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ABSTRACT Streptomyces sp. SMS_SU21 possesses strong antimicrobial activity and
antioxidant potential. This strain was isolated from the Sundarbans mangrove eco-
system, and its draft genome comprises 7,449,420 bp with 6,680 open reading
frames. Genome analysis of strain SMS_SU21 provides insight into its secondary me-
tabolite arsenal and reveals the gene clusters putatively responsible for its bioactive
potential.

Mangrove streptomycetes are rich sources of natural products with significant
biological activities and novel structures (1). Genome mining of mangrove strep-

tomycetes accelerates the rapid discovery of useful products originating from them. In
this study, Streptomyces sp. SMS_SU21 was isolated from the soil sediment of the
Sundarbans mangrove ecosystem in India. This strain possesses potent antimicrobial
activity against a broad spectrum of microorganisms, including multidrug-resistant
strains and various phytopathogens (2). Interspecies competition within the residing
microbial population is an obvious phenomenon in the Sundarbans, due to the rich
index of species diversity and limited consumable nutrient sources (3) found there.
Thus, in-depth information regarding the genomic edifice of this strain is required to
understand its survival strategies in a competitive environment like the Sundarbans
mangrove ecosystem.

Genomic DNA was extracted with a HiPurA streptomycetes DNA isolation and
purification kit (Himedia, India). Shotgun sequencing was performed with a high-
throughput HiSeq platform (Illumina) at AgriGenome Labs Private Limited in Kerala,
India. Prior to whole-genome analysis, Cutadapt version 1.8 (4) was used to remove
adapter sequences, and all low-quality data (Q � 30) were filtered out using Sickle
version 1.33 (5). The cleaned reads were subjected to analysis with Kmergenie (6) to
predict the optimal k-value and assembly size, which were found to be 31 and
7,449,420 bp, respectively. De novo assembly was performed using SPAdes version 3.9.0
(7), Velvet (8), and QUAST (9). The genome sequence of Streptomyces sp. SMS_SU21 was
annotated using the Rapid Annotations using Subsystems Technology (RAST) server
(10) and the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) version 4.3 (11). The
draft genome sequence of Streptomyces sp. SMS_SU21 constituted a total of 93 contigs
(�1,000 bp), with a total size of 7,449,420 bp and a G�C content of 72.3%. The RAST
server predicted 6,680 coding sequences, of which 2,208 (34%) were annotated as SEED
subsystem features and 4,472 (66%) were annotated as outside the SEED subsystem; 3
rRNAs and 67 tRNAs were also predicted. The closest related type strains based on the
16S rRNA gene sequence are S. griseorubens NBRC 12780 (GenBank accession number
AB184139), S. althioticus NRRL B-3981 (GenBank accession number AY999791), and S.
griseoincarnatus LMG 19316 (GenBank accession number AJ781321), all with 99%
sequence identity.
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Secondary metabolite biosynthetic gene clusters (BGCs) were predicted using anti-
SMASH version 4.0 (12), which identified 24 putative BGCs in the genome. This includes
nonribosomal peptide synthetase (NRPS) gene clusters, polyketide synthase (PKS),
novel hybrid PKS-NRPS gene clusters, and other BGCs for producing siderophores,
lantipeptides, lassopeptide, and bacteriocin. Numerous genes responsible for resistance
to toxic compounds, including arsenic, mercury, cobalt, tellurium, and cadmium, were
additionally detected. Hence, Streptomyces sp. SMS_SU21 may have great potential to
produce exclusive bioactive natural compounds for clinical, industrial, and environmen-
tal applications.

Accession number(s). This whole-genome shotgun project has been deposited

at DDBJ/ENA/GenBank under the accession number PNRA00000000. The version de-
scribed in this paper is the second version, PNRA02000000.
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