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Exogenous administration of islet amyloid polypeptide (IAPP) has been shown to inhibit both insulin and glucagon secretion. This
study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP) after an oral protein gavage
(75 mg whey protein/mouse). Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n = 6) than in wildtype
animals (19±5.1 pg/mL, n = 5, P = .015). In contrast, the glucagon response to protein was impaired in transgenic animals
(21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P = .027). Baseline insulin levels did not
differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P = .018).
Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was
given through gavage to the animals (2 mg/mouse) to estimate gastric emptying. The plasma acetaminophen profile was similar
in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of
human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may
reflect a direct inhibitory influence of hIAPP on glucagon secretion.

Copyright © 2008 B. Ahrén and M. Sörhede Winzell. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Islet amyloid polypeptide is a 37-amino-acid peptide, which
is produced in the β-cells in the pancreatic islets [1–3]. It is
coreleased with insulin [4], and exogenous administration of
IAPP inhibits insulin secretion [2, 3, 5–7]. Several studies
have also shown that exogenous administration of IAPP at
supraphysiological doses inhibits glucagon secretion [8–11].
IAPP of the human form may lead to fibril formation, which
causes amyloid deposition in the islets resulting in β-cell
dysfunction and diabetes [12–14]. We have previously shown
that mice with β-cell specific overexpression of the human
form of IAPP (hIAPP) have defective insulin secretion and
disturbed islet topography with centrally located glucagon
producing α-cells [15, 16]. Whether these mice in addition
have disturbed glucagon secretion is, however, not known.
Therefore, the aim of the present study was to examine the
glucagon response to an oral protein load in these mice
compared to wildtype mice. Since IAPP has been shown to
inhibit gastric emptying [11], also the gastric emptying rate

in the transgenic and wildtype mice was evaluated with the
previously described acetaminophen-test [17], to control for
any differences in gastric emptying between the groups.

2. METHODS

2.1. Animals

Hemizygous transgenic mice with islet β-cell expression of
hIAPP on a C57BL/6J/6xDBA/2 background were gener-
ated as previously described [18]. Transgenic status was
determined by PCR using oligonucleotide primers directed
against the hIAPP transgene [19]. The transgenic mice and
their wildtype controls were kind gifts of Dr Steven E Kahn,
University of Washington, Seattle, Wash, USA. Transgenic
and wildtype mice were transported from the animal facility
of the University of Washington, Seattle, to the In Vivo
Department, Biomedical Center, Lund University, Lund,
Sweden, after embryo transfer performed at Taconic A/S, Ry,
Denmark. The animals were cross-bred for >16 generations
to C57BL/6J mice. The animals were kept in a 12-hour light
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schedule (lights on at 0600 am) and given a standard pellet
diet (fat 11.4%, carbohydrate 62.8%, protein 25.8% on an
energy base, total energy 12.6 kJ/g) and tap water ad libitum.
The Ethics Committee in Lund/Malmö approved the study.

2.2. Experiments

Following a four-hour period after removal of food from
the cage, female transgenic and wildtype animals were
anesthetized with an intraperitoneal injection of midazo-
lam (Dormicum, Hoffman-La-Roche, Basel, Switzerland,
0.2 mg/mouse) as well as a combination of fluanison
(0.4 mg/mouse) and fentanyl (0.02 mg/mouse; Hypnorm,
Janssen, Beerse, Belgium). Thirty minutes later, a blood
sample was taken from the retrobulbar, intraorbital, capillary
plexus in heparinized tubes. Then, whey protein (100%
Anywhey, 75 mg, Optimum Nutrition, Lindesberg, Sweden)
and acetaminophen (paracetamol; Sigma Chemical Co, St
Louis, Mo, 2 mg) dissolved in saline (total volume 500 μL)
were administered through a gastric tube (outer diameter
1.2 mm). After 15, 30, 60, and 120 minutes, blood samples,
75 μL each, were collected. Blood was kept in heparinized
tubes containing 5 μL Trasylol (aprotinin; 10000 KIE/mL;
Bayer HealthCare AG, Leverkusen, Germany), immediately
centrifuged whereupon plasma was separated and stored
at −20◦C until analysis for glucose, glucagon, insulin, and
acetaminophen.

2.3. Analyses

Plasma glucagon was determined with radioimmunoassay
(Linco Res, St Charles, Mo, USA) with a guinea pig
antiglucagon antibody, radioiodine labelled glucagon as
tracer and glucagon standard. CV of the assay is 8% and
the sensitivity of the assay is 10 pg/mL. The antibodies do
not cross-react with GLP-1. Plasma insulin was determined
with radioimmunoassay (Linco) with a guinea pig antirat
insulin antibody, radioiodine labelled human insulin as
tracer and rat insulin as standard. Plasma acetaminophen
was determined with a colorimetric assay (Cambridge Life
Science, Ely, Cambridgeshire, UK). Plasma glucose was
determined with the glucose oxidase method.

2.4. Calculations and statistics

Means± SEM are shown. Statistical comparisons were per-
formed with the Student’s t-test. For estimation of glucagon
secretion, the increase in plasma glucagon levels during
the first 15 minutes after protein gavage was estimated by
subtracting baseline glucagon values from the 15-minute
glucagon values. The area under the glucagon and insulin
curves (AUCs) were also calculated using the trapezoid rule.

3. RESULTS

3.1. Glucagon response to oral protein

Figure 1 (upper left panel) shows plasma glucagon levels
during the oral protein challenge. Baseline glucagon levels

were higher in the transgenic animals (41 ± 4.0 pg/mL, n =
6) than in the wildtype animals (19 ± 5.1 pg/mL, n = 5,
P = .015). Glucagon levels at 15, 30, and 60 minutes after
protein administration did not differ significantly between
the groups, whereas the levels after 120 minutes were, again,
significantly, higher in the transgenic animals (P = .008).
Glucagon secretion was estimated as the change in glucagon
levels during the first 15 minutes after protein gavage. This
15-minute glucagon response to protein administration was
impaired in the transgenic animals, being 21 ± 2.7 pg/mL
in transgenic mice versus 38 ± 5.7 pg/mL in wildtype mice
(P = .027). The suprapasal AUC for glucagon for the entire
120-minute study period did not differ significantly between
the groups, being 4.3± 1.1μg/mL × 120 minutes in wildtype
mice versus 3.9 ± 0.9μg/mL × 120 minutes in transgenic
mice.

3.2. Insulin and glucose responses to oral protein

Baseline insulin levels were 50 ± 5.1 påmol/L in wildtype
animals and 46 ± 4.9 pmol/L in transgenic mice (NS).
The insulin response to protein ingestion was impaired in
transgenic mice; the suprabasal AUC for insulin for the 120-
minute study period was 27.2 ± 3.1 nmol/L × 120 minutes
in wildtype animals versus 16.5± 3.9 nmol/L × 120 minutes
in transgenic animals (P = .018) (Figure 1, upper right).
Baseline glucose levels were 7.2 ± 0.3 mmol/L in wildtype
animals and 7.8 ± 0.2 mmol/L in transgenic mice (NS);
glucose levels did not change significantly during the test
(Figure 1, lower left panel).

3.3. Acetaminophen response to acetaminophen
administration

Figure 1 (lower right) shows the acetaminophen concen-
trations during test. Plasma acetaminophen increased to a
maximum level at 15 minutes after administration, thereafter
it gradually fell. There was no significant difference between
the groups in plasma acetaminophen.

4. DISCUSSION

This study evaluated the islet hormone responses to oral
protein ingestion in mice with β-cell specific overexpression
of human IAPP. It was found that the insulin response to
protein was impaired in transgenic mice. This confirms that
these mice have impaired insulin secretion, as previously
was reported also after oral glucose challenge [15]. The
main novel finding in this report is, however, that the
transgenic mice have also changes in the glucagon levels.
Thus, the mice were found to have higher baseline glucagon
levels than their wildtype counterparts and yet they have a
reduced glucagon response to protein administration. The
mechanism of the high-baseline glucagon remains to be
established. It is, however, consistent with the disturbance
in islet topography in these mice. Thus, we have previously
shown that the islets of these mice have enlarged population
of glucagon producing α cells as opposed to the reduced
β-cell immunostaining in these animals which is associated
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Figure 1: Plasma levels of glucagon, insulin, glucose, and acetaminophen following administration of whey protein (75 mg) and
acetaminophen (2 mg) in female wildtype mice (n = 5) and transgenic mice with β-cell specific overexpression of hIAPP (n = 6).
Means± SEM are shown. Asterisks indicate probability level of random difference between the two groups (∗P < .05).

with significantly reduced islet insulin content [16]. This
hyperglucagonemia may be the result of the reduced islet
insulin, in view of the inhibitory influence of insulin on
glucagon secretion. At the same time, the glucagon response
to the protein administration was impaired, which may
be explained by the transgene, because IAPP is known
to inhibit glucagon secretion [8–11]. Hence, high-baseline
glucagon and impaired glucagon response to stimulation are
two characteristics of the hIAPP transgene, and may have
different mechanisms.

In this study, we also determined the acetaminophen
concentration after acetaminophen administration to deter-
mine whether gastric emptying had been altered in the
transgenic mice. Previously, inhibition by IAPP of gastric

emptying has been demonstrated [11] and changes in gastric
emptying would be a mechanism for changes in glucagon
secretion after protein administration. The acetaminophen
test has previously been validated in humans [20] and
used in a previous study in mice [17]. It is based on the
poor absorption of acetaminophen from the stomach and
the rapid and almost complete absorption from the small
intestine. This implies that plasma acetaminophen profiles
give an estimation of gastric emptying, which also has
been verified as good correlation with isotopic technique
measurements of gastric emptying [21, 22]. We found that
there was no difference in plasma acetaminophen profiles
between transgenic and wildtype mice. This shows that the
increase in β-cell IAPP expression does not affect gastric
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emptying, and, therefore, the inhibited glucagon response
to oral protein in these mice is not due to impaired gastric
emptying.

In conclusion, this study has shown that β-cell specific
overexpression of human IAPP increases baseline glucagon
levels and impairs the glucagon response to oral protein
in association with impaired insulin response. This shows
that a disturbed α-cell function in these mice is evident in
association with the previously described disturbed β-cell
function [15, 16].
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