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Simple Summary: Molecular classification of cancers has the potential to automate and decrease
errors in cancer classification. We previously showed that transcriptomic classification is comparable
to methylomic and mutation methods for glioma classification and may provide benefit in predicting
survival prognosis. Here we validate the transcriptomic classification method on a single molecule
counting gene expression platform using formalin-fixed paraffin embedded samples.

Abstract: Gene expression profiling has been shown to be comparable to other molecular methods
for glioma classification. We sought to validate a gene-expression based glioma classification method.
Formalin-fixed paraffin embedded tissue and flash frozen tissue collected at the Augusta University
(AU) Pathology Department between 2000–2019 were identified and 2 mm cores were taken. The
RNA was extracted from these cores after deparaffinization and bead homogenization. One hundred
sixty-eight genes were evaluated in the RNA samples on the nCounter instrument. Forty-eight
gliomas were classified using a supervised learning algorithm trained by using data from The Cancer
Genome Atlas. An ensemble of 1000 linear support vector models classified 30 glioma samples into
TP1 with classification confidence of 0.99. Glioma patients in TP1 group have a poorer survival (HR
(95% CI) = 4.5 (1.3–15.4), p = 0.005) with median survival time of 12.1 months, compared to non-TP1
groups. Network analysis revealed that cell cycle genes play an important role in distinguishing TP1
from non-TP1 cases and that these genes may play an important role in glioma survival. This could
be a good clinical pipeline for molecular classification of gliomas.

Keywords: brain cancers; gliomas; biomarker; single molecule counting; transcriptomics; retrospec-
tive validation

1. Introduction

Gliomas, are neoplasms arising from the cerebral hemisphere [1], which exhibit highly
variable responses to chemoradiation therapy and survival prognosis [2–5]. These tumors
are classified using a combination of histology and molecular testing, according to the
WHO 2016 classification [1,5]. Histological diagnoses include glioblastoma, astrocytoma,
and oligodendroglioma, whereas the use of mixed gliomas such as oligoastrocytoma, as de-
scribed in the WHO 2007 classification [6], is currently discouraged. Molecular testing [7,8]
includes the testing of mutations in the gene isocitrate dehydrogenase (IDH) [9]. These mu-
tations in IDH genes further refines the histological classification of primary glioblastoma
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(IDH wild type, IDHwt) [10,11] compared to lower grade diffuse gliomas, which includes
both diffuse astrocytoma and oligodendroglioma (IDH mutated, IDHmut) [5]. Molecular
testing of chromosome arm 1p/19q co-deletion status defines oligodendroglioma [10–12].

There is a 14% disagreement rate between histology and molecular testing [13]. The
inter-observer disagreement with histology diagnosis is also high [12]. The classification of
gliomas becomes more complex due to the evolution, understanding, and interpretation of
the constantly updated classification literature. It is therefore necessary to develop objective
and automated measures of tumor classification, such as through transcriptomic profiling.

Methylation-based classification is another method that automates tumor classification
and may identify worse prognosis subgroups [8,14]. Verhaak et al. described the transcrip-
tomic classification of gliomas into proneural, neural, and mesenchymal subtypes. The
Cancer Genome Atlas (TCGA) and Capper et al. have individually described methylomic
classification systems that are highly similar. While most samples show concordance be-
tween IDH-codel and methylomic classification, the methylomic method provides further
stratification based on worse prognosis [8,14].

We recently reported a transcriptomics-based classification scheme for gliomas [13].
The Cancer Genome Atlas (TCGA) brain cancer cohort [8] was classified into four-subtypes:
transcriptome profile one (TP1), T2a, TP2b and TP3. These subtypes of gliomas were vali-
dated in the REpository for Molecular BRAin Neoplasia DaTa (REMBRANDT) cohort [15].
We reported that the TP1 subtype is associated with IDHwt and glioblastoma cases but may
contain additional non-glioblastoma glioma cases associated with worse prognosis. Our
report provides strong evidence that the transcriptomic platform is also a robust approach
to classify brain tumors.

Both methylome and TP based platforms can reduce pathologist time and processing
resources for many institutions which use histological analysis. Implementation of TP may
be beneficial as an alternative or supplement to methylome and IDH classification. RNA
profiling can be processed from multiple platforms, such as RNA sequencing, microarray,
PCR, single molecule counting, and others, whereas methylation profiling mostly uses
microarray platforms in the clinical setting [14]. We selected the Nanostring [16] single
molecule counting nCounterTM platform over PCR for its efficiency at validating multi-
gene panels and over RNA sequencing for its lower cost for gene panels with lower gene
numbers and over both PCR and RNA sequencing platforms for its lower hands-on time,
ease of use, and readiness for clinical translation [17]. Moreover, the nCounter platform
has the potential for higher sample throughput than the other technologies.

Molecular profiling methods like methylomics and transcriptomics may have limi-
tations as well. Both methods require more tissue than traditional histological methods.
Obtaining more tissue may not be feasible in some patients. Additionally, biases may exist
in trained algorithms which rely too heavily on one data center or profiling platform.

Pathology archives store and have ready access to formalin fixed paraffin embedded
(FFPE) tissues, making this a rich resource for RNA profiling and classification. Storage
of flash frozen tissues is becoming common practice due to the increasing popularity of
molecular tests. A gene expression quantification platform which can readily accept both
sample types would be ideal for clinical applications. The nCounter technology facilitates
a rapid, sensitive, and reproducible transcriptomic profile from a complex mixture of RNA
obtained from both FFPE and flash frozen tissues. This technique has been successfully
applied to define candidate markers for acute myeloid leukemia [18], breast cancer [17,19],
and autoimmune diseases [20]. These results suggest single molecule counting is applicable
to direct analysis of customized TP signatures in human diseases in clinics [21].

We describe our initial evaluation of nCounter analysis of custom genes in a brain
cancer cohort at Augusta University. We present our results on the technical reproducibility
of the technology. Our study demonstrates validation of 168 gene classifier [13] developed
for classification of gliomas on nCounter platform using retrospectively collected brain
cancer samples.
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2. Results
2.1. Specimen Acquisition, RNA Isolation and Quantification
2.1.1. Specimen Acquisition

This was a single-institution, retrospective study examining brain glioma tissue sam-
ples from patients seen at Augusta University (AU) Medical Center. The formalin fixed
paraffin embedded (FFPE) tissue blocks were obtained from the Department of Pathology.
The clinical and demographic information was obtained from the Georgia Cancer Center
(GCC) Cancer Registry.

We queried the Cancer Registry for all potential “brain cancers” with a pathology spec-
imen ID. All archived tumors extracted from “Brain” at Augusta University were requested
from the Cancer Registry. Only the cases with archived tissue and with a histological
diagnosis of “astrocytoma, oligodendroglioma, oligoastrocytoma, or glioblastoma” were
kept. We found 296 potential brain tumors archived between 2000 and 2018 under these
criteria (Figure 1). This included 289 potential unique FFPE glioma tissues from the Cancer
Registry and seven potential unique flash frozen tissues from GCC Biorepository. During
tissue retrieval, 76 FFPE tumor blocks were not found and 96 tumors which were “needle
biopsies” were excluded, since these blocks with less tissue must be kept for potential
clinical use.
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296 Found on Database Search for “Astrocytoma, 
Oligodendroglioma, or Glioblastoma”

• 289 FFPE and 7 Flash Frozen

124 Tissue Blocks/Aliquots Obtained

175 RNA extractions

• 74 single

• 49 double
• 1 triple

96 quantified on Nanostring

39 Classified

− 96 biopsy
− 76 Not found

− 34 Failed QC/low counts
− 14 Incorrect/unclear histologic type

− 9 Ambiguous Classification

− 79 Failed Nanostring/Tapestation QC

Figure 1. Retrospective study design and study flow chart. FFPE: formalin fixed paraffin embedded;
QC: quality control.

We successfully retrieved seven flash frozen glioma tumors and 117 FFPE glioma
tissue blocks for RNA isolation. We used 2 mm diameter cores of the FFPE tissue to target
areas with high tumor content in the tissue block. These cored locations and histologic
classifications were verified by a board-certified pathologist. In total, one block was cored
in three separate locations, 49 blocks were cored in two separate locations, and 67 blocks
were cored in one location. The seven flash frozen tissues were cored if the tissue was
greater than 4 mm in diameter, otherwise all of the tissue was used for RNA extraction.
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Of the isolations, 89 RNA specimens from FFPE blocks and seven RNA specimens
from flash frozen tissue were run on the nCounter. After quality control (QC) of the RNA,
gene quantification data from the nCounter, 34 runs were removed because of errors in
positive spike in controls or normalization. On further histologic review by board-certified
pathologists, 14 tissues did not meet our inclusion criteria. Forty-eight samples were used
for classification, including 41 FFPE and seven flash frozen tissue samples. Thirty-nine
samples were successfully classified (Figure 1).

2.1.2. Demographics

The clinical and demographic characteristics of the AU cohort (n = 48) are presented
in Table 1. The tissue blocks were from 21 Males and 20 Females with median age of 64
years (ranging between 9–79 years). Histologically the brain tumors were classified as as-
trocytoma (n = 10), glioblastoma (n = 27), oligoastrocytoma (n = 4), and oligodendroglioma
(n = 7) (Table 1). We applied our transcriptomic classification algorithm [13] to classify
these 48 FFPE tissues into TP1 (n = 30), TP2A (n = 4), TP2B (n = 4), and TP3 (n = 1).

Table 1. Demographics and clinical data for the samples collected at Augusta University (AU).

Clinical Variable Number of Subjects

Age (Years, median (range)) 64 (9–79)
Year specimen collected 2003–2016

Sex
Male 21

Female 20
Unknown 7

Race
White 34

AA 7
Unknown 7

WHO 2016 Classification
Oligoastrocytoma, NOS 3

Diffuse Astrocytoma, IDH-mutant 1
Diffuse Astrocytoma, NOS 5

Anaplastic Astrocytoma, NOS 3
Anaplastic Astrocytoma, IDH-wildtype 1

Astrocytoma, fibrillary 1
Glioblastoma, IDH-wildtype 6

Glioblastoma, NOS 21
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 5

Oligodendroglioma, NOS 2
Transcriptome Profile

TP1 30
TP2 4
TP3 1
TP4 4

Ambiguous 9
Preservation

FFPE 1 41
Frozen 7
IDH1

Mutated 1
WT 7

Unknown 40
1p/19q Co-deletion

Present 3
WT 11

Unknown 34
1 Formalin-Fixed Paraffin Embedded. IDH: isocitrate dehydrogenase; NOS: not otherwise specified.
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2.1.3. nCounter replicability

Prior to large-scale analysis, day to day reproducibility of the pipeline was evaluated
using seven FFPE samples. Reproducibility was evaluated starting from extraction of RNA
to completion of the nCounter analysis. The single molecule count data were used to
evaluate the within day and between days reproducibility analysis. We found high day-to-
day replicability (average pairwise correlation 0.987) of our gene expression quantification
platform from six RNA samples run 48 h apart (Figure 2).
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Figure 2. Robustness and Replicability of single molecule counting nCounter platform from Nanostring. (A) Day-to-Day
replicability of nCounter runs (B) Clustered Correlation Heatmap of nCounter count data for 13 unique FFPE cores from 6
glioma surgical cases. (C). Uniform Manifold Approximation and Projection (UMAP) plot of combined the Cancer Genome
Atlas (TCGA) and AU data. Tissue type of AU samples (green and blue) and TCGA samples (grey).

When count data were plotted against the replicates, the data lined up along the
regression line with a tight distribution (Figure 2A). We also performed gene expression
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quantification for multiple cores from the same tumor and found that cores from the same
tumor were more similar to each other than cores from other tumors (Figure 2B). The
average pairwise correlation between cores from the same tumor was 0.871. Additionally,
all cores from the same tumor were classified as the same transcriptome group (Table S1).
Thus, despite the intratumor heterogeneity, our transcriptome classification method is still
able to robustly make group calls. Figure 2C is a UMAP of all AU classified samples after
integration with TCGA data and it shows that our pipeline can successfully classify both
FFPE and flash frozen samples.

2.2. Supervised Classification

We previously reported on our ensemble algorithm which combines 1000 linear
support vector classifiers trained from TCGA RNASeq data clustered using our combined
UMAP and density-based clustering algorithm [13]. We applied this algorithm to our AU
cohort data after batch normalization, z-score transformation, and using Empirical Bayes
to combine these data with the TCGA data. Empirical Bayes was effective in combining
the two data sets (Figure S1). The supervised UMAP approach shows that AU Nanostring
cases cluster well into one of the four major glioma transcriptome profiles, regardless of
year of tissue source (Figure 2C).

The ensemble model classification using 1000 linear support vector classification
models (Table S2) for the AU samples is 30 in TP1, 4 in TP2a, 4 in TP2b, 1 in TP3, and
9 ambiguous (Figure 3A, Table S3). The median classification confidence for TP1, TP2a,
TP2b, and TP3 were 0.99, 0.75, 0.88, and 0.85, respectively (Figure S2). The 30 TP1 patients
include 20 glioblastoma not otherwise specified (NOS), 6 glioblastoma IDHwt, 1 Diffuse
astrocytoma NOS, 1 anaplastic astrocytoma NOS, 1 oligodendroglioma NOS and 1 oligo-
dendroglioma IDHmut and 1p/19codel cases. The TP2a patients are 1 oligoastrocytoma
NOS, 1 oligodendroglioma NOS and 2 oligodendroglioma IDHmut and 1p/19codel. The
TP2b cases are 2 diffuse astrocytoma NOS, 1 anaplastic astrocytoma NOS and 1 anaplastic
astrocytoma IDHwt. The only TP3 patient was classified as diffuse astrocytoma IDHmut.
All nine ambiguous patients have very low probability of belonging to TP1 but assignment
to the non-TP1 groups is less confident. The high rate of ambiguity is likely due to the
imprecision of integrating RNAseq with the smaller Nanostring dataset (Table S4).

To examine survival difference, TP1 cases were compared to non-TP1 cases. As ex-
pected, TP1 patients have worse survival than non-TP1 cases (median survival time, 12.1 vs.
83.5 months, likelihood ratio test p = 0.005, Figure 3C).

2.3. Network Analysis

These 168 genes in the supervised model were enriched for the “G0 and Early G1”,
“Cell Cycle Checkpoints”, “G2/M Transition”, and “Transcriptional Regulation by TP53”
pathways and that these pathways are upregulated in TP1 compared to other transcriptomic
profiles (Figure 4). These findings agree with our previous pathway analysis of TCGA
data [13].
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Figure 3. Molecular distribution of Augusta University (AU) cohort samples and survival analysis. (A) Heatmap of
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3. Discussion

We validated a classification method using gene expression profiles in glioma tissues
in an institutional cohort using a single-molecule counting platform. While the Nanostring
platform has even been used for identifying fusion variants in pediatric gliomas [22,23], it
has not been used for glioma classification. We had 79 RNA extractions fail quality control
due to low RNA content (Figure 1). Most of these failed RNA extractions started with low
tissue quantity. We did not pre-specify a lower tissue volume threshold for RNA extraction
but will do this in the future.

Our high technical replicability (Figure 2A) agrees with previous reports of nCounter
platform [21,24,25]. Other studies have demonstrated similar replicability of the nCounter
platform compared to other gene expression quantification platforms, such as Affymetrix [26],
and quantitative real time PCR (qRT-PCR) [27]. qRT-PCR is technically difficult to per-
form on FFPE tissue because the formalin fragments the nucleic acids and can inhibit
enzyme activity [28]. Both these factors limit the activity of reverse transcriptase and
DNA polymerase to identify substrates. This is one reason the nCounter platform was
developed, since the assay protocol does not depend on any enzymatic activity [16]. Due
to (1) the technical challenges of qRT-PCR for FFPE tissue, (2) the extensive validation of
the Nanostring platform, (3) the high number of genes of interest, and (4) the differences
between count data and the Ct data, we did not validate the Nanostring gene expression
data with qRT-PCR.

Although gliomas have high intratumoral heterogeneity [29,30], we demonstrated
that different cores from the same tumor have higher correlations to each other than to
cores from different tumors (Figure 2B). We also showed that cores from the same tumor are
classified as the same tumor subtype (Figure 2C). This analysis shows that tumor subtype
prediction is robust to the tumor heterogeneity found in the gliomas we analyzed.

In our previous publication, our algorithm identified non-glioblastoma TP1 samples in
the TCGA cohort and that those samples had a survival prognosis similar to glioblastoma
cases [13]. This supports the potential for the algorithm to identify cases with glioblastoma-
like survival prognosis. Just as in our previous publication. Similarly, in our current
study, AU glioma TP1 cases also included several non-glioblastoma samples which likely
represent additional samples identified by our algorithm to have worse prognosis like
other glioblastomas (Figure 3C).

Gene set enrichment analysis showed that the “cell cycle”, “mitosis”, and “transcrip-
tional regulation by TP53” pathways are significantly enriched in TP1 (Figure 4) compared
to non-TP1 cases and these genes are associated with glioma survival prognosis. The role
of the TP53 pathway is well established in glioma; mutated TP53 upregulates MYC, EGFR,
PNCA and downregulates p21, CD95Fas, PTEN. The cell cycle gene upregulation may
originate from cancer cells or immune cells, which are prevalent in glioblastoma [13]. The
presence of cell cycle and TP53 pathways enriched in TP1, both of which are established
pathways associated with glioblastoma suggests the former [31].

We identified potential drug targets for TP1 cases based on our pathway analysis.
Most of the potential drug targets are in the cell cycle pathway, including microtubule
inhibitors, polo-like kinase (PLK) inhibitors, and cyclin-dependent kinase inhibitors [32].
Of the microtubule inhibitors, docetaxel [33,34], epothilone B [35,36], ixabepilone [36],
and sagopilone [37] have been tested in Phase II clinical trials. Of the PLK inhibitors,
GW843682X [38] and JNJ-10198409 [39] have been tested in pre-clinical models. Of the
CDK inhibitors, abemaciclib has been tested in phase I trials [40,41], and palbociclib has
been tested in pre-clinical models [40,42,43].

One limitation of our study is our incomplete IDH mutation and 1p/19q codeletion
data (Figure 3A). Thus, our classification could only be compared to histology. Since
many of these samples were collected before the discovery of the IDH mutation [9–11],
this information was not available from the pathology report. Additionally, due to the
high degree of nucleic acid fragmentation in the FFPE samples, we could not sequence to
determine IDH mutation status.
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The validity of our transcriptome ensemble classifier was demonstrated using gene
expression data from the Nanostring platform. Although the Nanostring dataset is small,
it does indicate that the classifier can be assayed by a technology that is easy to implement
clinically. We report a tumor classification strategy robust to tissue storage condition
(flash frozen vs. FFPE) and comparable to gene expression quantification techniques
(RNASeq, microarray, and Nanostring). This versatility provides an advantage over
methylomic classification approaches which relies on a microarray-based platform. These
data taken together make the Nanostring platform a strong candidate for classification and
prognostication for gliomas [26,44–46].

4. Materials and Methods
4.1. Augusta University Sample Collection and Processing
4.1.1. Study Participants

We collected 34 formalin-fixed paraffin embedded (FFPE) tissue blocks from the
Augusta University Medical Center Department of Pathology from specimens archived
between 2002 and 2018. We obtained 7 flash frozen brain cancer tissue from the Geor-
gia Cancer Center Tumor Tissue and Serum Biorepository. Inclusion criteria included
histologic diagnosis of oligoastrocytoma, astrocytoma, oligodendroglioma, anaplastic
oligodendroglioma, or glioblastoma. Specimens were excluded if they were biopsy sam-
ples. No statistical methods were used to predetermine sample size. The investigators were
blinded to allocation during experiments and outcome assessment.

Demographic and clinical data were collected through the AU Cancer Registry and
validated through the patients’ electronic health records. Data and sample collection were
conducted through a consent-waived retrospective arm of an Institutional Review Board
approved study (Biomarkers and Therapeutics in Cancer). The study was conducted
according to the Declaration of Helsinki (1996) and was approved by the institutional
review board at the Augusta University. Overall-survival was used as the clinical endpoint
for the analysis of the data.

4.1.2. Specimen Characteristics and Assay Methods

For all FFPE tissue blocks collected, a board-certified pathologist reviewed the corre-
sponding H&E stained tissue section, classified the tissue according to the WHO guidelines,
and identified regions with >60% tumor nuclei. A 2 mm diameter core was then punched
from the identified region of the tissue block and dispensed in a 96-well 2D matrix barcode
system for sample storage and tracking.

4.1.3. Pipeline for FFPE Tissue RNA Extraction

We developed a customized pipeline for processing of FFPE cores onto the nCounter
system. Cores and flash frozen tissue were mechanically and chemically disrupted using a
bead homogenizer and Citrisolve (Fisher Scientific, Piscataway, NJ, USA) to deparaffinize
and disrupt the FFPE tissues. RNA was then extracted from the lysate using a column-based
RNA extraction kit (RNEasy, Qiagen, Hilden, Germany). Qualtiy of isolated RNA was
assessed with a Tapestation 2000 and Nanodrop. Concentration of RNA was assessed using
bioanalyzer for RNA fragments greater than 300 bp in length. The RNA concentration
used for loading amount on nCounter was the lower RNA concentration between the
Tapestation calculation and the Nanodrop calculation. RNA with concentration less than
20 ng/uL was not used for downstream analysis. A total of 200 ng RNA were hybridized
and loaded on the nCounter.

4.2. Statistical Methods

All statistical analyses were performed using the R language and environment for
statistical computing (R version 3.5.1; R Foundation for Statistical Computing [47]).



Cancers 2021, 13, 439 10 of 14

4.2.1. Gene Expression Quantification

We submitted 168 genes (including 8 housekeeping genes) to Nanostring Technolo-
gies [16] to develop a Custom Code Set gene expression assay. We hybridized 100–200 ng
of RNA per sample (5 µL) reporter probe and capture probe mix from the Custom Code
Set according to the manufacturer’s protocol, then purified the target/probe complexes
and immobilized them on the NanoString cartridge for data collection using the nCounter
Prep Station. Transcript counts were determined using the nCounter Digital Analyzer
and outputted in reporter code count (RCC) files. RCC files containing raw transcript
counts from each cartridge were analyzed using the nSolver analysis software for quality
control (QC) purposes. The software was used to check for imaging, binding, and positive
spike-in quality.

The output files from nSolver were read into R for further QC, normalization, and
data processing. We normalized the captured transcript counts using multiplicative nor-
malization factors calculated with geometric means to first the codeset’s internal positive
controls and then the geometric mean of the reference genes included in our assay (GAPDH,
HNRNPL, IPO8, MRPL19, MRPL30, NRF1, RNF10, and TBP). The fully normalized counts
were log2-transformed.

4.2.2. TCGA Dataset

TCGA Glioma gene expression data, which contains both RNAseq and gene expression
microarray data combined through Empirical Bayes, was downloaded from Ceccarelli et al.
2016. The final dataset contained 1032 samples and 12,717 genes. TCGA Glioma data were
centered and scaled. Clinical data were downloaded from the same source and matched to
the processed TCGA Glioma data.

Data from Nanostring and TCGA RNAseq were integrated using the Empirical Bayes-
based Combat algorithm [48] implemented in the “SVA” package.

4.2.3. Ensemble Transcriptomic Classification (ETC) Algorithm

One hundred and sixty-eight genes were identified for use in supervised classifi-
cation using two complementary methods. First, significantly differentially expressed
genes amongst our four groups were identified through linear models for microarray
data (LIMMA) analysis [49] and 26 genes were manually selected based on relevance to
brain cancer. The remaining 142 genes were selected using recursive feature elimination
with a support vector classifier. These genes were divided into six groups based on the
expression differences among the subtypes. For each supervised model, half of the genes
in each of six gene groups were randomly selected and then recursive feature elimination
was applied removing five genes per iteration until optimal accuracy is reached with the
minimal number of genes using “sci-kitlearn” [50]. This was repeated 1000 times, resulting
in a dictionary with 1000 entries each with between 29 and 79 genes of the 168 genes. One
thousand linear support vector classifiers (LSVC) were developed from the dictionary and
the mean accuracy from three-fold cross validation was used to remove any models with
an average accuracy less than 95%. All 1000 models passed this step and average model
accuracy was 97.6%.

In order to decrease the potential of overfitting, data were split into four folds, where
three folds were trained on the unsupervised model classes and the supervised models
predicted on the remaining fold. In this way, no sample was used for both training and
making classification calls. This results in calls for each sample from 1000 linear SVC
models. Models were combined into one ensemble model using a plurality voting method
which reports the most popular class and the proportion of the 1000 LSVC models which
agree on this most popular class. A confidence score is calculated by taking the proportion
of models classifying samples into the most popular class divided by the proportion of
models classifying samples into the second most popular class. If the confidence score
is greater than 3, then the ensemble model classifies the sample into the most popular
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class. If the confidence score is less than or equal to 3, than the ensemble model prediction
is “ambiguous”.

4.2.4. Survival Analysis

We modeled over-all survival with Kaplan–Meier and Cox proportional hazards
and tested for significance with the log rank test all using the “survival” R package.
Kaplan-Meier survival plots were made through the “survminer” package. The statistical
significance of differences was set at p < 0.05, all p values were two sided. Patients with no
history of recurrence or death were censored at the date of last follow-up visit. Patients
who died of natural causes unrelated to cancer were censored at time of death.

4.2.5. Network Analysis

We performed LIMMA [49] to identify the differentially expressed genes between the
TP groups in the Nanostring dataset and fitted the model based on the contrast matrix
and applied the fold change and significance testing from this model to network package
ReactomePA [51], parameters include gene list, and fold change.

5. Conclusions

We describe a pipeline for RNA isolation and classification of glioma tumor tissue
from formalin fixed and flash frozen tissue. We describe a machine learning algorithm that
can classify glioma gene expression data from at least three different platforms (RNASeq,
microarray, and nanostring) into a clinically and prognostically relevant subtype. Thus,
regardless of the RNA profiling platform, our method can predict glioma subtype. Network
analysis indicates cell cycle and cell proliferation pathways represent a key difference
between TP1 groups compared to the others.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
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