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Microglia in Alzheimer’s disease at single-cell level.
Are there common patterns in humans and mice?

Yun Chen®2® and Marco Colonna'®

Alzheimer’s disease (AD) is characterized by extracellular aggregates of amyloid B peptides, intraneuronal tau aggregates, and
neuronal death. This pathology triggers activation of microglia. Because variants of genes expressed in microglia correlate with
AD risk, microglial response to pathology plausibly impacts disease course. In mouse AD models, single-cell RNA sequencing
(scRNA-seq) analyses delineated this response as progressive conversion of homeostatic microglia into disease-associated
microglia (DAM); additional reactive microglial populations have been reported in other models of neurodegeneration and
neuroinflammation. We review all of these microglial signatures, highlighting four fundamental patterns: DAM,
IFN-microglia, MHC-Il microglia, and proliferating microglia. We propose that all reported microglia populations are either
just one or a combination, depending on the clustering strategy applied and the disease model. We further review single-
nucleus RNA sequencing (snRNA-seq) data from human AD specimens and discuss reasons for parallels and discrepancies
between human and mouse transcriptional profiles. Finally, we outline future directions for delineating the microglial impact

in AD pathogenesis.

Introduction

Alzheimer’s disease (AD) is the most common form of dementia,
affecting more than 5.5 million Americans. Age is the major risk
factor; one third of patients are over 85 yr of age. AD is initiated
by the cleavage of amyloid precursor protein (APP) into amyloid 8
(AB) peptides, which are prone to form extracellular aggregates;
these promote intraneuronal tau hyperphosphorylation and ag-
gregation, which subsequently lead to synaptic dysfunction and
neuronal death (Kumar et al., 2015; Long and Holtzman, 2019). AD
pathology elicits a secondary response by microglia, which
expand and acquire unique transcriptional and functional
features. Genetic studies of human AD have demonstrated
that many risk genes are expressed in microglia (Bertram and
Tanzi, 2009; Cuyvers and Sleegers, 2016; Kunkle et al., 2019),
suggesting that their response can impact disease onset and/
or progression.

Microglia are the major phagocytic population in the central
nervous system (CNS; Prinz et al., 2019). They develop from yolk
sac progenitors, migrate into the developing brain, and generate
a population of brain-resident phagocytes that persist for life
through self-renewal, with no influx of bone marrow-derived
progenitors (Ginhoux et al., 2010). Microglia contribute to CNS

development and establishment of functional neuronal circuits
by clearing apoptotic cells (Sierra et al., 2013), pruning neuronal
synapses via complement-mediated phagocytosis (Schafer and
Stevens, 2015), and releasing growth factors, enzymes, cyto-
kines, and lipoproteins that sustain neuronal development and
metabolism (Vainchtein and Molofsky, 2020). Microglia also
provide a defense mechanism against pathogens and sterile insults
that cause tissue damage (Prinz et al., 2019). In neurodegenerative
diseases, microglia restrain extracellular protein aggregates and
clear damaged neurons (Song and Colonna, 2018). However, ex-
cessive activation of microglial proinflammatory functions may be
detrimental and accelerate tissue damage (Hansen et al., 2018;
Villacampa and Heneka, 2020).

The recent introduction of single-cell RNA sequencing
(scRNA-seq) and single-nuclei RNA sequencing (snRNA-seq)
analyses has greatly advanced our knowledge of microglia re-
sponses in AD and other neurodegenerative diseases, leading to
the identification of special microglial subsets associated with
neurodegeneration in both mouse models and human speci-
mens. However, the heterogeneity of the microglial signatures
in various studies, their designation with different acronyms,
and the discrepancies between mouse and human data have
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made it difficult to achieve a consensus on the main features,
pathways, and effects of microglial responses to neuro-
degeneration. Here, we present an overview of microglial fea-
tures in AD emerging from available single-cell transcriptomic
analyses and suggest questions and challenges that transcend
transcriptome analyses.

The disease-associated microglia (DAM) paradigm of microglia
activation

The first scRNA-seq analysis of microglia in the 5xFAD mouse
model of AP accumulation led to the discovery of a microglial
subset distinct from homeostatic microglia named DAM (Keren-
Shaul et al., 2017; Table 1). This subset featured reduced ex-
pression of genes for homeostatic markers (Tmemll9, P2ryL2,
P2ry13, Cx3crl, Cst3, Cd33, and Csfir) and heightened expression of
a vast array of genes for cell surface receptors (Trem2, Tyrobp,
Clec7a, and Lilrb4), integrins (Itgax), tetraspanins (Cd9 and Cd63),
MHC-I (Cd74), cytokines (Csfl), chemokines (Ccl6), complement
(C3), growth factors (Igfl), antimicrobial proteins (Lyz2 and
Cybb), molecules involved in lipid metabolism (ApoE and Lpl),
iron metabolism (Fthl), lysosomal functions (Cst7, Ctsb, Ctsd,
Ctsl, and Ctsz), phagocytosis (Axl), and tissue remodeling
(Gpnmb, Sppl, Timp2; Table 1). Some of the DAM genes corre-
sponded to risk genes for human AD, such as APOE and TREM2,
corroborating that DAM may directly impact disease progression.
Moreover, analysis of 5XFAD x Trem2~/~ mice demonstrated that
conversion of homeostatic microglia into DAM is a progressive
change that occurs through a TREM2-independent stage (DAMI)
followed by a TREM2-dependent stage (DAM2; Table 1). The DAM
signature was also found in the SOD1-G93A model of amyotrophic
lateral sclerosis, suggesting that DAM represent a general response
to different neurodegenerative diseases although the amplitude of
this response may vary (Deczkowska et al., 2018). Notably, the DAM
signature was quite distinct from the conventional M1/M2 macro-
phage polarization profiles that had been widely used to define
macrophage responses to pathology, thus establishing a new para-
digm in macrophage biology.

A DAM-like signature of microglia was confirmed in four
different disease models by bulk RNA sequencing (RNA-seq) of
sorted FCRLS* microglia (Krasemann et al., 2017; Table 1). This
signature differed subtly from that identified by scRNA-seq for
the down-regulation of additional homeostatic genes, which was
attributed to reduced TGFB-dependent signaling (Butovsky et al.,
2014). Since this study relied on bulk RNA-seq of microglia
sorted from whole brain, such a difference may reflect changes
in brain microglia rather than the DAM subset alone. This study
corroborated that the DAM signature is affected by TREM2
deficiency but also partially by APOE deficiency. It is likely that
lack of APOE reduces AP plaque toxicity (Long and Holtzman,
2019; Chen et al., 2021) and affects microglia metabolism.

IFN-I and MHC-II microglia coexist with DAM

Two microglial subsets seemingly different from DAM, defined
as type I IFN (IFN-I) and MHC-II, were identified by scRNA-seq
in the CK-p25 mouse model of neurodegeneration (Mathys et al.,
2017). CK-p25 mice express a tetracycline-controlled CDK5RI1
protein in forebrain neurons. Upon removal of doxycycline,
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accumulation of CDK5RI1 and its cleavage product, p25, cause
neuronal loss and amyloidosis (Cruz et al., 2003). In contrast to
most common amyloid models, neuronal loss occurs before
amyloidosis in CK-p25 mice and is associated with tau hyper-
phosphorylation. This model revealed a microglia subset with a
strong expression of MHC-II genes, whereas another subset
expressed IFN-I-induced genes (Mathys et al., 2017; Table 1).
Since many genes induced in CK-p25 microglia overlapped
with DAMI genes, it was proposed that IFN-I and MHC-II mi-
croglia may precede the final differentiation of DAM. IFN-I and
MHC-II signatures were not unique to the CK-p25 model, as
subsequent scRNA-seq studies identified them in other mouse
models. One study found a microglia IFN-I signature in mouse
models of AB accumulation (APP-PSI), tauopathy (P301S and
P301L), amyotrophic lateral sclerosis, cuprizone-induced demye-
lination, ischemia, lipopolysaccharide, viral infection, and glioma
(Friedman et al., 2018; Table 1). However, the IFN-I module was
more evident in viral infection, lipopolysaccharide, and glioma
than in neurodegenerative models, which, conversely, upregu-
lated a set of “neurodegeneration-related genes” that largely
overlapped with the DAM signature. Moreover, most of the entire
neurodegeneration gene set was TREM2 dependent.

Another scRNA-seq study verified an IFN-I microglia subset
distinct from an activated microglia subset in the APPNL-GF
knock-in model, in which human APP with the Swedish, Ibe-
rian, and Arctic mutations is driven by the endogenous App
promoter (Sala Frigerio et al., 2019). In this model, microglia
transitioned from a partially activated state marked by expres-
sion of MHC-II and ApoE to two terminally activated states, one
with heightened expression of MHC-II and DAM genes and the
other denoted by IFN-I-induced genes (Table 1). In snRNA-seq
analysis of 5xFAD mice at different stages of pathology (Zhou
etal., 2020), no MHC-II subset was formally distinguished from
DAM (Table 1); however, MHC-II-related genes were increas-
ingly upregulated during progression of the disease, paralleling
a similar phenomenon in CK-p25 (Mathys et al.,, 2017) and
APPNL-GF mjce (Sala Frigerio et al., 2019), which suggests that
exacerbation of pathology may amplify the MHC-II signature.
Furthermore, the DAM and MHC-II signatures were associated
with enhanced expression of Hifla and the IFN-I-inducible
Ch25h (Zhou et al., 2020), which have been associated with ag-
ing and AD (Shibata et al., 2006; Ashok et al., 2017; Srinivasan
et al., 2020). While more easily identifiable in disease models
such as CK-p25 or P301S mice (Mathys et al., 2017; Wang et al.,
2021), it is plausible that IFN-I and MHC-II signatures coexist
with DAM in all models analyzed but are sometimes over-
shadowed by the DAM signature. If so, IFN-I and MHC-II microglia
can be deconvoluted from the DAM population by high-resolution
microglia subclustering, provided that enough cells are originally
sequenced. Distinct MHC-II and DAM subsets were observed in the
cuprizone model of demyelination (Masuda et al., 2019), suggesting
that coexistence of DAM, MHC-II, and other microglial signatures
occurs in demyelination.

Proliferating microglia: A parallel or converging trajectory?
In addition to the homeostatic, DAM, IFN-I, and MHC-II pop-
ulations, two recent scRNA-seq studies in the 5xFAD model
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Table 1. Summary of microglial gene signatures reported in neurodegenerative mouse models

Krasem % % % Wang et al., 2020
R~ Hammon Liet Safaiyan Friedma

Zhou et ann et Sala Frigerio et Mathys et al., &

al., 2020% al al., 2019 detal., al., etal, -netal.,

v - v 2019a 2019 2021 2018*

Publicatit K -Shaul et al., 2017
ublication eren-shaul et al., 2017 Ellwanger et al.,
2017 2021*

Method scRNA-seq SnRNA= BN scRNA-seq SclNA= SCANA scRNA: scRNA-seq RNA: scRNA-seq
seq seq seq -seq seq seq
PS2APP;
CK-p25 5XFAD;
P301S/L

5xFAD
+anti-TREM2

) SXFAD; APP/PSL;
Disease model hsoD1 S5xFAD hsOD1

C578BL C57BL/6);

NLG-F
APP' C57BL/6) /6N SXFAD

Clusters
IFN MHC IFN MHC CycM

Genes

Signature

Homeostatic Tmem119
P2ry12
P2ry13
Csflr
Hexb
Cst3
Cx3crl
Siglech
Cd33
Tgfbrl
Sall1
Selplg
Mef2a
Jun
Ms4a6d
Bin1
Serinc3
DAM:-like Cd9
ApoE
Trem2
Tyrobp
Clec7a
Cd63
Lgals3
Axl
Spp1
Cstb
Cstz
Cstl
Ctsd
Lpl
Itgax
B2m
Cst7
Csf1
Gpnmb
Igf1
Lilrb4
Inf8
Fthl
Lyz2
Ccl3
Ccl6
Timp2
IFN Irf7
Ifitm3
Ifit2
Ifit3
Cxcl10
Oasl2
Cd69
Isg15
Usp18
MHC H2-D1
H2-K1
H2-Eb1
H2-Aa
H2-Ab1
Fz v —
Cd74
Cyc-M Top2a
Mki67
Cenpe
Mcm5
Birc5
H2afz
H2afv

Dark blue, downregulated signature genes; light blue, additional downregulated genes; orange, upregulated signature genes; yellow, additional upregulated genes. ¥,
these papers extend the profiles of defined clusters, or report a novel cluster. To show the difference between DAM1 and DAM2, only the top genes that were used
for this characterization are listed. MGnD, microglial neurodegenerative phenotype; ARM, activated response microglia; IRM, IFN response microglia; WAM, white
matter-associated microglia; IFN, IFN-I imprinted; MHC, MHC expressing; Cyc-M, (G)2/M phase-enriched cluster (proliferating microglia).

identified a fifth microglial population enriched for cellsin  Cenpe, Mcm5, Birc5, etc. (Wang et al., 2020; Ellwanger et al., 2021;
growth (G)2/mitotic (M) phase with a proliferation module Table 1). The identification of proliferating microglia corrobo-
(Cyc-M cluster) featured by the expression of Top2a, Mki67, rated previous reports of a cluster of microglia expressing the
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proliferation marker Ki67 around AP plaques in 5xFAD mice
(Wang et al., 2016) and of a limited increase of mitotic genes in
neurodegenerative models (Friedman et al., 2018). In one of these
scRNA-seq studies, a trajectory analysis further addressed the
relationships among all microglial populations (Ellwanger et al.,
2021), showing that homeostatic microglia differentiate through a
continuum of progressively activated states, which ultimately
branch into four separate trajectories: DAM, IFN-I, MHC
(expressing both MHC-II and MHC-I genes), and proliferating
(Cyc-M). Further studies will be necessary to verify whether
any of these trajectories convert into another at some point. The
representation of all four terminal fates was reduced in 5xFAD x
Trem2~/~ mice, demonstrating a general requirement of TREM2
for microglia activation. However, a single injection of anti-
TREM2 antibody in adult 5xFAD mice with advanced A ag-
gregation selectively expanded proliferating microglia and had
little effect on other differentiation fates (Wang et al., 2020;
Ellwanger et al., 2021). Since Trem2~/~ mice have a constitutive
microglial defect that precedes the onset of Ap aggregation, the
limited impact of antibody-mediated TREM2 activation on
microglia may be dictated by the late and transient timing of
this intervention. Early and/or sustained TREM2 engagement
may be necessary to induce the DAM, IFN-I, and MHC-II mi-
croglial populations.

DAM:-like signatures in development and aging

Microglia responses to AD pathology recapitulate, at least in
part, microglial function during CNS development, such as
phagocytosis of apoptotic cells and damaged myelin. Thus, it is
not surprising that the “DAM” paradigm has been confirmed by
scRNA-seq during CNS development. One example is the axon
tract-associated microglia, which appear in postnatal day 4 (P4)/
P5 mice but are absent in embryonic day 14.5 mouse embryos
and P30-P100 adult mice (Hammond et al., 2019; Table 1 and
Fig. 1). These microglia, which were found along axon tracts that
become heavily myelinated and were shown to prune synapses
in a transient time window of brain development (Schafer and
Stevens, 2015), exhibited a DAM-like expression profile. Similar
DAM-like microglia were reported to be present in P7 mice in
association with postnatal myelination and scarce in adult mice
(Lietal., 2019; Table 1 and Fig. 1). Remarkably, this study showed
that a lack of TREM2 or APOE, both of which affect DAM dif-
ferentiation in AD pathology, has no impact on DAM-like
microglia during development. It is possible that myelin and
synapse debris trigger pathways of activation partially different
from those elicited by AP aggregates. Moreover, other glial cells
or neuronal cells may produce soluble factors during develop-
ment that can compensate for TREM2 and/or APOE deficiency
(Li and Barres, 2018). Another report showed that activated
microglia with a DAM signature are present in the mouse em-
bryonic brain but diminish postnatally, allowing another mi-
croglia population expressing Cst3 and Sparc to populate the
postnatal brain (Masuda et al., 2019). Altogether, these studies
concur that waves of activated microglia with a DAM-like profile
differentiate during critical stages of CNS development to
facilitate recycling of lipid components resulting from remod-
eling of neuronal synapses and myelin (Fig. 1).
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Physiological aging is associated with an accumulation of
degenerative features in the CNS, which also elicit the dif-
ferentiation of DAM, although with delayed kinetics com-
pared with AD pathology (Fig. 1). Accordingly, a recent study
identified a microglia population within the white matter that
develops with aging, partially overlaps with DAM, and may
eventually progress into DAM with further accumulation of
tissue damage (Safaiyan et al., 2021; Table 1). This signature
was affected by TREM2 deficiency, but not by APOE deficiency,
unless the aged mice also carried the APP/PSI transgene medi-
ating AB accumulation (Safaiyan et al., 2021), suggesting that the
impact of APOE on the DAM signature during aging is minimal
unless AD pathology is present (Krasemann et al., 2017; Wang
et al., 2021).

DAM:-like signatures in microglia repopulation

Microglia development and maintenance is dependent on en-
gagement of the CSF1 receptor by IL-34 secreted by neurons and
CSF1 released by astrocytes and microglia themselves (Chitu
et al., 2016). Administration of small molecules that inhibit
CSFIR, such as PLX5622, induce a profound depletion of mi-
croglia, which is reversed upon suspension of treatment; re-
sidual microglia proliferate and repopulate the CNS (Bruttger
et al.,, 2015; Huang et al., 2018), although the origin of the
proliferating cells is a matter of debate (Elmore et al., 2014;
Jékel and Dimou, 2017; Askew et al., 2017). A recent scRNA-seq
analysis of microglia 2 d after removal of PLX5622 divulged a
decline in the homeostatic signature, paralleled by the ap-
pearance of three distinct signatures: one enriched in mitosis
markers, a second expressing MHC-II, and a third DAM-like sig-
nature with elevated expression of chemokines (Zhan et al., 2020).
All subsets expressed Galectin-3 (MAC2 or Lgals3), which has
been reported to be a ligand for TREM2 (Boza-Serrano et al.,
2019). Why repopulating microglia acquire MHC-II and DAM-
like characteristics rather than homeostatic features is not clear.
Given that CSFIR inhibitors are being tested as potential thera-
peutic agents in the treatment of AD and neurodegenerative
diseases (Waisman et al., 2015; Shi et al., 2019; Spangenberg
et al., 2019; Casali et al., 2020; Green et al., 2020), it will be
important to establish whether and how repopulating microglia
modulate pathology.

Discrepancies between human and mouse microglia signatures
in neurodegeneration

Microglial signatures obtained from snRNA-seq of human AD
brain specimens evince considerable heterogeneity and seem to
differ from mouse signatures. In an initial study, AD-enriched
modules mainly included genes for myelination and neuronal
survival, whereas no DAM signature was observed (Mathys
et al., 2019; Table 2). Major gene expression changes in-
cluded (1) up-regulation of heat shock protein chaperones,
perhaps indicative of a reported unfolded protein response to
tau aggregation (Ballatore et al., 2007; Ittner and Gétz, 2011); (2)
up-regulation of the neuron apoptosis regulator LINGOI; (3) down-
regulation of the neuron regeneration genes NEGRI, BEXI, and
NTINGE and (4) sex bias for some AD-related changes, including a
more drastic reduction of inhibitory neurons in females than in
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Figure 1. Temporal appearance of microglial subsets with activated signatures in mouse life span. Signatures of proliferative region-associated mi-
croglia (PAM) and axon tract-associated microglia (ATM) transiently appear in early stages of postnatal development. The dashed line above ATM and PAM
indicates the possibility that ATM and PAM may belong to the same wave of microglia activation. Moreover, microglia with DAM/MHC/IFN-I activation
signatures slowly increase with aging, a process that is accelerated in models of neurodegeneration.

males. Only a few microglia genes, including APOE and SPPI, were
upregulated (Table 2). A subsequent study in which more nuclei/
specimens were sequenced identified an incomplete DAM pattern
with up-regulation of TREM2, APOE, CD68, and HLA-DRA (Zhou
et al., 2020; Table 2). Other key DAM genes were either unde-
tected (CST7, GPNMB, and LPL) or downregulated (SPPI), while
expression of some homeostatic signature genes was heightened
(TMEM119, P2RY12, and CX3CRI). Enhanced expression of genes not
reported in mouse models of AD was also observed. These in-
cluded IRFS, a regulator of reactive microglia (Kierdorf et al.,
2013); SORLI, an AD risk factor involved in APOE uptake and
APP trafficking (Rogaeva et al., 2007; Li et al., 2008); the chitinase-
like protein CHI3LI, a CSF biomarker for preclinical AD; and Alpha-
2-macroglobulin. Subsequent -omics analyses of human AD also
reported an incomplete DAM signature. Few DAM signatures
genes (ApoE and HLA-DRA), together with other genes such as
CD163 and HIFIA, were also captured by another snRNA-seq
study (Grubman et al., 2019; Table 2). In one study of pre-
frontal cortex specimens, a small population of AD-specific
microglia showed up-regulation of genes for complement
(C1QA4, C1QB, and CIQC) and cytokine receptors (IL4R and ILI-
RAP; Lau et al., 2020; Table 2). In another study of patients
carrying PSEN1 mutations causing familial AD, the top five
differentially expressed microglial genes included EEFIAL
GLULL, KIAAI217, LDLRAD3, and SPPI (Del-Aguila et al., 2019),
together with ~20 DAM genes (Table 2).

A novel snRNA-seq approach allowing for increased numbers
of nuclei sequenced/specimen characterized two microglial
populations; dystrophic microglia expressed genes for iron
metabolism (FTL and FTHI), and amyloid-responsive microglia
expressed CDI163, BINI, MS4A6A, and CELFI (Nguyen et al., 2020;
Table 2). Although CD163 expression correlated with AD-
associated APOE (APOE4) and TREM2 (TREM2R4’H) poly-
morphisms, the amyloid-responsive microglia evoked no DAM
signature except for a slight up-regulation of APOE, while other
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DAM genes were downregulated. Conversely, the highest ex-
pression of TREM2, APOCI, APOE, HLA-DRA, and HLA-DRBI was
noted in the dystrophic cluster. The relationship between these
microglial populations remains to be defined. The limited
overlap between human and mouse AD microglial signatures
was corroborated by proteomics of human AD specimens,
which revealed an AD-associated astrocyte-microglial metabo-
lism module characterized by high expression of CD44, PRDXI,
and DDAH2, while only few of the proteins in this module
mirrored the mouse DAM phenotype (Johnson et al., 2020).
scRNA-seq profiles of surgically dissected human brain speci-
mens from patients with multiple sclerosis revealed various
microglia populations expressing DAM genes, although mul-
tiple sclerosis and AD are quite different diseases (Masuda et al.,
2019); this implies that at least some of the DAM genes may
reflect a conserved pattern of microglial responses to different
CNS diseases, despite the heterogeneity of brain pathology.

Biological and technical bases for microglial profiles
heterogeneities in AD

One biological reason for the differences between human and
mouse microglial signatures is that human specimens represent
a terminal stage of AD with amyloid and tau pathology, as well as
extensive neuronal cell death (Kumar et al., 2015; Long and
Holtzman, 2019); mouse specimens, however, often encapsu-
late either earlier stages of the disease characterized most
prominently by AP accumulation or frontotemporal dementia-
like tauopathy without amyloidosis (Gétz et al., 2018). To de-
termine how human microglia respond to progressive stages
of AD with either amyloid pathology or tauopathy, a recent
study performed snRNA-seq after separating the occipital cortex
(Gerrits et al., 2021), which mainly develops amyloid pathology,
from the occipitotemporal cortex, which accumulates both am-
yloid aggregates and neuronal fibrillary tangles (Jucker and
Walker, 2013, 2018). This approach led to the identification of
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Table 2. Summary of human microglial gene signatures

Publication

Mathys et
al., 2019

Zhou et al.,
2020

Grubman

Lauetal.,
2020

Del-Aguila
etal., 2019

Masuda et
al., 2019

Olah et
al., 2020

Sobue et
al., 2021

Nguyen et al., 2020

Gerrits et
al., 2021

Method

SnRNA-
seq

snRNA-seq

SnRNA-
seq

snRNA-seq

scRNA-seq

SCRNA-
seq

snRNA-
seq

snRNA-seq

snRNA-seq

Microglia #

955 (AD)
965 (C)

919 (AD)
1547 (C)

449
(Total)

~7966
(Total)

79 (LOAD)
05 (ADAD)

422 (Ms)
1180 (C)

8543
(AD)

1441 (AB)

NA. 2226 (AB&Tau)

315 (C)

95587 (AD)
51655 (C)

Clusters

Signature Genes

DAM(Partial)

Clq&Cyto

DAM/IFN

CD163

Dystrophic

GRID2

Homeostatic TMEM119

P2RY12

P2RY13

CX3CR1

SELPLG

BIN1

DAM-like cD9

APOE

TREM2

TYROBP

CD63

CD68

AXL

SPP1

CTSB

CTsD

LPL

ITGAX

CST17

CSF1

GPNMB

IRF8

FTH1

IFN IFITM3

IFIT3

CXCL10

STAT1

IRF7

ISG15

MHC HLA-A/E

HLA-DRB1

HLA-DPB1

CD74

HLA-DRA

CcD83

CD81

Other A2m

CHI3L1

SORL1

LI

SOCS6

SLC11A1

S100A8

S100A9

HAMP

CI1QA

[&]el:]

ciQc

IL4R

ILIRAP

EEF1A1

GLUIL

KIAA1217

LDLRAD3

APOC1

LGALS1

CcCL2

CCL4

EGR3

FTL

INPP5D

ST6GAL

CSF3R

MS4A6A

CD163

GRID2

HSPAIA

GAPDH

CRYAB

HSPB1

HSP90AA1

HSPA8

Light blue, downregulated genes; yellow, upregulated genes; gray, not detected; orange, used in signature definition. Genes present in Table 1 but absent in
Table 2 were not differentially expressed in human samples. The table includes a partial list of the main differentially expressed genes discovered in the

referenced papers. C1g&Cyto, C1q and cytokines; C, control; NA, not available.
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three populations: (1) homeostatic microglia expressing P2RY12
and CX3CRI; (2) amyloid-associated microglia expressing DAM
genes; and (3) tauopathy-associated microglia expressing the
gene for the glutamate receptor GRID2, which was highly enriched
around neuritic plaques but may not be functional (Gerrits et al.,
2021; Table 2). Future investigation of microglial genes in mouse
models of tauopathy are warranted to further advance the notion
of tauopathy-associated microglia. Other biological reasons that
may explain the heterogeneous detection of DAM signature genes
in human AD are: (1) the different brain regions from which the
specimens originate; (2) the genetic diversity of AD patients; and
(3) the disparate ethnic origins of the various cohorts analyzed,
which may impact both the genetic background and environ-
mental factors regulating AD.

There are also several technical reasons that can contribute to
human-human and human-mouse discrepancies in the AD pro-
files. While DAM were mainly identified by scRNA-seq, almost all
microglial profiles in human AD were determined by snRNA-seq.
The number of microglia nuclei sequenced may be insufficient to
identify a DAM cluster (Table 2); indeed, DAM and IFN-I signatures
were detected in AD patients by bulk RNA-seq, which provides
more depth (Sobue et al.,, 2021), and SPP1 was detected in two
studies in which large numbers of nuclei were sequenced (Mathys
et al., 2019; Del-Aguila et al., 2019). Additionally, mRNAs may be
less abundant in the nucleus vs. cytosol; accordingly, mRNA of
key DAM markers was less abundant in nuclei than in whole
cells obtained from the same individuals by neocortical resection
(Thrupp et al., 2020). Finally, the overall quality of human RNA
samples may be poorer than mouse samples due to postmortem
intervals preceding human sample collection and processing. In-
deed, a study showed that human postmortem samples lost the
expression of certain mRNA, including SPP1 and SOCS3 (Dachet
et al., 2021). Moreover, this study showed an up-regulation of CD68
in microglia with postponed fixation for tissue staining. Studies of
human samples promptly collected after neurosurgery or autopsy
and analyzed by scRNA-seq have reported microglial profiles more
similar to those identified in mouse models (Masuda et al., 2019;
Olah et al., 2020). Thus, differences in tissue collection and pro-
cessing may contribute to heterogeneity of human samples and
human-mouse discrepancies.

Innovative approaches for investigating human microglia in AD

Beyond high-resolution transcriptional profiling, several additional
approaches have been developed to investigate human microglia in
AD and understand the impact of AD risk variants in their func-
tions. Microglia have been generated from human induced plurip-
otent stem cells (iPSCs) and embryonic stem cells (ESCs; Douvaras
etal., 2017; Abud et al., 2017; Haenseler and Rajendran, 2019). DAM-
like signatures were observed in microglia from human ESCs in
which familial AD-associated mutations were introduced in APP
and PSENI genes (Liu et al., 2020). TREM2 dependency of DAM
was reproduced in TREM2-sufficient and TREM2-deficient human
iPSCs (Reich et al., 2021). Since culture conditions may not fully
reproduce the complexity of CNS microenvironment (Gosselin
et al,, 2017), iPSC- and ESC-derived microglia have been trans-
planted into the mouse CNS (Hasselmann et al., 2019; Mancuso
et al, 2019; McQuade et al., 2020). Transplanted human ESC-
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derived microglia not only retained a transcriptome profile distinct
from that of endogenous mouse microglia for 2 mo after intracranial
injection (Hasselmann et al., 2019) but also recapitulated some key
microglia patterns observed in human AD samples when injected
together with oligomeric AR (Mancuso et al, 2019). Moreover,
microglia from human iPSCs with or without the TREM2 gene
were injected into the brain of humanized 5xFAD x MITRG
xenotransplantation-compatible mice (CSFI, CSF2, TPO, Rag2
knockout, and Il2rg- knockout); comparison of the two revealed
TREM2-dependent DAM- and MHC-II-related signatures (Hasselmann
et al., 2019; McQuade et al,, 2020).

While genetic studies have identified many risk variants for
human AD potentially affecting microglia, most of the studies
have focused on coding variants of APOE and TREM2. However,
many AD risk variants are present in noncoding regions of the
human genome, affecting enhancers regulating gene expression
in microglia (Nott et al., 2019). The introduction of genome-wide
analyses of chromatin-accessible regions and histone mod-
ifications coupled with single-cell analyses has significantly
advanced our understanding of the microglia regulome and how
it is affected by AD risk variants (Gosselin et al., 2014, 2017). For
example, although the bridging integrator 1 (BINI) gene is ex-
pressed in both neurons and microglia, it has been shown that the
AD risk variant of BINI affects an enhancer active in microglia, but
not in neurons, suggesting that this variant predisposes to AD by
affecting microglial rather than neuronal functions (Nott et al,,
2019). The precise definition of promoter-enhancer regulomes
in humans and mice may also explain some of the discrepancies
between human AD and mouse models.

Finally, because requiring disruption of tissues into cell or
nuclei suspensions, scRNA-seq and snRNA-seq analyses cannot
define the precise location of microglia subsets and signatures
within CNS niches and potential interactions with other cells.
However, novel technologies have been developed to overcome
this limitation; for example, spatial transcriptomics has been
applied to study AppN'-¢-F mice, which confirmed the association
between DAM and amyloid plaques (Chen et al., 2020b). Strate-
gies that combine multiplexed fluorescence in situ hybridization
with sequencing, known as seqFISH and MERFISH, have also
been developed (Moffitt et al., 2018; Eng et al., 2019). For these
techniques, RNAs are imprinted with oligo-conjugated barcodes
that are measured through sequential rounds of hybridization
and super-resolution imaging. Application of such technologies to
neurodegeneration will provide information on individual cells
within their environment of surrounding cells and AD pathology.

Conclusions

Overall, the studies in mouse models discussed here have shown
fundamental and consistent patterns of microglial activation in
response to AD pathology: DAM, IFN-I microglia, MHC-II mi-
croglia, and proliferating (Cyc-M) microglia. We conclude that
all currently characterized microglia subsets correspond to ei-
ther one of them or a combination, depending in part on the
clustering strategy applied to the analysis, as well as the AD
model being assessed (Table 1). The DAM, MHC-II, and IFN-I
signatures appear not only in models of neurodegeneration but
also during development and in aged mice, although to a lesser
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extent (Fig. 1). On the contrary, human microglia are more
heterogeneous (Table 2). Beyond a detailed description of dif-
ferent microglia subsets, it will be essential to investigate the
biological functions of these populations and determine whether
they have a beneficial or detrimental impact in AD progression.
DAM genes encode TREM2 and phagocytic molecules that may
slow down the progression of disease. However, other molecules,
such as inflammatory cytokines and chemokines, have not been
thoroughly studied. MHC-II expressed by microglia in AD may
present antigens. Studies have shown a strong correlation be-
tween expression of MHC-II and ApoE in the cuprizone model of
demyelination (Olah et al., 2012; Poliani et al., 2015; Masuda
et al., 2019). Moreover, microglial secretion of ApoE may con-
tribute to capture of lipoprotein antigens that can be processed
and presented (Bonacina et al., 2018). Thus, it is possible that
ApoE*MHC-II* microglia present lipoprotein antigens during
aging and neurodegenerative diseases.

Although the studies reviewed here mainly focus on mi-
croglia, high-resolution single-cell and single-nuclei analyses
in neurodegenerative and neuroinflammatory diseases are cur-
rently being extended to other brain macrophages and CCR2*
monocytes, which might infiltrate the CNS and convert into
microglia-like cells in certain contexts (Mrdjen et al., 2018; Chen
et al., 2020a). A wealth of transcriptome single-cell data are also
becoming available for other glial cells, such as astrocytes and
oligodendrocytes, as well as neurons (Mathys et al., 2019; Mundt
et al., 2019; Jorddo et al., 2019; Zhou et al., 2020; Habib et al.,
2020; Leng et al., 2021). Integration of these analyses with mi-
croglia data will provide a global view of cellular responses to AD
pathology in humans and mice.
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