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A computational model of a self-structuring neuronal net is presented in which repetitively applied pattern sets induce the
formation of cortical columns and microcircuits which decode distinct patterns after a learning phase. In a case study, it is
demonstrated how specific neurons in a feature classifier layer become orientation selective if they receive bar patterns of different
slopes from an input layer.The input layer ismapped and intertwined by self-evolving neuronalmicrocircuits to the feature classifier
layer. In this topical overview, several models are discussed which indicate that the net formation converges in its functionality to
a mathematical transform which maps the input pattern space to a feature representing output space. The self-learning of the
mathematical transform is discussed and its implications are interpreted. Model assumptions are deduced which serve as a guide to
apply model derived repetitive stimuli pattern sets to in vitro cultures of neuron ensembles to condition them to learn and execute
a mathematical transform.

1. Introduction

It can be said that neuronal networks, whether artificial, in
vivo, or in vitro, are capable of information processing if they
are able to learn and discriminate between pattern sets [1–3].
The central focus in modeling the information processing of
such networks is on the specific neuronal architecture which
is trained. This is because the architecture of the network
determines the possible pattern discriminations that can be
performed between pattern sets. For example, a specific
architecture may provide orientation selectivity and thus be
capable of discriminating between bars of different slopes.
Bioinspired concepts will be introduced in the first section
of this review with emphasis on the aspects of the in vivo
experiments of orientation selectivity by Hubel [4]. Further-
more, the hypothesis of Blasdel will be revisited in the section
on the Hough transform in the neurobiological context. The
hypothesis states that the firing of these orientation selective
cells can be explained by mapping the input stimuli back
to the firing cells using a mathematical Hough transform
[5]. To strengthen the plausibility of Blasdel’s hypothesis,
the motion-detection experiments of Okamoto et al. are

also revisited which investigated the hypothesis under the
assumption that the mathematical Hough transformation is
functionally used and represented as microcircuitry for bar
detection in themedial temporal lobe (MTL) of the brain [6].

The base principle of the mathematical Hough transform
will be outlined in the section on computational Hough
models at the neural level. As the interconnection scheme and
interplay of the associated neurons in the microcircuitry of
orientation selectivity remain open, we additionally describe
with particular attention the modeling and execution of the
mathematicalHough transform. Several computationalmod-
els are contrasted, beginning at the microcircuitry level of the
interconnected neurons and synapses. A prime example of
this, namely, a neural net composed of cortical columns and
microcircuits, is discussed in detail.

Following these sections, we conclude by proposing
guidelines and novel 3D microelectrode arrays (MEAs) to be
used in future in vivo bar detection experimentswith stemcell
derived neuron-glia ensembles in vitro. They will be stimu-
lated according to a new protocol presented here with spa-
tiotemporal bar patterns. The proper selection of stimuli
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pattern sets is explained.Themethods for stimulation and the
experimental setups are described in detail.

2. Overview of Bioinspired Concepts of
Orientation Selectivity

The sensory organs provide the windows to the world for the
brain. Eyes and ears encode photon distributions or sound
pressure levels into electrical spike trains which are delivered
and distributed by cranial nerves and optic nerves to higher
cortical information processing areas [7, 8]. Many sensory
stimulation experiments have been conducted in the last few
decades to reveal basic principles of information processing
in the brain [9, 10].The in vivowork of these experiments has
primarily been conducted with anaesthetized animals which
are then presented with visual or auditory stimuli [11]. The
visual system is often stimulatedwith specific visual cues such
asmoving bars or natural videos and the auditory systemwith
preconditioned sounds, natural speech, and music [12]. In
vivo experiments presumably clarify the encoding and infor-
mation processing principles of the brain more accurately
than in vitro experiments with cultures [13–15].

The sensory organs mediate the information transfer
from the outer world to the inner world.This mediated infor-
mation in the inner world is used to create internal repre-
sentations of the outer world in distinct brain areas and is
structured in the brain into categories, such as color and
motion in the visual system [16]. In a famous experiment,
Hubel and Wiesel presented bars of different orientations
to the visual receptive fields of cats [17]. They found that
orientation selective neurons respond most to visual stimuli
like bars of different slopes presented in their receptive field
in their preferred orientations. Orientation specific cells fire
more strongly as the presented image bars are oriented
more towards the cell’s preferred orientation. For example,
preferred orientation would be horizontal orientation for one
cell and vertical orientation for another cell. The firing rate
declines if the presented image bar is more and more off-
line in reference to the preferred direction.Their experiments
revealed that specific orientation selective cells are to be
considered as bar detectors. However, the underlying cellular
micro-circuitry from the retina to the orientation selective
cells was not discussed in detail. Many models to under-
stand the organization of this micro-circuitry which yields
orientation selectivity have been proposed, listed here in
chronological order [18–21]. In the following section, we
detail the most successful model which utilizes the Hough
transform.

3. The Hough Transform in
a Neurobiological Context

The hypothesis that the firing of orientation selective cells
could be understood by mapping their input stimuli by a
mathematical transform which is intrinsically implemented
in cellular microcircuits was formulated by Blasdel. He
demonstrated that a mathematical Hough transform model
could be adopted to explain principles of the transformational
process of bar detection by orientation selective cells. The

Hough transform is a coordinate transform, in which an
input space is transformed to an ordered feature space. Each
point in the feature space is given by its coordinates and
numerically by the accumulation vote of histogram entries
in the corresponding grid cells. Blasdel assumes a coordinate
transform mapping of the (𝑥, 𝑦) input pixel space of lines
to a feature space which is topologically spanned by order-
ing polar coordinates (𝑟, 𝜃) of radii and angles of lines. Any
extended line composed of several pixels will be represented
in feature space solely by a single point representation given
by its specific radius and angle [22]. An example of this
is the parallel execution of the Hough transform on a
matrix of numerical grid elements to find curved tracks in
drift chambers for high-energy physics experiments and its
corresponding hardware implementation [23, 24].The highly
structured Hough feature space with ascending and descend-
ing orientation angles 𝜃 in one axis and ascending and
descending radii 𝑟 in the other makes it a compelling model
for orientation mapping in the striate cortex.

Indeed, Kawakami and Okamoto propose a cell model
for motion detection in which the Hough transform is the
essential part in the identification of bars [25]. They compare
it to several propositions from the literature and conclude
with a model consisting of five cell types which constitute a
functional hierarchy for motion detection: lateral geniculate
nucleus (LGN) cells, nondirectionally selective (NDS) simple
cells, directionally selective (DS) simple cells, DS complex
cells, and motion-detection cells. Their motion-detection
model and the consecutive processing steps start with lagged
and nonlagged branches in the magnocellular visual pathway
which split the actual representations in a delayed and
nondelayed version. The local motion is detected as the
spatial distance between the identified object primitives in the
delayed and nondelayed images. Object primitives like bars
are detected in the MTL with a Hough transform collectively
executed by NDS cells. Motion is estimated in the MTL
consecutively by a spatiotemporal correlation and an inverse
Hough transform. It is a coherent description of a chain of
processing units in coordinate spaces by a structured assem-
bly of cells.

Equipped with this model and model predictions, Oka-
moto et al. conducted a motion-detection experiment with
primates.They extensively compared their model predictions
to in vivo measurement of macaque monkeys presented
with moving shapes of different velocities. They conclude
that for the estimation of the speed of moving bars and of
moving spots MTL neurons exhibited two types of bimodal
direction tuning profiles as predicted by their model. This
experiment demonstrated that a functional in vivo system
can be successfully represented by amathematicalmodel, and
implies that the essential algorithm in Hough bar detection is
incorporated at least partially in the MTL.

4. Computational Hough Models at
the Neuron Level

Although successful in its predictions, Kawakami’s model
remains a mathematical model with little indication of how
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the algorithm is realized cellularly. In what way this algorithm
might be executed structurally, dynamically, and functionally
by a neuron ensemble remains largely unknown. The base
model descriptors are neurons as entities which are affected
with some model assumptions [26]. Most neurons are mod-
eled as integrate and fire devices, which propagate an action
potential along their axon, if a threshold is passed at its soma
[27]. The neuron is excited by the sum of synaptic inputs
which triggers an action potential if the net input surpasses
the activation threshold.

Several authors describe spiking neural network models
which execute Hough transforms at the neuron and synapse
level [28–31]. Their implementation aspects, architectures,
topologies, and learning dynamics have been compared.
The computational aspect of how the orientation cells are
coupled in their receptive fields to the sensory layers and
the functional dynamics of algorithmic computation by an
ensemble of neurons in these microcircuits is discussed. All
four authors selected for this synopsis present feedforward
artificial neural networks (ANNs) with unidirectional signal
flowwithout any feedback loops. FeedforwardANNs are used
extensively in pattern recognition for eye tracking and pencil
balancing [32, 33].

In the first Hough transform implementation, the authors
describe a character recognition study using a biologically
plausible neural network of the mammalian visual system
[28]. Vertical and horizontal line elements are extracted
by a Hough transform. The feedforward ANN incorporates
horizontal and vertical line detectors with five layers: input
units, simple line detectors, complex line detectors, hidden
units, and output units. The connectivity is taken to be a
many-to-many mapping. Each input neuron is associated
with a synaptic link to a hidden layer neuron and each hidden
layer neuron is connected to an output classifier neuron.
The network is trained by element training sets composed of
vertical and horizontal line elements. The training elements
are presented over and over to the artificial neural network
in a pixel grid of size 5 × 7. To recognize a given element,
the connectingweights adapt for errorminimization between
the desired output and the actual output. A back-propagation
learning algorithm is used to set the synaptic weights from
the input layer to the hidden layers and the weights from
hidden layers to the output layer. The character recognition
performance and the efficiency of the neural network using
line detectors in the early layers are superior to that of a
network using adjustable weights.The opinion of the authors
is that the system should be extended to four line categories:
vertical, horizontal, ascending diagonal, and descending
diagonal.

In their second implementation of the Hough transform,
the authors further described a biologically inspired spiking
neural network with Hebbian learning for vision processing.
The authors wrote that the Hough transform can be used
to find simple shapes like lines and circles in images [29].
Their network input layer consists of 9 input neurons in a
3 × 3 pixel array. These input neurons are connected to one
output neuron. The net was trained on two input patterns:
a horizontal bar and a vertical bar with a Hebbian-style
unsupervised learning rule. The authors described that the

spiking neutral network is able to learn and discriminate
between the patterns.

In their third implementation, the authors demonstrated
the detection of straight lines using the above described
spiking neural network model. Based on the receptive field
of the Hough transform, the authors showed that a spiking
neural network is able to detect straight lines in a visual image
[30]. Straight lines on the plan can be identified by a pair of
polar coordinates (𝑟, 𝜃), where 𝑟 is the perpendicular distance
from the line to a reference point at the origin (0, 0) and 𝜃 is
the angle perpendicular to the line and the horizontal axis.
A specific line detector neuron is associated with each line.
The line classification neurons are arranged in an array with
the two ordering parameters 𝑟 and 𝜃. In this spiking neural
networkmodel, each neuron in the output array responds to a
specific line in a visual image. Each of the classifier neurons is
connected by excitatory synapses to the constituting pixel sets
of a line. The authors write that the spiking neutral network
is able to learn and discriminate between the lines. In the
outlook of the publication, they pose the following questions:
how can the model exist in the biological visual system and
how should a spike timing dependent plasticity (STDP) rule
for synapses be investigated?

In their fourth implementation, the authors described a
neural net for 2D slope and sinusoidal shape detection [31].
Again, based on the receptive field of the Hough transform,
the authors discussed a spiking neural network. However,
this time it was demonstrated that with the cortical column
architecture it is possible to detect straight lines or sinusoids
in a visual image according to the presented training sets.The
neural net consists of𝑚 input neurons,𝑚 × 𝑛 delay neurons,
and 𝑛 output neurons (Figure 1). The net is structured
by column architecture with concatenated chains of delay
neuron as building blocks. The input neuron layer is a first
row of neurons which receive spatiotemporal signal input
in parallel. An output column composed of feature classifier
neurons is displayed on the right side (Figure 1).The classifier
neurons are equidistantly interspaced and perpendicular
to the parallel cortical columns. The output neurons are
linearly aligned with ascending slopes from slope 0 which
corresponds to a horizontal bar (feature neuron at the bottom
of the column) up to slope 45∘ which corresponds to a
diagonal bar (feature neurons at the top of the column). The
classifier neurons are modeled as receiving synaptic inputs at
their dendrite from each column related to their topological
arrangement in the net [34].The dendritic branch is modeled
according to the base assumptions of dendritic integration
of net synaptic input across the soma during a fixed time
window [35]. The synaptic interconnection to the dendrite is
modeled as a single spine to the dendrite [36]. A dendritic
delay along the dendrite is not explicitlymodeled as a possible
computational function [37].

The neural net learns to detect a set of training elements
like bars or sinusoids. It is trained with a set of 𝑘 different bars
or 𝑙 sinusoids of different frequencies. The training and test
patterns are 2D binary pixel images of size𝑚×𝑛. A typical set
of bar training patterns of image size 9 × 9 is displayed in
Figure 3. Each consecutive new time step for each subsequent
image row is applied at the corresponding input layer in a
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Figure 1: A feedforward neural network model with an input layer
at the bottom and feature classifier output neurons at the right.
The network topology is regular with repetitive elementary building
block segment microcircuits. (Reprinted with permission from
Brückmann et al., [31].)

spatio-parallel, temporally serialized fashion (Figure 3). After
training, the net is tested with a random set of 2D bar or
sinusoidal patterns and is able to discriminate 𝑛 different
patterns.

The spatiotemporal input patterns are transformed to a
time and place code where the firing of an output neuron 𝑖
signals the presence of a bar with its specific slope at relative
time 𝑡.

The input layer feeds the subsequent layers with the spa-
tiotemporal input patterns and triggers a propagation of the
signals through the associated cortical columns. Each spa-
tiotemporal input, such as a bar with a defined slope, activates
the propagation of a wave front in the net through its cortical
columns. Due to the specific signal propagation velocities in
the net, the activation wave front forms a planar wave front
at a specific layer 𝑘 at a specific time 𝑡 for a specific input.
The output neuron 𝑘 spikes upon arrival and registration of a
planar wave front according to its selective input pattern.The
activation wave front rapidly dissolves before or behind layer
𝑘 due to the different signal propagation velocities.

The signal propagation velocity vector field of the cortical
columns delay lines is learned by collectively tuning their
individual signal propagation velocities. Each cortical col-
umndelay line adapts in a pattern induced learning process to

Output neuron

Signal
junction

Direct path Delay neuron

Signal Delay path
bifurcation

Input neuron

whardwired

wdirect

wdelay

Figure 2:The elementary building block segmentmicrocircuit. Path
following is self-learned by the settings of the weights at the signal
bifurcation. (Reprinted with permission from Brückmann et al.,
[31].)

its specific signal propagation velocity. The delay times of all
delay neurons are equal and set to 1 millisecond (the duration
of a clock step).

Each cortical column delay line consists of a signal con-
ducting pathway (Figure 2). The microscale architecture of a
cortical column delay line is given by its composing elements
and its specific connectivity.The delay line is composed of an
elementary building block segment microcircuit repetitively
staggered 𝑛 times. Each micropathway in a block segment
branches at a signal path bifurcation into a signal delay path
and a direct path. Both paths recombine at a signal junction
(Figure 2).

The path selection and therefore the signal propagation
local velocity are regulated by antagonistic weights 𝑤

𝑖𝑗,delay
and𝑤

𝑖𝑗,direct. Antagonistic weights𝑤delay and𝑤direct are shown
in Figure 2. By adjusting these weights according to the
applied learning rule, the signal propagation velocities in the
delay lines are collectively tuned. The weights 𝑤

𝑖𝑗,delay and
𝑤
𝑖𝑗,direct are in the range [0, 1] and are initially set to 0.5. The

input layer differs from the other subsequent layers in that
the direct path weights𝑤

𝑖𝑗,direct are set to 1 clamping the paths
of the input layer directly to the first output neuron. The
synaptic interconnections 𝑤

𝑖𝑗,hardwired to the output neurons
are hardwired (𝑤

𝑖𝑗,hardwired = 1) (Figure 2). As the weights
converge to 0 or 1, they act as gating or closing switches and
propagate the signal through or block it.

The synaptic weights are trained with an unsupervised
Hebbian-learning rule and a Boltzmann temperature func-
tion which decreases from a starting temperature 𝑇max to a
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Figure 3: Nine training patterns of bars of different slopes. Each time step one image row is consecutively applied to the input layer. (Reprinted
with permission from Brückmann et al., [31].)

lower end temperature 𝑇min in constant amounts 𝛿𝑇 [38].
Each layer has its own Boltzmann temperature.The following
learning rule applies for all subsequent layers. A random
number in the range [0, 1] is computed for every signal bifur-
cation.The probability of the direct or delay signal path being
taken at a signal bifurcation is computed by a Boltzmann
temperature dependent term as follows:

𝑃direct =
𝑒𝑤𝑖𝑗,direct/𝑇Boltz

𝑒𝑤𝑖𝑗,direct/𝑇Boltz + 𝑒𝑤𝑖𝑗,delay/𝑇Boltz
,

𝑃delay = 1 − 𝑃direct.

(1)

The random value at each node is then compared with the
probability of the direct path. If the randomnumber is greater
than or equal to 𝑃direct, the delay path is activated. If the
randomnumber is less than𝑃direct, the direct path is activated.

An output neuron only spikes if all selected signal paths
are activated, because the thresholds of the output neurons
are equally set to the number of signal paths minus 1. The
thresholds of the output neurons can be adjusted to lower
values (e.g., the output neuron spikes if more than 𝑘 inputs
are active). This could accelerate the learning process and be
more robust to noise or defective structures, that is, complete
loss of several delay lines, and so forth.

If an output neuron spikes in a layer, the weights of the
selected paths are collectively changed by +𝜀 and the other
by −𝜀. 𝛼 is the learning slope parameter, which influences
the convergence after 𝑛 iterations to a stable end state. The
weights are updated by

𝑤
𝑖𝑗,select,new = 𝑤𝑖𝑗,select,new + (1 − 𝑤𝑖𝑗,select,old × 𝛼) ,

𝑤
𝑖𝑗,deselect,new = 𝑤𝑖𝑗,deselect,new − 𝑤𝑖𝑗,deselect,old × 𝛼.

(2)
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The two weights 𝑤
𝑖𝑗,delay and 𝑤𝑖𝑗,direct in the signal bifurcation

paths are always simultaneously changed.Theweights𝑤
𝑖𝑗,delay

are computed as 𝑤
𝑖𝑗,delay = 1 − 𝑤𝑖𝑗,direct. The Boltzmann tem-

perature is lowered when an output neuron spikes. If the
Boltzmann temperature has reached its minimal value, the
maximum of both weights converges to 1 and the minimum
to 0.

For each layer, the weight setting has to be learned. The
learning of the weights is a time evolving process. Weights of
the first layer settle first and converge to their 0 or 1 end state.
After the weights in the first layer have settled, the weights of
the second layer begin to settle, consecutively the weights of
the subsequent layers settle, until at last the weights of the last
layer settle. Subsequent learning in each layer depends on the
preconditioned setting of the weights in the previous layers.
Learning finishes when all weights converged to their final
states 0 or 1.

In summary, a neural net with velocity tuned cortical
columns self-learns to detect bars of different slopes and
sinusoids of different frequencies depending on the applied
training set. Self-learning has been examined for different
sizes of the neural net. The neural net executes a coordinate
transform which maps the spatiotemporal input patterns
through cortical columns and microcircuits to a feature vec-
tor.The solution foundby the neural net is compared tomath-
ematically derived solutions which are computed by Hough
transform space-time equations for straight lines and sinu-
soids in a numerical grid. The authors drew the conclusion
that the weight settings are either analytically derivable by the
Hough transform equations or are self-learned by the neural
net by pattern induced learning.

Based on its plausibility, the neuronal network model
serves as a partial system model for functional aspects and
dynamic properties of real neuron ensembles.

The signal propagation of temporary ordered sequences
through the net incorporates synfire chains [39]. Its fine-
tuned signal flow makes it a compelling model for cascaded
firing and stimulus triggered signal propagation [40]. It
strengthens the argument that spike-phase coding boosts and
stabilizes information carried by spatial and temporal spike
patterns [41]. The signal wave-front propagation is related
to visual map and receptive field formation by signal wave
induction [42].

A Boltzmann temperature has been introduced in the
model so that the synapses converge smoothly to their final
gating on or blocking off state which is consolidated by mod-
eling synapses as binary open and closed gates [43]. Through
this on/off switching to theminimal ormaximal conductance
an in vivo network flips from one state to another [44].

Unsupervised Hebbian learning has been assumed in
the model which is in concordance with STDP [45]. In
STDP, a synaptic link is potentiated or depressed where the
positive or negative weight change depends on the relative
time interval between the firing sequence of postsynaptic and
presynaptic neurons. In contrast, the weights are strength-
ened or decreased by a fixed increment in the model here
[46]. With a resource-dependent STDP variation complex
temporal patterns can be learned [47]. These discrepancies
and influences in weight which change according to applied

learning rules should be investigated further by alternatively
extending the model to include STDP learning rules. We
have, for example, demonstrated that STDP learning behavior
can be realized in a biohybrid synapse built as a memristor
[48]. It is feasible to implement the model in neuromorphic
hardware as in parallel memristor bridge synapse-based neu-
ral networks, as in an evolving spiking neural network with
temporal spike learning, or as a model with implemented
dendritic delays [49–51]. It can serve as a model to extract
temporally correlated features with STDP from dynamic
vision sensors [52]. Referential structures from videos can be
partially encoded as examples demonstrating time encoding
machines [53]. It can therefore serve as a model for the
episodic nature of spike trains and for the relative spike time
coding and STDP-based orientation selectivity in the early
visual system [54, 55].

This model together with its foundation in basic neuro-
biological assumptions will serve as a subject in information
processing and be a guide for system identification in further
in vivo and in vitro experiments.

5. Novel In Vitro Protocol of the Hubel-Wiesel
Experiment with 3D MEAs

TheHubel-Wiesel experiment using a newprotocol presented
here is planned to be revisited in vitro with stem cell based
cocultured neuron-glia networks (NGN) and topologically
selected stimulation electrodes from novel 3D MEAs.

The assumption is that receptive field areas will func-
tionally assemble by synaptogenesis due to pattern induced
stimulation in the NGN [56]. This would solve the pattern
recognition task by having the in vivo environment essentially
deliver the input stimuli mapped through cortical columns
and microcircuits to the feature neurons.

The NGN is not developed according to a brain-like pro-
tocol nor does it resemble an explant neuron ensemble in its
macro- andmicrostructure [57, 58]. Often self-spiking occurs
after a few days and the network connects itself to partial
microcircuits [59]. As there is no additive brain derived
neurotrophic factor or other external signaling chemicals, the
NGNwill self-assemble and persist in its arrested self-spiking
functionality if no pattern induced stimulation is applied and
only partially dysfunctional local microcircuits will evolve
[60, 61].

Astrocytes and neurons combine in a homeostatic rela-
tionship to create the so-called tripartite or tetrapartite
synapse [62, 63]. Astrocytes therefore play a crucial role
in the retrograde signaling cascade enabling timing long-
term depression (tLTD) which is a prerequisite for changing
the synaptic link strength in experiments [64]. Synaptic
connections strengthen or weaken by modifying the presy-
naptic glutamate release probability by activating presynaptic
located ionotropic receptors [65].

Several in vitro experiments which have been conducted
by various researchers with paired-pulse single electrode
or paired-pulse electrodes stimulation partially support the
feasibility that an evolving NGN can reproduce the model.

Activity can be induced by electrode stimulation of a
single electrode in near-distant neurons [66]. The activation
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(a) (b)

Figure 4: Micro-CT image of a microtower with integrated electrodes which forms a 2D MEA (a) and which forms a 3D MEA (b) when
placed in series with a baseplate compatible with commercial amplifier systems.

can be traced back directly to the conducting axonal branches
of the stimulation neuron in the vicinity of the place of
innervation by the electrode and therefore local connections
of neurons can build up activation chains of consecutive firing
sequences.

Repetitive paired-pulse stimulation of a single electrode
for brief periods induces persistent strengthening or weak-
ening of specific polysynaptic pathways depending on the
inter-pulse interval [67]. Correlated pre- and postsynaptic
excitation at distant synapses is due to different transmission
delays along separate pathways. Through such a delay-line
mechanism, temporal information coded in the timing of
individual spikes can be converted into and stored as spatially
distributed patterns of persistent synaptic modifications. As
a result, the evolution of tiny timing microcircuits might be
reflected in the experiment. With paired-pulse stimulation
with distant remote electrodes, cultured cortical networks are
able to learn by shuffling the timing impulse responses of the
neurons relative to the applied inter-pulse intervals [68].This
supports the assumption that time can be precisely stored in
time ladders. In a ring-shaped cultured cortical network, a
prolonged activity can be triggered by electrode stimulation,
in which a sequence of neurons fires cyclically in a ringing
mode following a single stimulus [69]. This supports the
model assumptions of concatenated neuron sequences.

Cultured cortical networks in vitro from explant cultures,
dissociated cell cultures, and stem cell derived neuron ensem-
bles can be stimulated in a controlled fashion by electrode
stimulators from different vendors, such as Multi Channel
Systems and Plexon [70]. Several stimulation electrodes of
a MEA can be selected and stimulation sequences can be
streamed to the electrodes in parallel, with front-end elec-
tronics operated by computer assisted control and monitor-
ing modes. The NGN will be stimulated by applying specific
stimulation sequences to the electrodes [71]. The stimuli will
be provided to a 3D NGN environment using 3D MEAs
created at the Technische Universität Ilmenau, shown in
(Figure 4) [72, 73].

Contrary to in vivo experiments, no visual cues such as
physical bars presented to the retina will be necessary.

t0t1

Figure 5: Two spatiotemporal stimulation sequences to be provided
by the microelectrodes of the 3D MEA.

Instead, the bars will be presented as parallel aligned acti-
vated sets of electrodes in a pixel-wise fashion (Figure 5).
Spatiotemporal pattern sequence activation is adopted. The
sequences are produced like playing a pianowith both fingers.
At time 𝑡

0
, electrode 2 is activated. At consecutive time 𝑡

1
,

electrode 1 is activated. The NGN sees a diagonal bar as a
spatiotemporal sequence. It is paired-pulse stimulation in a
predefined time lag interval over two adjacent electrodes. For
the second training pattern—a vertical bar—electrode 1 and
electrode 2 are activated in parallel (Figure 5).

6. Learning and Long-Term Structuring of
the Neuron-Glia Net

The patterns will be presented by the 3D MEAs over long
stimulation times to the cultured cortical network. Neurons
in the vicinity of the electrodes will be activated consecutively
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in time and the computations will remain local by limited
axonal and dendritic outspread. Some of the questions will
be as follows. Are input stimuli mediated through cortical
columns and microcircuits to feature neurons? Are the net-
works able to discriminate between the presented patterns?
Are the feature detector neurons arranged in an ordered
fashion according to ascending feature sets? And are all inter-
mediate neurons intrinsically localized as part of the cortical
microcircuit in order to realize an identification of the
system?

The cortical column model is adopted for system inspec-
tion and is essentially modeling aspects associated with the
evolving NGN. This is a numerical model and as such has
some unitary parameters which are not related to physical
entities, like absolute timing in measurable quantities. Time
is unitary and specified as a clock stepwith no time associated
units in the model. In the experiment for STDP learning, the
time interval will be set to the millisecond range according
to literature values. The inter-pulse interval will be set in
the stimulator. With the help of the experiment, we plan to
fine-tune the model and parameters of the physical NGN. In
variations of the experiment, the control parameters will be
tuned to see where the optimal range and set points of various
controllable parameters are. These parameters and points
include stimulus length, STDP timing intervals, repetitive
pattern burst modes, number of training cycles, and day of
stimulus activation. A crucial role is played by the adaption
of the weights to their minimal blocking values or maximal
conducting values, respectively.

Thus far, our computer simulation of the cortical column
model requires the weight incrementing learning curve value
𝛼 to be set to a very low value. This requires that the training
patterns be applied several hundred thousand times. How-
ever, the parameter𝛼 can be determined in these experiments
by counting the number of training cycles until a steady
truth table configuration has been reached. The minimal
constituting elements of the cortical columnsmicrocircuit are
two input neurons, four delay neurons, and two output neu-
rons to detect the patterns in Figure 5 which are covered
in the recording MEA field. The truth table for the cortical
microcircuit is as follows: if input neuron 1 and input neuron
2 are on at time 𝑡

0
, then output neuron 1 is on; if input neuron

2 is on at 𝑡
0
and input neuron 1 is on at time 𝑡

1
, then output

neuron 2 is on.
An early indicator for the success of the experiment is

that over many stimuli test patterns some of the recording
electrodes will have a high output value relative to the trigger
time of the applied stimulus. In a subsequent observation,
the first two delay neurons in the cortical column can be
disregarded by directly connecting the axonal branches to the
dendrites of output neuron 1, which detects the coincident
firing of the two input neurons. As a result, these neurons
will fire. The key learning is experienced by the two delay
neurons in cortical column 2. Over the sustained training
period, it is necessary and sufficient that the synaptic branch
tends towards the delaying neuron 2 and the direct branch
connectivity is cut off. In a coevolutionary manner, the upper
signaling path should establish a direct axonal connection
to the dendrite of output neuron 2, so that neuron 2 can

sense the synchronous coincidence of the upper and lower
signaling path.

7. Risk Assessment

The risks of the experiment are clearly identified.The cortical
microcircuit elements are very few and it is not a priori
assured that the activities of the constituting elements are
covered by electrodes in the vicinity. The system could be
underdetermined or overdetermined resulting from hidden
neurons not covered in the system playing a crucial role in
the microcircuit. The model adopted could be wrong with
nature implementing its logic circuitry in another fashion. To
investigate the string-like trajectory information processing
the input layer size will be enlarged as soon as more stimula-
tion electrodes become available for the experiment.

8. Conclusions

A thorough description on different levels of abstractions
has been given to reproduce the Hubel-Wiesel experiment in
vitro.

The Hubel-Wiesel experiment has been resumed and the
contributions of several authors were listed, which indicate
some plausibility for the mathematical Hough transform as
substrate of information processing in biological maps for
orientation selectivity. Several computational Hough models
at neural level have been compared and one model has been
selected as a guide for further experiment. The proposed in
vitro experiments will be guided as presented in the paper
here. The main goals are to see if our model assumptions can
be verified by experiment and if an indication of evidence for
information processing can be definitely given in a cortical
column microcircuit.
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