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Abstract

Eliciting broadly neutralizing antibodies (bnAb) in cervicovaginal mucus (CVM) represents a promising ‘‘first line of defense’’
strategy to reduce vaginal HIV transmission. However, it remains unclear what levels of bnAb must be present in CVM to
effectively reduce infection. We approached this complex question by modeling the dynamic tally of bnAb coverage on HIV.
This analysis introduces a critical, timescale-dependent competition: to protect, bnAb must accumulate at sufficient
stoichiometry to neutralize HIV faster than virions penetrate CVM and reach target cells. We developed a model that
incorporates concentrations and diffusivities of HIV and bnAb in semen and CVM, kinetic rates for binding (kon) and
unbinding (koff) of select bnAb, and physiologically relevant thicknesses of CVM and semen layers. Comprehensive model
simulations lead to robust conclusions about neutralization kinetics in CVM. First, due to the limited time virions in semen
need to penetrate CVM, substantially greater bnAb concentrations than in vitro estimates must be present in CVM to
neutralize HIV. Second, the model predicts that bnAb with more rapid kon, almost independent of koff, should offer greater
neutralization potency in vivo. These findings suggest the fastest arriving virions at target cells present the greatest
likelihood of infection. It also implies the marked improvements in in vitro neutralization potency of many recently
discovered bnAb may not translate to comparable reduction in the bnAb dose needed to confer protection against initial
vaginal infections. Our modeling framework offers a valuable tool to gaining quantitative insights into the dynamics of
mucosal immunity against HIV and other infectious diseases.
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Introduction

During vaginal transmission of HIV-1, virions in semen must

traverse the thin layer of cervicovaginal mucus (CVM) coating the

vaginal epithelium before they can encounter and potentially

infect target cells (lymphocytes, macrophages, dendritic cells and

Langerhans cells). Due to the presence of substantial quantities of

secreted and transudated antibodies (Ab) [1,2], CVM possesses

both diffusional and immunological barrier properties against

sexually transmitted viruses. In women with healthy vaginal

microflora, lactobacilli secrete substantial levels of lactic acid,

producing an acidic (pH ,3.5–4) environment that inactivates

leukocytes within minutes [3]. Thus, few immune cells capable of

opsonization and antibody-dependent cell-mediated cytotoxicity

(ADCC) are actually present in healthy CVM secretions, which

also exhibit limited complement activity [4–6]. Neutralization, a

process in which secreted or topically-applied Ab engage the

gp120/gp41 trimeric glycoproteins (Env) on HIV at sufficient

stoichiometry to preclude their attachment to target cells, is thus

generally thought to be a critical component of sterilizing

immunity against initial HIV infections in the vagina [7]. Effective

neutralization in the vaginal lumen that directly reduces the rates

of acquiring initial infections, rather than attempting to clear

infections, may be especially important since HIV infections

remain difficult to cure once established.

In response to the tremendous genetic diversity of HIV, a series

of monoclonal Ab capable of broadly neutralizing diverse strains of

HIV across different clades (abbreviated here as bnAb) have been

recently discovered that not only neutralize a much greater

diversity of HIV strains than previously, but also extend the in vitro

geometric mean IC50 (the concentration necessary to reduce

infectivity by 50%) into ng/mL potencies [8–10]. Because of the
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high affinity of typical Ab-antigen binding, it is generally assumed

that these potent bnAb rapidly bind to and neutralize HIV.

However, viruses that transmit at mucosal surfaces have generally

evolved to readily penetrate mucus [11]. Indeed, HIV virions

(diameter ,100 nm) exhibit rapid diffusion in pH-neutralized

CVM, enabling their rapid penetration across physiologically thick

mucus layers in tens of minutes [12]. Thus, there is a very limited

time window during which bnAb must accumulate on HIV at or

above the neutralizing threshold before the virions can successfully

diffuse across CVM and reach target cells. This challenge is not

readily captured by most in vitro studies, where the majority of

assays evaluate protection by incubating Ab with HIV for defined

durations (e.g., 60 mins, some extending to overnight) prior to

assaying infection of target cells over a 48–72 hr period. This

procedure likely ensures greater Ab coverage on HIV prior to their

exposure to target cells in vitro. It remains unclear whether bnAb in

CVM at in vitro IC50 or IC80 concentrations can achieve

neutralization potencies comparable to those measured in vitro

within the limited time window before virions successfully

penetrate mucus and infect target cells, or if not, how much more

bnAb may be needed to achieve such sterilizing immunity in the

human vagina.

To address these competing processes and their respective

timescales, as well as gain insight into the dynamics of vaginal HIV

infection, we developed a mathematical model that captures the

competition between bnAb accumulation on the fusion-competent

envelope glycoprotein of HIV and HIV penetration of CVM from

semen in the lumen. Using previous measurements of HIV

mobility and Ab diffusivities in human genital secretions, estimates

of CVM thickness, and binding affinities for different bnAb based

on surface plasmon resonance (SPR) measurements, we model the

minimum Ab levels in CVM necessary to achieve 50% and 80%

coverage of the HIV Env spikes before HIV virions can reach the

vaginal epithelium. We also present theoretical binding affinities

for bnAb that may enable protective immunity against HIV in the

human vagina.

Materials and Methods

Defining model parameters capturing vaginal
transmission of cell-free HIV

Our mathematical model describes the dynamics of male-to-

female HIV transmission, beginning the instant semen is

ejaculated into the vaginal lumen and tracking HIV virions until

they reach the vaginal epithelium (see Figure 1 for schematic;

Table 1 lists the various input parameters). Once virions reach the

epithelial lumen, virions must still access target cells in the

epithelium, and intact stratified vaginal epithelia has long been

believed to serve as a mechanical barrier excluding virus access.

Nevertheless, HIV virions have been observed to quickly penetrate

the superficial layers of the stratified epithelium in human cervical

explants and the female rhesus macaque genital tract, thereby

gaining access to superficial Langerhans cells and CD4 T cells

[13,14]. The timescale required for successful cellular penetration

of HIV may be further reduced by any pre-existing micro or

macro lesions in the epithelium as well as abrasions upon coital

stirring [15,16]. Thus, in the absence of an established mathe-

matical model that can accurately recapitulate HIV penetration of

the squamous epithelium, we chose virion passage through the

CVM layer as the time scale to evaluate Ab coverage on virions.

Similar assumptions were previously made by the Katz group to

model the efficacy of microbicides against HIV [17,18].

The vaginal epithelium is highly folded into collapsed ‘‘rugae’’

coated with a layer of viscoelastic and adhesive cervicovaginal

mucus (CVM) gel (Figure 1, top left panel). During coitus, the

epithelium becomes stretched and exposed. We thus model the

vaginal epithelial surface as the inner surface of a simple cylinder

coated with a roughly d = 50 mm thick CVM layer containing

different concentrations of elicited or topically dosed bnAb. The

thickness of the CVM coating is estimated based on total volumes

of mucus that can be collected in the absence of coital stimulation,

and assumed to be constant and uniform (see footnote (ii), Table 1;

Figure 1). Following ejaculation, seminal fluid is assumed to evenly

overlay the CVM layer with a thickness of ,200 mm, with virions

uniformly dispersed within the seminal secretions at a density of

Figure 1. Schematic of our model for HIV diffusion from seminal secretions across antibody-laden cervicovaginal mucus (CVM)
layer to underlying vaginal epithelium. To reduce infection, we assume Ab must bind to HIV before virions successfully reach the vaginal
epithelium.
doi:10.1371/journal.pone.0100598.g001
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2.86105 virions/mL (Table 1). Due to rapid diffusivity of protons,

semen-mediated neutralization of CVM is assumed to occur

instantaneously; we have previously found HIV virions readily

diffuse across pH-neutralized CVM, but not acidic native

secretions from women with healthy, lactobaccili-dominated

vaginal flora [12]. Virions, with N� = 1467 Env trimers (range

4–35) [19], are assumed to maintain native infectivity for the entire

duration of the model; thermal degradation based on gp120

shedding (T1/2 , 30 hrs) and thermal degradation from RNA

polymerase decay (T1/2 , 40 hrs) were not incorporated because

of the substantial difference in the rate of these processes from the

time scale of interest [20]. Because the kinetics of HIV virions

penetrating the vaginal epithelium and reaching target cells in the

submucosa remain poorly understood, the mobility and number of

bound bnAb on each virion is simulated until the virion reaches

the vaginal epithelium, or at the end of 2 hrs, whichever comes

first. The affinities for different bnAb to purified gp120 as

measured by SPR, as well as the corresponding IC50 and IC80

against the HIV strains from which the purified gp120 are derived,

are listed in Table 2. It is important to note that there are

substantial variations in the approaches used to measure binding

affinities, which range from the use of monomeric gp120 binding

to immobilized IgG, to Fab binding to directly immobilized

monovalent gp120, to IgG binding to directly immobilized,

uncleaved trimers but fitted with a model for monovalent

interaction, and finally the binding of uncleaved trimers to

captured Fabs, a potentially trivalent interaction, fitted with a

monovalent model. None of these approaches would yield the

perfect kon/koff values for the model here, but in the absence of

other reported binding affinity values, we use the currently

available literature values as a first estimate. We subsequently

included a phase diagram that explores in detail how variations in

kon/koff might impact our conclusions.

Modeling simultaneous diffusion of HIV-1 and Env-
binding Ab

We model viruses and bnAb undergoing Brownian motion in

CVM/semen mixture, assuming coital stirring motion does not

influence the movement of virions into the epithelial layer, due to

the viscoelastic nature of CVM. When mucus is sheared between

two surfaces, adhesive contacts and entanglements between mucin

fibers are drawn apart and a slippage plane forms parallel to the

two surfaces, which is reflected by the shear-thinning rheological

profile of mucus [4,21]. Thus, while the viscous drag between the

surfaces drops considerably, enabling mucus to function as an

effective lubricant, the gel layers adhering to both surfaces remain

unstirred even in the presence of vigorous shearing actions. Hence

viruses in semen are unlikely to get easily stirred into the mucus

layer adhering to the vaginal epithelium.

We model the dynamics of virions and bnAb in two ways: a

hybrid stochastic/deterministic system in which we simulate

individual virion paths each with unique bnAb binding and

unbinding timelines, and a fully deterministic system in which the

binding and unbinding rates are expressed in terms of virion and

bnAb concentrations. Deterministic models of the virion-bnAb

Table 1. Parameters and values incorporated into the model.

Category Parameter Symbol Value Reference(s)

HIV-1

Radius rHIV 50 nm [19]

Diffusivity in semen Assume same as in CVM

Diffusivity in CVM Dv 1.27 mm2/s i [12]

Viral load in semen 8.46105 copies/ejaculate ii [47], [48]

Number of Env trimer spikes N* 14+/27 (s.d.) [19]

bnAb (IgG)

Diffusivity in semen Assume same as in CVM

Diffusivity in CVM DAb 40 mm2/s [11,32]

bnAb conc in CVM Variable

bnAb – Env affinity kon, koff Variable; see Table 2

Vagina

Surface area of lumen SAvagina 145 cm2 iii [49,50]

Volume of luminal CVM VCVM ,750 uL [51,52]

Thickness of CVM Layer HCVM
iv 50 mm v

Volume of semen VSemen ,3.0 mL [48]

Thickness of semen layer HSemen
iv 200 mm v

iGeometrically averaged Deff for HIV was previously measured to be 0.25 mm2/s, but with substantial fraction of viruses exhibiting more rapid mobility. For the current
analysis, we used 1.27 mm2/s, which represented the top 25th percentile of virus mobility; this is in reasonable agreement with a more recent study of HIV diffusion in
genital secretions [53].
iiEstimated based on a median semen volume of 3.0 mL [48], and 2.86105 HIV-1 RNA copies/mL, which represents the upper limit of HIV-1 RNA copies/mL in seminal
plasma from [47]. This is in reasonable agreement with another report by Chakraboty el al., which estimated 56105 HIV-1 RNA copies/ejaculate, with a maximum of
about 26107 HIV-1 RNA copies/ejaculate [54].
iiiThe mean surface area of the vagina in the native state was previously estimated to be ,90 cm2 by injection of vinyl polysiloxane casts vaginally. Alternatively, surface
area of vaginal lumen may also be inferred by the surface area of erect penis (average ,200 cm2) assuming complete insertion into the vagina. We took the average
from the two approaches.
ivIn the Materials and Methods section, HCVM is referred to as d and HCVM+HSemen = L.
vHCVM estimated by VCVM/SAvagina; HSemen estimated by VSemen/SAvagina.

doi:10.1371/journal.pone.0100598.t001
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binding kinetics have been previously described by Geonnotti and

Katz [18] and more recently by Magnus [22]. The model of

Gennotti and Katz also incorporates much of the same biophysical

geometry as presented here, while the model developed by

Magnus et al. [22,23] provides a rich investigation of the

neutralization of virions that results from bnAb binding. When

viral concentrations are low, the dynamics are intrinsically

stochastic. Our stochastic/deterministic hybrid model yields more

detailed information concerning the distribution of possible events

and reveals the important role played by constraints to the length

and time scales appropriate for in vivo dynamics.

In the stochastic/deterministic hybrid model, we describe the

movement of an individual virion through the CVM layer by one-

dimensional Brownian motion:

Z tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DHIV

p
W tð Þ

where Z tð Þ denotes the distance from the epithelial layer of a

virion at time t, W tð Þ denotes standard Brownian motion, and

DHIV is the viral diffusivity. This diffusion coefficient was assumed

to be constant and independent of the evolving number of bound

bnAb; the increase in hydrodynamic diameter of Ab-virus

complex, even when the virion is completely saturated with Ab,

is unlikely to be more than 5–10 nm on a 100 nm virion, and thus

assumed to be negligible. At the time of ejaculation, virions are

assumed to be uniformly distributed throughout the seminal fluid

layer, Z t~0ð Þ*Unif d,L½ �ð Þ, where L is the distance of the

semen-air interface from the epithelium, d is thickness of the CVM

layer, with d and L estimated as 50 mm and 250 mm, respectively

(see Figure 1). The boundary at z~L (i.e., the semen-air interface)

is considered to be reflecting, while the boundary between the

mucus and the epithelial layer z~0ð Þ is absorbing.

There are severe computational limitations to direct simulation

of the diffusion of 1012 IgG molecules with specification of their

respective distances from the closest virions. Consequently, we

adopted a continuum model to describe the average local

concentration of bnAb molecules available to bind HIV virions,

an approach used by the Katz group to model the dynamics of

microbicide protection against HIV [17,18]. We assume that

bnAb are uniformly distributed throughout the CVM layer

(0ƒzƒd) at the time of ejaculation (t~0). The diffusion of bnAb

into the seminal fluid layer is described by the diffusion equation

over the region 0vzvL:

Lu

Lt
~DAb

L2u

Lz2

where u z,tð Þ is the local concentration of antibodies, with initial

condition u z,t~0ð Þ~u0,z[ 0,d½ � and reflecting boundary condi-

tions at both z~0 (mucus-epithelia interface) and z~L (air-semen

interface).

Kinetics of Ab accumulation on HIV-1
The dynamics of bnAb accumulation on HIV virions depend on

(i) bnAb binding affinity to the Env spike (which incorporates the

‘‘on rate’’ kon for binding and ‘‘off rate’’ koff for unbinding), (ii) the

local bnAb concentration surrounding the virions (which deter-

mines the encounter rate), and (iii) the number of available, bnAb-

free Env spikes on the virion. To formulate the equations

describing the reaction kinetics (see also [18,22]), we introduce

the notation Abð ÞnZ tð Þ to indicate an HIV virion with n bound

bnAb that is located at distance Z from the epithelial layer at time

t. To mimic the observed distribution of 1467 Env trimers (range

4–35) [19], we select the simulated number of Env trimers N� from

a Negative Binomial distribution with parameters chosen to yield

the observed mean and standard deviation. With the exception of

bnAb with one Fab bound per trimer (e.g., PG9), there are 3N�
gp120 epitopes available for bnAb binding per Env, and the

reaction kinetics can be summarized by the following rates for Ab

binding and unbinding between n and nz1 bound bnAb states:

Table 2. Binding kinetics and neutralization potencies of bnAb.

Ab Env strain & type kon [M21s21] koff [s21] IC50 [mg/mL] IC80 [mg/mL] Reference(s)

b12* YU2 gp120 4.85e4 1.85e-3 2.2 7.8 [10]

b12 JRFL gp120 7.06e4 4.74e-3 0.022 0.075 [10,55]

b12 JRCSF gp120 1.73e5 4.77e-3 0.096 0.874 [10,56]

2G12 92UG037.8 gp140 8.4e3 6.0e-3 45.24 [57,58]

2G12* HXB2 gp120 1.83e5 1.08e-3 1.01 2.19 [1,59]

VRC01* YU2 gp120 1.43e4 5.56e-5 0.126 0.372 [10]

VRC01 YU2 gp140 1.83e4 8.08e-6 0.12 0.372 [60]

VRC01 92UG037.8 gp140 1.6e4 6.4e-5 0.035 0.130 [1]

VRC03* YU2 gp120 1.33e4 9.74e-4 0.037 0.115 [10]

NIH45-46* YU2 gp140 4.26e4 2.87e-4 0.05 0.08 [60]

PG9 ZM109 gp120 2.95e4 2.85e-3 0.106 2.64 [1]

PG9 C97ZA012 gp140 1.4e4 2.5e-3 8.20 .25 [57]

PG9* 92UG037.8 gp140 1.9e4 1.0e-3 0.04 0.17 [57]

PG16 C97ZA012 gp140 1.6e4 4.2e-3 2.90 .25 [57]

PG16* 92UG037.8 gp140 2.4e4 1.8e-3 ,0.01 0.03 [57]

VRC-CH31 C97ZA012 gp140 9.7e3 1.3e-4 0.18 0.47 [57]

VRC-CH31* 92UG037.8 gp140 8.9e3 4.0e-5 0.04 0.08 [57]

Asterisks indicate kon and IC values that were used in our model to generate Figures 3B, 4 and Figure S2 in File S1.
doi:10.1371/journal.pone.0100598.t002
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Abð Þz Abð ÞnZ tð Þ
nz1ð Þkoff

'

(3N�{n)konu Z tð Þ,tð Þ
Abð Þnz1

Z tð Þ

Mathematically, we treat N tð Þ–a time-dependent stochastic

process for the number n of bnAb bound to a given virion–as a

continuous time random walk (CTRW) on the values 0, . . . ,3N�f g
with Markovian transitions because we assume for simplicity that

the probability of gaining or losing an antibody depends

exclusively on the state of the virion-bnAb system at time t. The

respective probabilities of gaining an antibody, losing an antibody,

or undergoing no change at a location z during an infinitesimal

time increment of size Dt are:

P(N tzDtð Þ{N tð Þ~1jN tð Þ~n)~(3N�{n)konu z,tð ÞDtzo Dtð Þ

P(N tzDtð Þ{N tð Þ~{1jN tð Þ~n)~nkoff Dtzo Dtð Þ

P(N tzDtð Þ{N tð Þ~0DN tð Þ~n)

~1{(3N�{n)konu z,tð ÞDt{nkoff Dtzo Dtð Þ:

The first equation, for example, asserts that the probability of a

binding event occurring in the small time interval Dt, i.e.,

P N tzDtð Þ{N tð Þ~1ð Þ, conditional on currently being bound

by n bnAb, i.e., N tð Þ~n, is proportional to the local bnAb

concentration u z,tð Þ and the total number of available spikes

(3N�{n). The probability of more than one binding event is

higher order in Dt [o Dtð Þ,that is, going to zero faster than Dt in the

limit of small Dt] [24]. Because the number of bnAb is large

compared to the number of virions, even at relatively low

concentration (e.g., 0.01 mg/mL), we ignore local depletion of

unbound bnAb that may occur after a binding event. Because the

reaction rates are time dependent we implemented a Poisson

thinning method [25], which is described in the supplemental text

in File S1.

In order to validate our conclusions from the above probabilistic

discrete event model, we compare results from a continuum model

for both the virus and bnAb populations to binding kinetics

modeled via coupled partial differential equations describing the

local concentrations of virions with each possible number of bound

bnAb. This is valid when both populations are very large. In this

formulation, virus concentration is given as a vector

~vv z,tð Þ~ v0 z,tð Þ,v1 z,tð Þ, � � � ,v3N� z,tð Þð ÞT , with each component of

the vector indicating the concentration profile of virions bound by

the given number of bnAb. Instead of a Brownian motion

description of individual particle paths, the virus concentration for

each vector component was modeled by the diffusion equation

Lvi

Lt
~DHIV

L2vi

Lz2
, for i~0,1, . . . ,3N�. Boundary conditions are

absorbing at z~0 and reflecting at z~L. The Forward Time

Central Space scheme was used to evolve the diffusion equation.

Then the flux for each component at the boundary z~0 is

measured with Fick’s law: Fi tð Þ~{DHIV
Lvi

Lz
. The Markovian

probabilities for gain, loss, and no change in the time increment Dt
specify transition probabilities in a matrix S tð Þ, depending on the

kinetic rate constants and on the evolving bnAb concentration

u z,tð Þ, which we use to update the bound populations in a first-

order implementation of the form ~vv z,tzDtð Þ~S~vv z,tð Þ. The

continuum model agrees extremely well with the Brownian/

continuum model for both virus and bnAb populations, and is

used to generate Figures 2–5.

It should be noted that a continuum model for bnAb population

fails to rigorously account for the propensity for a given bnAb to

immediately rebind to a virion after unbinding, either at the same

or neighboring gp120 site. To compensate for the resulting

overestimate in effective unbinding rates, which is reflected in

Figure 2. Diffusion of HIV from seminal secretions across CVM to the underlying vaginal epithelium. (A–C) Concentration profile of HIV
and broadly neutralizing antibodies (bnAb) in the semen and CVM layers at (A) T = 0 min, (B) T = 10 min, and (C) T = 30 min. (D) Flux of HIV virions
arriving at the vaginal epithelium over the first two hours post-ejaculation. 2000 virions correspond to roughly ,0.25% of the HIV viral load
(estimated by RNA copy numbers) in semen. (E) The fraction of total HIV viral load in semen that has penetrated across a 50 mm CVM layer over the
first two hours post-ejaculation.
doi:10.1371/journal.pone.0100598.g002
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Figure 3. Accumulation of different bnAb on HIV virions over time. (A) Concentration of bnAb necessary to bind to 50% of the Env spikes of
HIV (BE50) vs. in vitro IC50 measurements. Dashed line indicates that a 50% reduction in fraction of available Env trimers directly correlates to 50%
drop in overall HIV infectivity in vitro. (B) Kinetics of bnAb accumulation on HIV virions over the first two hours, as measured by the reduction in
fraction of bnAb-free vs. total Env spikes. The kon and koff values for different bnAb in Figure 3A are listed in Table 2; selected ones used in Figure 3B
are highlighted in the table.
doi:10.1371/journal.pone.0100598.g003

Figure 4. Accumulation of NIH45-46 on HIV virions that have diffused across CVM over the first two hours post-ejaculation. (A–C)
Distribution of number of NIH45-46 bound per HIV virion that penetrated CVM, where the initial NIH45-46 concentrations in CVM is (A) 0.1 mg/mL, (B)
1 mg/mL and (C) 5 mg/mL. HIV virions are assumed to have n = 1467 Env spikes; IC50 of NIH45-46 for given kon/koff pair (YU2 gp140) is ,0.050 mg/mL.
(D–F) Distribution of number of NIH45-46-free Env spikes on HIV virions that penetrated CVM, where the initial NIH45-46 concentrations in CVM is (A)
0.1 mg/mL, (B) 1 mg/mL and (C) 5 mg/mL. (G–H) Estimated initial concentration of different bnAb in CVM necessary to reduce the average number of
bnAb-free Env trimers by (G) 50% (i.e. BE50) and (H) 80% (i.e. BE80) (indicated by bars), compared to previously reported IC50 and IC80 values for the
respective bnAb (indicated by lines). Listed number in (G) and (H) above each bar represents the ratio of BE50 vs. IC50 and BE80 vs. IC80, respectively.
doi:10.1371/journal.pone.0100598.g004
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neutralization statistics IC50 and IC80 that do not correlate

precisely with measured reaction rates kon and koff, we adopt an

effective unbinding rate for koff as described in the following

section.

bnAb neutralization of HIV
Determining the number of bnAb required to neutralize a given

virion remains an active area of research, due to the difficulty in

simultaneously distinguishing the number of Ab necessary to

neutralize a particular Env spike and the minimum number of Ab-

free Env spike necessary for HIV to successfully infect [23]. It was

previously proposed that the binding of a single Ab molecule to an

Env spike is sufficient to inactivate the infectivity associated with

that spike [26]. The minimum number of Ab-free Env spikes, and

consequently the number of Env spikes that must be inactivated to

neutralize a virion, remain more controversial. Estimates for

minimum infectivity ranged from a single Ab-free Env spike [26]

to many [27,28]. For our current model, we assume that each

additional Ab binding to a previously unoccupied Env incremen-

tally reduces the likelihood of infection. To validate the hypothesis

that neutralization scales approximately with the decrease in the

number of Ab-free Env spikes, we performed a steady state

analysis of bnAb accumulation on HIV using reported binding

affinities, and compared the results to their corresponding IC50

values. When considering neutralization studies, the model

simplifies significantly because bnAb concentration is assumed to

be well-mixed and uniform u z,tð Þ: A½ � for all z and t. Assuming

that each binding site interacts with the bnAb population

independently, the distribution of the number of free Env is

readily shown to be a Binomial distribution on N� independent

trials with a time-dependent success probability, q tð Þ, having the

form

q tð Þ~ 1

1zKA A½ �z
KA A½ �

1zKA A½ �

� �
exp {koff 1zKA A½ �ð Þt
� �

:

where KA = kon=koff . Letting t??, the first term
1

1zKA A½ �
represents the steady-state probability that a given gp120 site is

free. The second term reflects that the probability of being in the

transient, initial bnAb-free state at time zero decays exponentially

with rate koff 1zKA A½ �ð Þ. It follows that the fraction of Ab-free

gp120 sites in steady state is binomially distributed with 3N� trials

and success probability 1zKA A½ �ð Þ{1
. Therefore the steady-state

probability that all three gp120 epitopes on a given Env trimeric

spike are free of bound Ab is simply 1zKA A½ �ð Þ{3
.

We found general agreement between IC50 values and the

predictions of this model. However, the level of agreement was not

entirely satisfactory. We believe this is because the model, by

adopting unbinding rates measured by SPR techniques in the

presence of fluid flow, likely fails to capture the rapid rebinding of

bnAb molecules that have recently become unbound, but remain

in very close proximity to the binding surface of the virion. This

leads to an overestimate of the effective unbinding rate and

consequently an underestimate of total bound bnAb. To

compensate for this gap – when attempting to emulate the

dynamics of known bnAb – we took the IC50 values as primary

indicators of bnAb performance, and developed a set of ‘‘effective

koff’’ values that calculate the kinetic rates necessary for the model

to produce the observed neutralization data.

Assuming a single bnAb bound to one of the three gp120 sites is

sufficient to render that particular Env spike non-infectious

[23,26,29], the reduction in the mean fraction of Ab-free Env

spikes on a HIV virion population is expected to correlate directly

with the drop in viral infectivity [30,31]. This enables direct

calculation of an effective koff from experimentally derived IC50

and kon values, namely an effective koff (denoted k̂koff ) should satisfy

0:5~ 1z
konIC50b̂

kk̂kkoff

0
@

1
A{3

. In other words, at steady state with a

concentration of bnAb equal to IC50, the combination of konand

k̂koff results in 50% of the Env spikes being Ab-free. For a given

time scale T, we denote the bnAb concentrations that reduce the

average Ab-free trimers across the viral population by 50% and

80% as BE50 tð Þ and BE80 tð Þ (BE = Bound Env), respectively.

Naturally, BE50 ?ð Þ and BE80 ?ð Þ values at steady state calculated

from kon and corrected effective koff directly scale with in vitro IC50

and IC80. In virtually all cases, the corrected effective koff was

lower than experimentally measured koff (i.e., exhibiting greater

affinity to Env). Our goal in assessing how in vitro performance

compares to that in vivo essentially involves the calculation of

Figure 5. Phase diagrams correlating the kinetic constants (kon, koff) and Ab concentration necessary to achieve the desired
average reduction in the fraction of Ab-free Env spikes for HIV virions that have penetrated CVM during the first 2 hours post-
ejaculation. (A) The product of kon and initial bnAb concentration in CVM vs. koff. (B) Effects of kon vs. initial bnAb concentration in CVM, assuming
koff is 161024 s21.
doi:10.1371/journal.pone.0100598.g005
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BE50 tð Þ and BE80 tð Þ where t is the random time it takes for a

virion to traverse the CVM layer. We observe strong agreement

between these calculated BE50 2hoursð Þ values to the observed

IC50 (Figure 3A). While the introduction of an effective koff helps

bring the predictions of the kinetic model in line with in vitro

neutralization studies, we emphasize that this does not affect our

conclusion of the relative importance of kon vs. koff in vivo. This fact

is captured in the heat map representation of neutralization given

in Figure 5: changes in koff by log-decades yield only marginal

improvement in predicted in vivo protection. Indeed, this is

observed even when we remove the possibility of unbinding and

set koff to zero.

Results

HIV-1 can quickly traverse CVM layers
IgG, the predominant Ab found in CVM rather than IgA [1,2],

diffuses largely unhindered through mid-cycle human cervical

mucus [11,32]. Owing to this high diffusivity, IgG in CVM readily

enters the semen layer, and achieves essentially uniform distribu-

tion across the CVM/semen mixture within minutes (Figure 2). In

contrast, although HIV virions are readily mobile in pH-

neutralized human CVM, their effective diffusivity is over 30-fold

slower than that of IgG molecules [12]; thus, the distribution of

HIV across semen/CVM mixture remains non-uniform even after

2 hrs, with the majority of the virions (,70%) still retained in the

seminal secretions. Nevertheless, the first virions can reach the

vaginal epithelium very quickly, and it takes only ,10 and

,20 mins post-ejaculation before ,1% and ,5% of the total

HIV virions in semen (corresponding to an average of 8.46103

and 4.26104 RNA copies, assuming a median of 8.46105 RNA

copies per ejaculate) can reach the vaginal epithelium, respective-

ly. The peak HIV flux (rate of virions reaching the epithelium)

occurs roughly 20 mins post-ejaculation, and within 2 hrs nearly

30% of the initial HIV load has reached the vaginal epithelium.

These results highlight the limited time window for bnAb in CVM

to neutralize HIV virions in the vaginal lumen.

Rates of bnAb accumulation on HIV virions are slower
than generally thought

We find that many of the recently discovered bnAb require

more than 1–2 hrs to reach the steady state number of bound

bnAb per virion (Figure 3B). Even at a bnAb concentration of

1 mg/mL, which is roughly 10- to 20-fold higher than the IC50 and

IC80 for many bnAb-HIV strain pairs (with the exceptions of b12

and 2G12 against the YU-2 and HXB2 strains, respectively),

steady state virion binding is not observed for most bnAb after the

typical 1 hr incubation period. These results confirm recent data

by Ruprecht et al., which showed neutralization potencies of bnAb

steadily increase with increasing Ab-virus incubation period from

1 hr to 20 hrs [33]. Together, these results underscore the slow

binding kinetics of bnAb to HIV despite their exceptional

neutralization potencies as measured by standard pre-clinical

neutralizing antibody assays. Because our model approximates the

drop in infectivity to the decrease in the fraction rather than

absolute number of bnAb-free Env spikes, the neutralization

kinetics of different bnAb is only weakly dependent on the actual

number of Env spikes on native HIV virions.

Effective neutralization in CVM requires markedly higher
bnAb concentrations than in vitro estimates

To evaluate the competing time scales of binding and diffusion

in vivo, we combine the above virus diffusion rates and Ab-binding

kinetics to estimate the number of bound bnAb, residual Ab-free

Env proteins and relative infectivity for each HIV virion that

successfully diffuses across the CVM layer and reaches the vaginal

epithelium (Figure 4). We use NIH45-46, one of the most potent

bnAb reported to date [8] and among the fastest to achieve

equilibrium binding among the recently discovered bnAb in our

model, as the reference. The majority of viruses that reached the

vaginal epithelium have either zero or one NIH45-46 bound to

them at initial CVM concentration of 0.1 mg/mL (Figure 4A &

4D; Movie S1; IC50 = 0.05 mg/mL for YU2 strain of HIV used for

measuring affinity by SPR), suggesting NIH45-46 is unlikely to

protect against vaginal transmission of YU2 strain virions in vivo at

that particular concentration. Raising the NIH45-46 concentra-

tion in CVM to 1 mg/mL only modestly increases the number of

HIV-bound NIH45-46 (Figure 4B, 4E; Movie S2). A significant

increase in bnAb coverage, and corresponding drop in bnAb-free

Env, is only achieved at bnAb levels approaching 5 mg/mL

(Figure 4C, 4F; Movie S3). Indeed, our estimated BE50 and BE80

values for NIH45-46 against virions that penetrate CVM are 30-

and 50- fold greater than the in vitro IC50 and IC80 values (all

discussion of BE50 and BE80 values from here on refers to bnAb

concentrations necessary to reduce the fraction of Ab-free Env on

virions that penetrate CVM within 2 hrs by 50% and 80%). Much

of the decrease in mean residual Ab-free Env is observed with

virions that took relatively longer times (i.e., .30 mins) to

penetrate the CVM layer. Even at 5 mg/mL initial Ab concen-

tration in CVM, the fraction of NIH45-46-free Env sites is not

substantially reduced on virions that penetrate CVM within the

first 30 minutes post-ejaculation. Similar results are obtained even

under the extreme modeling assumption of fully suppressed Ab

unbinding; with koff = 0, the BE50 and BE80 for NIH45-46 are 1.3

and 3.8 mg/mL, respectively, which are still roughly 25- and 50-

fold greater than in vitro IC50 (0.05 mg/mL) and IC80 (0.08 mg/

mL) values. This suggests that improvement in koff alone is not

likely to improve protection in vivo.

We next estimate the bnAb accumulation kinetics for other

bnAb. For most of the recently discovered bnAb investigated with

our model, BE50 and BE80 values on virions that successfully

penetrate the CVM layer are at least 30- to 250-fold higher than

reported in vitro IC50 values. Our result is in good agreement with

studies from numerous groups that showed protection by passive

transfer of bnAb in macaques required concentrations substan-

tially greater than in vitro estimates [34–37]. The discrepancy

between the in vitro IC50 and our predicted BE50 values (or IC80 vs.

BE80) can be reduced by increasing kon (Figure 4G & 4H; Figure

S1 in File S1). Indeed, the two Ab with the highest kon in our

current analysis, 2G12 and b12, exhibit BE50 only 5-fold higher

than their IC50 estimates, despite their markedly weaker neutral-

izing potencies. Unlike many of the bnAb, 2G12 targets mannose

residues that are relatively accessible on the gp120 ‘‘glycan shield’’

[38], which likely accounts for its rapid binding kinetics. Despite

having one of the fastest unbinding rates, 2G12 has been

established as one of the most potent bnAb under in vivo conditions

[39]. For example, in a study from the Burton group [34], three

out of five macaques infused with 2G12 were completely protected

from infection, with one exhibiting delayed viral appearance and

diminished replication; in contrast, all 4 control macaques became

infected. The 90% neutralization titers (IC90) for serum 2G12 in

these animals was 1:1, suggesting 2G12 can offer substantial

protection at relatively low serum neutralizing titers [34].

The impact of kon on neutralization kinetics is insensitive
to the choice of infectivity threshold model

As discussed in the Materials and Methods section, there are a

number of infectivity models in the literature. To date, no
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experimental setup has yielded sufficient resolution to identify the

primary mechanism among these various candidates. In this

paper, we assumed infectivity scales with the fraction of Ab-free

Env. To ensure that our overall conclusions do not rest on this

assumption, we compared our results to the outcome of numerical

experiments using a minimum threshold model. In this alternate

model, in order for a virion to be infectious at all, we require that

there must be at least nmin Ab-free trimers on the virion’s surface.

The infectivity function is then incrementally increased for each

additional Ab-free trimer with relative infectivity given by
Nfree{nmin

N�{nmin

.

Figure S2 in File S1 shows the resulting modifications to BE50

and BE80 for the various Ab utilized in our simulations, as well as

the comparison to the respective published IC50 and IC80 values.

All BE values move closer to IC values for larger nmin, but the

large discrepancy between BE and IC values (BE50=IC50 and

BE80=IC80) is significant for all Ab other than 2G12 and b12, the

two bnAb that possess the greatest kon values in our list of bnAb-

HIV strain pairs. Furthermore, the ratio between the BE and IC
values for various Ab is similar regardless of nmin (Figure S3 in File

S1), suggesting that the choice of infectivity model does not

significantly affect the conclusions of this study.

Effectiveness of HIV neutralization in CVM is likely limited
by kon rather than koff

In the above analysis, bnAb exhibiting the lowest BE50 and

BE80 are also those with rapid kon, since these Ab can most quickly

engage an HIV virion and reduce its infectivity prior to the virion

reaching target cells. We thus seek to further analyze the antibody-

antigen affinity characteristics that would most likely effectively

neutralize HIV virions during male-to-female vaginal transmis-

sion. We find that Ab concentration and kon most directly

influence the reduction in mean number of Ab-free Env proteins

on HIV that reached the vaginal epithelium, whereas koff has a

relatively minor effect under these conditions. As long as effective

koff is less than 1024 s21, BE80 can be achieved when the product

of kon and Ab concentration exceeds 1.361023 s21. Assuming that

sustainable bnAb levels elicited by vaccination are unlikely to

exceed ,1% of the total vaginal IgG levels in CVM (mean:

,5406110 mg/mL), a BE80 equivalent to this concentration must

exhibit a kon in excess of 3.56104 M21 s21. This kon requirement

may be reduced if higher bnAb concentrations can be achieved by

topical prophylaxis.

Discussion

Although often under-appreciated, CVM represents the first

line of defense against sexually transmitted infections in the female

reproductive tract. In addition to minimizing trauma to the

vaginal epithelium upon coital stirring, the presence of the CVM

layer also prevents virions in semen from immediately contacting

the vaginal epithelium upon ejaculation, and directly reduces the

virion flux and total viral load in semen that can reach target cells

over time. Unfortunately, since HIV is generally not slowed

substantially in CVM, there is only a very limited window of

opportunity during which secreted or topically delivered Ab can

bind to and neutralize HIV before the virion encounters target

cells. Based on published measurements of bnAb affinity to

gp120/gp140 trimers, our model predicts that many monoclonal

bnAb, at IC50 and IC80 levels measured in vitro, are likely unable to

comparably neutralize most HIV strains within the time scale of

virion diffusion through the CVM layer. Thus, despite the orders

of magnitude improvements in in vitro neutralization potencies that

extend IC50 and IC80 for many HIV strains to the ng/mL levels,

bnAb levels in excess of 5–10 mg/mL in CVM prior to coitus may

be necessary to reduce rates of transmission of diverse strains of

HIV by 50–80%, especially against the virion outliers that traverse

the CVM layer most rapidly (Figure 4G & 4H). While the failure

of bnAb-based pre-exposure prophylaxis is frequently attributed to

poor extravasation of systemic IgG into genital secretions or non-

uniform distribution of topically delivered bnAb in the vaginal

lumen, our model introduces a third mechanism – inadequate

neutralization kinetics, especially against rapidly diffusing virions –

as another potentially important challenge to ensure sterilizing

vaginal immunity against HIV.

The need for relatively high levels of bnAb in CVM is likely

attributed in part to a striking dilution effect due to rapid diffusive

mixing of the Ab in semen and CVM: effective bnAb levels in

CVM are reduced at least ,5-fold relative to native CVM levels

within minutes of ejaculation. While increasing initial bnAb levels

in CVM is the most obvious and direct approach to improve the

rates of bnAb accumulation on HIV, our model suggests another

potential tactic to enhancing vaginal immunity against HIV is to

focus on bnAb that quickly bind HIV virions, and not necessarily

just Ab with the highest affinity. A number of reports have

correlated the kinetic rates and affinity of different Ab to Env

proteins to their neutralization potency against HIV; low koff and

KD, rather than high kon, is often thought to be essential to

effective neutralization of the virions [40]. However, by assessing

the neutralization potency of Ab after an initial incubation period

of typically at least one hour with the virions prior to exposure to

target cells, these in vitro studies likely partially masked the

importance of kon to HIV neutralization in vivo. Thus, it is not

surprising that a low koff, which influences the rates with which

Ab-bound Env becomes free of Ab as well as the steady state

fraction of Ab-free Env proteins, correlated well with the most

potent Ab. Since typical in vitro screening does not distinguish Ab

molecules with rapid kon, the potential need for rapid neutraliza-

tion kinetics has received little attention amidst the current search

for monoclonal bnAb capable of neutralizing diverse HIV strains.

The potential importance of kon was previously raised in a study by

Steckbeck et al., who observed a significant correlation between

association rates but not the affinity of Ab binding to SIV/17E-CL

and SIVmac239 envelope proteins and the neutralization sensi-

tivities of the corresponding virus strains [41]. Ab association rates,

rather than dissociation rates, also appear to play a predominant

role in the neutralization of respiratory syncytial viruses (RSV),

where palivizumab variants with greater association rates

conferred greater neutralization potency [42]. Ab molecules with

rapid kon may be naturally selected during the human antibody

response to HIV, whereby somatic mutations lead to polyreactive

Ab capable of bivalent heteroligation between a high-affinity site

on the Env protein and a second low-affinity site on another

molecular structure on HIV. Due to the paucity of Env proteins on

HIV, these polyreactive Ab can associate on the HIV surface

substantially more quickly than non-polyreactive, homotypic

bivalent binding Ab typical of many bnAb. In a recent study,

nearly 75% of 134 monoclonal anti-gp140 Ab cloned from 6

patients with high titers of neutralizing Ab are polyreactive [43].

The binding affinity for different bnAb to HIV is typically

measured on gp120/gp140 trimers purified from a single strain of

HIV, such as YU2 or JRFL. These strains are generally considered

average to moderately easy to neutralize (e.g., VRC01

IC50:0.126 mg/mL for YU2, 0.031 mg/mL for JRFL) relative to

other transmitted HIV strains (geometric mean IC50 for

VRC01:0.34 mg/mL excluding strains that require .50 mg/mL

to neutralize). Thus, the bnAb binding affinities used in our model
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are likely representative or potentially even higher than actual

affinities to other HIV strains. While the in vitro neutralization

potency of bnAb against a large panel of HIV strains can be

rapidly assessed, no such capability currently exists to measure the

binding affinity for different bnAb against diverse HIV strains. We

are thus unable to evaluate the effective mucosal neutralization

potency for different bnAb against diverse HIV strains in our

current model. Nevertheless, we expect HIV strains that neutralize

in vitro more readily than YU2/JRFL will also be more readily

neutralized by the various bnAb at equal or lower CVM

concentrations. Correspondingly, HIV strains that are already

difficult to neutralize in vitro will likely require even higher bnAb

concentration in CVM before possible neutralization.

Although our results suggest that bnAb concentrations in

marked excess of in vitro IC50 and IC80 must be present in CVM to

block vaginal transmission, there is increasing evidence that

effective mucosal protection may be achieved with Ab at sub-

neutralizing doses or with non-neutralizing Ab. For example,

comparable protection was found with two IgGs that exhibited

,10- to more than 100-fold difference in neutralization potency

[34], and the vaccine regimen in the recent Thai RV144 trial

enabled ,60% protection of vaccinated subjects in Year 1 despite

inducing a poor neutralizing Ab response [44]. This conundrum

might be explained by low affinity crosslinks between IgG and

mucins that lead to polyvalent, high avidity immobilization of HIV

virions, a potential mechanism of mucosal immunity that remains

largely unexplored to date. The diffusion of IgG molecules

(diameter , 10 nm) is only slightly retarded in human mucus

(pores , 340670 nm [45]) compared to buffer, indicative of low-

affinity, transient crosslinks with the mucus gel [11]. As IgG

molecules accumulate on virions such as HIV, the array of bound

Ab may form a sufficient number of transient low-affinity bonds to

mucins at any given time to effectively trap (immobilize) the virion

in the mucus gel. As few as several Ab bound per virion may

generate sufficient affinity to mucins to markedly reduce the flux of

virions reaching target cells, thereby prolonging the time window

for more complete neutralization of fast moving HIV virions likely

responsible for infections. We have recently found IgG to mediate

effective trapping of Herpes Simplex Virus at sub-neutralizing IgG

doses [46], and we are actively investigating whether bnAb may

help trap HIV virions in mucus. Nevertheless, because the precise

dynamics with which virion-bound Ab may slow virion diffusion

are yet to be determined, we did not incorporate this potential

mechanism of vaginal immunity by bnAb in our current model.

Such trapping of HIV virions in mucus prior to their diffusion to

target cells is critically dependent upon achieving maximal virion-

bound Ab within a short time window; thus, it is likely that

mucosal Ab that efficiently leverage this protective mechanism

would also exhibit rapid kon.

The thickness of CVM directly influences the time available for

bnAb to bind to virions before the virions can penetrate CVM.

When the CVM thickness is ,50 mm, substantially greater levels

of bnAb must be present in native secretions to achieve BE50 and

BE80, whereas lower levels of bnAb are needed with greater CVM

thickness. Unfortunately, the precise thickness of the CVM layer

remains poorly understood compared to those at other mucosal

surfaces such as the lung airways and the eye, due to a series of

compounding factors. For example, the volume of genital

secretions coating the vaginal epithelium can vary substantially

throughout the menstrual cycle, with maximum volume typically

occurring during mid-cycle. Genital secretions often decrease with

age due to reduction in estrogen levels, and there may be local

heterogeneities with little to no mucus present on particular

regions of the vaginal epithelium. The volume of vaginal secretions

is also influenced by coital stimulation. While increased mucus

secretion during coitus or mid-cycle is generally thought to provide

lubrication to minimize physical trauma to the epithelial layer

(e.g., microabrasions) and consequently decreased risks of infec-

tion, it may also represent an evolutionary mechanism to enhance

the diffusional and immunological barrier against sexually

transmitted pathogens.

Clearance of semen from the female reproductive tract is not

incorporated into our current model, largely because of a lack of

literature documenting the rates and hydrodynamics of seminal

fluid clearance. Nevertheless, assuming there is no gap in the

mucus secretions coating the vagina, and that infectious virions

had not already reached the vaginal epithelium prior to

ejaculation, inducing rapid semen elimination should directly

reduce the flux of virions reaching target cells and consequently

the rate of male-to-female transmission of cell-free HIV virions. As

shown in Figure 2, the first virions are unlikely to diffuse across the

CVM until a few minutes post-ejaculation, implying a potentially

critical time window for eliminating infectious virions via semen

clearance. While this practice clearly should not replace any of the

currently available methods for protection against sexually

transmitted infections, it adds to the list of behavioral and/or

readily adoptable approaches that may reduce HIV or other

sexually transmitted infections, which includes reducing the

number of sexual partners, increasing condom use, and circum-

cision.

Our current model is a first step towards an improved

quantitative understanding of the dynamics with which HIV

establishes infection in the female reproductive tract, and serves as

a foundation to incorporate additional antibody-effector functions

(e.g., ADCC, complement). Nevertheless, many of the intricacies

revealed by our analysis, such as the physiologically relevant

timescales for Ab accumulation on virions, provide quantitative

insights into strategies to improve humoral immune responses, and

should be broadly generalizable to understanding the kinetics of

other viral infections at mucosal surfaces. We expect additional

iterations and future improvements to our model will provide

predictive insights into the Ab doses needed for ensuring protective

vaginal immunity against HIV and other sexually transmitted

infections.

Supporting Information

File S1 Supplemental methods, supporting figures, and
supporting figure legends.

(PDF)

File S2 MATLAB codes for simulation.

(ZIP)

Movie S1 Diffusion of HIV across cervicovaginal mucus
with initial NIH45-46 concentration of 0.1 mg/mL, from
0–120 mins post-ejaculation.

(AVI)

Movie S2 Diffusion of HIV across cervicovaginal mucus
with initial NIH45-46 concentration of 1 mg/mL, from 0–
120 mins post-ejaculation.

(AVI)

Movie S3 Diffusion of HIV across cervicovaginal mucus
with initial NIH45-46 concentration of 5 mg/mL, from 0–
120 mins post-ejaculation.

(AVI)
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