/CCstatus/index.py) and public repositories
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(e.g., https://www.jax.org/strain/027296). Since their inception,
partially inbred CC mice have been characterized and com-
pared for the identification of deviant immune traits or pheno-
types. They have provided opportunities to study the evolution
of complex genetic interactions.573 The application of immuno-
genomics and immunonogenetics techniques on CC mice has
identified QTLs, polymorphic regions, and candidate genes that
control mouse immunodiversity572 and have contributed to our
understanding of susceptibilities to SARS coronavirus, West
Nile virus, and Aspergillus fumigatus.574–577 DO mice (https://
www.jax.org/strain/009376) were developed by random out-
cross matings of 160 CC RI lines, and the breeding strategy of
continued random matings is designed to maximize their
genetic diversity.578–581 The genetic heterogeneity of DO mice
far exceeds that of genetically undefined mice, termed “out-
bred,” that derive from the Swiss branch of the mouse family
tree (e.g., CD-1, CFW, ICR, ND4, NMRI, SW) originating from
Clara Lynch’s original 9 albino mice brought to the United
States from Switzerland in 1926. The genetic heterogeneity and
heterozygosity among these mice is more limited and varies
with their source.582,583 While the literature is still fairly limited
on CC RI strains and the derived DO mice, these represent
translational research tools that take advantage of mouse
genetic variability to identify disease mechanisms, select novel
drug targets, and discover associated biomarkers.

Microbial Approaches

There is recent interest in the use of genetically and microbially
“wild-like” mice as a more human like or human relevant strat-
egy.3,4,6,450,573,584 The studies make relevant and useful points
about the naïve immune systems of “clean” C57BL/6 mice
recently received from microbially restricted commercial
sources. However, many mice bred in house in research institu-
tions are not quite so naïve or microbially restricted.378,585–587

Undefined or incompletely defined microbiota of pet store or
feral mice raise concerns for infection related morbidity, mor-
tality, and unpredictable experimental confounds as well as
biosafety concerns related to zoonotic agents. Advances in gno-
tobiotics and microbiota characterization offer opportunities
for defined and strategic approaches that will deliver important
insights to immune modulation by autochthonous and al-
lochthonous microflora.385,409,449,450

Conclusions
Mice have had important roles in advancing the field of
immunology and fostering the development of new diagnos-
tic and therapeutic avenues. Recognition of intrinsic and
extrinsic contributors to immune phenotypes is crucial for
the selection of more relevant and reproducible mouse mod-
els and generation of robust translational data. Known con-
tributors can be intentionally used or intentionally avoided
in the experimental system. Accurate reporting of animals
and study conditions is mission critical to communicating
biomedical research. Well-designed and reported research in
mice has much to offer to our understanding of immunity
and important diseases of humans and other species.

Supplementary Material
Supplementary material is available at Institute for Laboratory
Animal Research Journal online.
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