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Abstract—While lung protective mechanical ventilation
(MV) guidelines have been developed to avoid ventilator-
induced lung injury (VILI), a one-size-fits-all approach
cannot benefit every individual patient. Hence, there is
significant need for the ability to provide patient-specific MV
settings to ensure safety, and optimise patient care. Model-
based approaches enable patient-specific care by identifying
time-varying patient-specific parameters, such as respiratory
elastance, Ers, to capture inter- and intra-patient variability.
However, patient-specific parameters evolve with time, as a
function of disease progression and patient condition,
making predicting their future values crucial for recommend-
ing patient-specific MV settings. This study employs stochas-
tic modelling to predict future Ers values using retrospective
patient data to develop and validate a model indicating
future intra-patient variability of Ers. Cross validation results
show stochastic modelling can predict future elastance ranges
with 92.59 and 68.56% of predicted values within the 5–95%
and the 25–75% range, respectively. This range can be used
to ensure patients receive adequate minute ventilation should
elastance rise and minimise the risk of VILI should elastance
fall. The results show the potential for model-based protocols
using stochastic model prediction of future Ers values to
provide safe and patient-specific MV. These results warrant
further investigation to validate its clinical utility.

Keywords—Mechanical ventilation, Stochastic modelling,

Respiratory mechanics, Patient-specific ventilation, Elas-

tance, Critical care.

INTRODUCTION

Optimal mechanical ventilation (MV) settings are
patient-specific and evolve with time as treatment
continues.42 Landmark trials helped establish guideli-
nes on optimal ranges of mechanical ventilator settings
for all patients based on observational data.7,9,43,44,61

However, a one-size-fits-all approach may benefit
many or most patients, but may cause harm to others,
failing to cater to individual patient-specific
needs.2,11,28,32,46

Non-optimalMVsettings carry high risks for patients,
such as ventilator-induced lung injury (VILI), which
exacerbates patient condition, inhibits ordelays recovery,
and in the worst case, results in organ failure.30,56 These
risks combined with patient variability require patient-
specific MV settings and care. One approach is via per-
sonalised, model-based medicine to create adaptive pro-
tocols directly managing inter- and intra-patient
variability,14,27,42 as already emerging in other areas of
care.13,57 These methods focus on identifying a key pa-
tient-specific and clinically relevant ‘‘sensitivity’’ param-
eter at clinically relevant time intervals, and using it, and
its variability, to personalise and guide care.14

Patient-specific respiratory system elastance, Ers, is
one such sensitivity,14 and is a time-varying measure of
the elastic properties of the respiratory system, cap-
turing volume response to controlled pressure input or
vice versa65 Ers thus provides insight into evolving
patient condition. Before directly utilising Ers, one
method used to help determine the optimum positive
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end expiratory pressure (PEEP) setting was by using
the static pressure–volume (PV) curve. Studies showed
that setting PEEP between the upper inflection point
(UIP) and lower inflection point (LIP) was associated
with improved survival among patients.1,66 However,
obtaining the static PV curve of each individual patient
is cumbersome, requires patient sedation, and is a
significant interruption to patient care.42 Thus, many
works have recommended patient-specific MV settings
based on Ers or a surrogate.10,18,47,49,58,70 In fact, the
work of Goligher et al.32 most recently showed low
tidal volume ventilation strategies resulted in signifi-
cantly different mortality benefits based on patient-
specific Ers. This important outcome indicates the clear
potential to optimise MV based on individual, time-
varying patient-specific elastance, Ers. Hence, identi-
fying minimum Ers through model-based methods can
potentially provide the means to non-invasively assess
patient lung condition without increased risk or clini-
cal workload.10,14,16

However, Ers evolves significantly with time, patient
condition, and ventilator settings, such as
PEEP.8,17,47,69 A better understanding of the variabil-
ity of Ers between patients and over time is vital to
enable selection of optimal patient-specific MV settings
at any current time. Ideally, a deterministic model
capturing the entirety of pulmonary mechanics would
allow accurate prediction of future lung parameters, if
it was accurate and able to be identified, neither of
which has been demonstrated due identifiability and
validation issues.14 Equally, lack of information results
in unavoidable simplifications.55 This missing data can
manifest as unpredictable variability, which cannot be
ignored.21 To this end, stochastic modelling might hold
the solution by grouping indeterminable randomness
into a stochastic variable to provide a better picture of
system, which has become an increasingly preferred
tool to describe biological dynamics.21,68 Clinically,
one and two variable stochastic models have demon-
strated clinical impact and potential in managing
variability in glycemic control in the intensive care
unit.22,39,41

Finally, Ers has shown to vary significantly with
patient condition and ventilator settings.9,17,44 Hence,
the idea of incorporating a stochastic model to predict
future respiratory system mechanics could be explored
to potential benefit. In this research, we aim to inves-
tigate the feasibility of a stochastic model to capture
the variability of mechanically ventilated patients’
respiratory system elastance. Specifically, the stochas-
tic model used in this study is generated via model-
based estimated respiratory elastance from airway
pressure and flow data of 24 mechanically ventilated
patients. This research will provide potential insight to
the viability of using a stochastic model to predict fu-

ture elastance variation, which can be pre-calculated
for computational simplicity to ensure effective,
potential clinical implementation. Such an accurate,
validated stochastic model could enable risk-based,
patient-specific care, as seen in glycemic control.57,64

METHODS

The Single Compartment Linear Lung Model

The single compartment linear lung model is the
most commonly used model to describe mechanically
ventilated patient respiratory mechanics65:

Paw tð Þ ¼ ErsV tð Þ þ Rrs
_V tð Þ þ P0 ð1Þ

where Paw represents the airway pressure (cmH2O), V
represents the volume of air delivered to the lungs (L),
V is the air flow delivered by the ventilator (L/s) and P0

is the offset pressure (cmH2O) or positive end-expira-
tory pressure (PEEP) applied by the ventilator if there
is little or no intrinsic PEEP.65 Respiratory system
elastance (cmH2O/L) and respiratory system resistance
(cmH2Os/L) are represented by Ers and Rrs, respec-
tively.

Airway pressure, flow and volume can be used to
identify Ers and Rrs using integral-based parameter
identification17,26,53 in an identifiable problem,25 where
Ers is defined as the average elastance of a single
breath.16

Patient Data and Processing

This study used the airway pressure-flow data from
24 MV patients prospectively recruited at the Inter-
national Islamic University Malaysia (IIUM) Medical
Centre as part of an observational study under in-
formed consent.15 Ventilator data was recorded using
the CURE soft system59 connected to a Puritan Bennet
PB980 ventilator (Covidien, Boulder, CO, USA). Air-
way pressure (cmH2O) and flow (L/min) are recorded
at a sampling rate of 50 Hz. The collection and use of
this data is approved by the IIUM research ethics
committee (Ethics Approval Number IREC666).

Recorded data is separated into individual breaths.
To mitigate small fluctuations in data, breath filtering
criteria are included to ensure an individual breath is a
full breath. The criteria are based on the work of Kim
et al.,35 modified to suit the adult cohort in this
research, and defined for each breath:

� Start of inspiration is defined as the first overall
increase in flow (flow rate > 0.1 L/s) and pressure
(Pressure > (PEEP + 2 cmH2O)). Data is checked
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over the next 8 data points (0.16 s) to ensure
constant positive flow.

� Start of expiration is defined as the first overall
decrease in flow (flow rate < 2 0. 1 L/s). Data is
checked over the next 8 data points to ensure
constant negative flow.

� Peak Inspiratory volume reaches a significant value
(Peak inspiratory volume > 40 mL which is ~ 10%
of typical tidal volume).

� Peak Inspiratory Pressure (PIP) is in the inspira-
tory phase and is of significant value (PIP >

(PEEP + 1 cmH2O), where typical PIP is ~ PEEP
+ 10–14 cmH2O).

� Expiration is detected within 4.125 s of calculated
onset of inspiration as defined above, matching the
expected respiratory rate in this cohort.

Lower boundaries for typical values for tidal vol-
ume and maximum flow rate are roughly 400 mL and
60 L/min respectively.34,67 As for PIP, which is essen-
tially the inspiratory pressure setting in addition to
PEEP, typical values for inspiratory pressure vary
greatly depending on patient condition and clinician
preference, with the general aim of keeping plateau
pressures under 30 cmH2O. Thus, some guidelines
recommend initial inspiratory pressure settings as low
as 5–10 cmH2O.4 To help filter noise and fluctuating
data, 10% of these values are used as the threshold to
define what constitutes a ‘true’ breath. Hence, 10% of
400 mL (40 mL), 60 L/min (6 L/min) and 10 cmH2O
(1 cmH2O) are listed as these criteria, which set very
low thresholds and thus exclude relatively few breaths
while ensuring those breaths captured are not influ-
enced by partial breaths or coughs and asynchrony.

While recording, patients can exhibit asynchronous
events or patient effort during breathing. These asyn-
chronous breaths do not accurately reflect the under-
lying patient-specific pulmonary mechanics as the
pressure and flow waveforms are distorted.19,20 As this
study aims to capture the underlying patient-specific
pulmonary mechanics, breaths considered asyn-
chronous are eliminated. As the previously mentioned,
the criterion defining a ‘true’ breathing cycle are gen-
erally lenient, and additional criteria are added to
further filter noise and asynchronous breathing cycles,
which may obscure the process of obtaining the res-
piratory system elastance. These further criteria indi-
cating an asynchronous breath are also based on the
work of Kim et al.,35 and defined:

� Median model-fit error for a breathing cycle >

15%
� Model-based estimated Ers £ 0

� Model-based estimated Ers outside 5th and 95th
percentile of collected patient-specific data for that
patient

Model-fit for the first criteria is calculated using the
median absolute percentage error (APE) between the
model’s estimated airway inspiration pressure (Psim)
and measured airway inspiration pressure (Pmea)
shown in Eq. 2. Note, Psim is calculated using the
identified model-based Ers. If Pmea deviates from Psim

too much, its APE will exceed the threshold, indicating
too

APE ¼ Median
Psimi

� Pmeani

Psimi

�
�
�
�

�
�
�
�

� �

� 100 ð2Þ

much noise or asynchrony. These breaths are thus not
included in this study.

Ers is identified and recorded for all remaining
breaths, and averaged into mean values over clinically
relevant intervals, Ers,N, where N is a selected time
interval. For this research, N is arbitrarily chosen as 10
min as a clinically relevant proof-of-concept, and this
interval could be varied or changed. The Ers data is
then sorted into data pairs over this interval of Ers,N

and the subsequent interval, Ers,N+1. Thus, Ers,N de-
fines the mean respiratory elastance of the current 10-
min interval, and Ers,N+1 defines the mean respiratory
elastance of the next subsequent 10-min interval. These
data pairs across all time sampled, and across all
patients, form the basis of the stochastic model. This
process is illustrated in Fig. 1.

Stochastic Model Development

Stochastic modelling is used to approximate
potential outcomes for a process showing a random
element. To deal with stochastic processes, probability
densities can be created by recording stochastic vari-
ables as a function of time.55 In this research, a
stochastic model of Ers,N against Ers,N+1 is developed.
This stochastic model uses conditional kernel density
estimation.5,23 Ers,N is assumed to be a Markov pro-
cess, in which the probability distribution of future
values of Ers,N can be predicted given the current Ers,N

value only and no past values of EN are required.55

This situation is defined:

P Ers;Nþ1jErs;1;Ers;2;Ers;3 . . .Ers;N

� �

¼ P Ers;Nþ1jErs;N

� �

ð3Þ

According to Bayes Theorem, the conditional proba-
bility has the following property:

P AjBð Þ ¼ P A;Bð Þ
P Bð Þ ð4Þ
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Hence, P(Ers,N+1|Ers,N) can be written:

P Ers;Nþ1 ¼ xjErs;N ¼ y
� �

¼
P Ers;Nþ1 ¼ x;Ers;N ¼ y
� �

P Ers;N ¼ x
� �

ð5Þ

Equation 5 is the conditional probability function
that provides the stochastic information on the
potential variation of Ers which can be obtained using
kernel density estimation.33 This specific technique of
computing conditional probability was adopted from
the work of Lin et al.40 where this technique was first
used to create a stochastic model of insulin sensitivity
variation. The right-hand side numerator of Eq. 5 is
the kernel density estimated joint probability P(x,y)
and can be calculated using the available patient data:

P x; yð Þ ¼ 1

n

Xn

i¼1

/ x; xi; r2xi

� �

pxi

/ y; yi; r2yi

� �

pyi
ð6Þ

where

pxi ¼ r
1

0

/ x; xi; r
2
xi

� �

ð7Þ

pyi ¼ r
1

0

/ y; yi; r
2
yi

� �

ð8Þ

and xi and yi are the coordinates of each EN data pair

which can be seen later in Fig. 5a. Each /ðx; xi; r2xiÞ
and /ðy; yi; r2yiÞ is a normal probability distribution

function centred at a corresponding xi and yi. Equa-
tions 7 and 8 are used to ensure that the probability
distributions are properly normalised, where pxi and pyi
represent the area under each normal distribution
between zero and infinity and are therefore chosen to
be non-negative.

The right-hand side denominator of Eq. 5 can be
calculated by obtaining the marginal probability of
P(x) from P(x,y) and is done by integrating Eq. 6.

P xð Þ ¼
Z

P x; yð Þdy

¼ 1

n

Xn

i¼1

/ x; xi; r2xi

� �

pxi

Z / y; yi; r2yi

� �

pyi
dy

¼ 1

n

Xn

i¼1

/ x; xi; r2xi

� �

pxi
� 1

ð9Þ

Thus, Eq. 5 can be calculated from Eqs. 6 and 9:

P Ers;Nþ1 ¼ xjErs;N ¼ y
� �

¼

Pn
i�1

/ x;xi;r2xið Þ
pxi

� �
/ y;yi;r2yið Þ

pyi

� �

Pn
j¼1

/ x;xj;r2xj

� �

pxj

ð10Þ

Hence Eq. 10 defines the two-dimensional kernel
density estimation for the conditional variation of Ers

where Ers depends on its own prior state. Thus,
knowing Ers at any given interval N (Ers,N = x), the
probability of Ers at interval N+1 (Ers,N+1 = y) can be
calculated from Eq. 10. A further step-by-step
description of how P(y|x) is computed can be found in
the work of Lin et al.40

Once P(Ers,N+1|Ers,N) is generated using kernel
density estimation, it can be plotted and presented as a
stochastic model of elastance variability. Subsequently,
the 5th, 25th, 50th, 75th and 95th percentiles lines can
be plotted. These percentile lines represent the proba-
bility interval for potential Ers,N+1 values. The
stochastic model then can be used as a look up table to
predict a potential range of Ers,N+1 values given the

FIGURE 1. Simplified illustration of the obtaining EN,rs from the approved breaths and sorting into data pairs.
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current Ers,N value, and these ranges can be subse-
quently used to assess the potential and risk of changes
in MV settings and care. Limits of the generated model
have been chosen to be 10–100 cmH2O/L, based on
ranges reported in a range of clinical literature7 and the
data provided from this patient cohort.

Model Validation

Model development from data requires both self-
validation for the best case result, and cross-validation
to assess the likely performance and ensure the model
is robust to the amount of data and patients used.
First, the self-validation process is summarised:

1. Build a stochastic model from all data.
2. Generate probability intervals of potential interval

elastance (Ers,N+1,sim) from the identified Ers,N

values using the developed stochastic model.
3. Compare predicted Ers,N+1,sim probability inter-

vals with actual Ers,N+1 measurements.

The data used to create the model is also the same
data as used to test it, providing a best-case estimate.

Second, a 5-fold cross validation is employed, which
separates the model creation data and model test data.
Data from the entire cohort is randomly divided into 5
groups with approximately equal numbers of data
pairs. A stochastic model is then created with 4 of the 5
groups (training sets) with the remaining independent
data group is the test set used for validation. This
approach creates five validation tests using indepen-
dent data. Variable outcomes in cross validation would
indicate the amount of data used is potentially too low
or reliant on specific patients. A schematic of the cross-
validation process is shown in Fig. 2.

For each test, the percentage of predictions within
the 25–75th percentile range and those within the 5–
95th percentile range are compared to the ideal values

of 50% and 90%. A good model will have results near
the ideal values. Consistency across test sets in cross-
validation will also validate the amount of data used as
appropriate.

RESULTS

Patient Demographics, Breath Data, and Model-Based
Lung Mechanics

From a total of 2,086,646 breaths, 2,000,140
(95.85%) were identified as true breaths and 1,671,519
(80.1%) remain after filtering asynchronous breaths
(19.9% asynchrony rate). Individual patient details
and demographics are presented in Table 1. Figure 3
shows example breaths failing the initial true breath
criteria, while Fig. 4 shows examples of breaths meet-
ing all criteria.

Stochastic Model

After 10-min averaging, a total of 10,218 values of
Ers,N were obtained, yielding 10,071 pairs of (Ers,N,
Ers,N+1). Table 1 shows the number of data pairs
contributed by each patient. Figure 5a shows the col-
lected mean elastance data sorted into pairs of Ers,N

and Ers,N+1. Figure 5b shows the conditional proba-
bility density created from the data. The resulting
stochastic model for interval elastance is shown in
Fig. 5c, and can be now be used as a look-up table to
predict future elastance values, as illustrated in Fig. 5d.
The coloured lines in Figs. 5b and 5c represent the Nth
percentile for the Ers,N+1 given Ers,N. For example, in
Fig. 5d, if Ers,N = 50 cmH2O/L, the values of Ers,N+1

over the 5th to 95th probability interval are 44.0–54.5
cmH2O/L, while the 25th to 75th probability interval
covers the range 47.6–51.2 cmH2O/L. Figure 5e shows

FIGURE 2. Illustration of 5-fold cross validation with five groups delineated by shapes and the combinations used in 5-fold cross
validation of model creation and independent test sets.
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a cascade plot of conditional probability functions
over a number of possible values of Ers,N.

Self- and Cross-Validation

Using the stochastic model in Fig. 5c, the data pairs
are self-validated against the same data for a best-case
result, with results in Fig. 6. Table 2 shows the cross
validation results, where the overall results, particu-
larly for the clinically relevant 5–95th percentile range
are near 90%. There is modest variability by group
indicating the total amount of data might need to be
larger considering the 5–95th interval results, even
though these results show a very good proof of con-
cept. The strong consistency between self- and cross-
validation results shows the amount of data is more
than adequate, as there is no loss in performance.

Figure 7 shows an example of the evolution of Ers,N

over 10-min intervals, with the actual measured Ers,N

shown by the red line and the shaded areas repre-
senting the probability intervals of probable Ers,N+1

values generated using the developed stochastic model
shown in Fig. 5c. The 5–95% range is the range
between the 5th and 95th percentile prediction of
Ers,N+1 (Ers,N+1,5th–Ers,N+1,95th) and the 25–75%

range is the range between the 25th and 75th percentile
prediction of Ers,N+1 (Ers,N+1,25th–Ers,N+1,75th).

DISCUSSION

Table 1 shows elastance and resistance values for
the entire cohort. The elastance values of patients vary
substantially with most patient-specific Ers values lying
within ranges reported in literature7,9,43 and a few
having exceptionally high elastance values. The ranges
show the significant inter-patient variability in lung
mechanics, and the ranges per-patient show the sig-
nificant intra-patient variability.

The asynchrony rate calculated using the filtering
criteria is 19.9%, which agrees with manual inspection
on a portion of this cohort.15 Fluctuation, asyn-
chronies, patient effort, and other causes of unreliable
data disrupt the ability to identify accurate values of
respiratory elastance and resistance. For example, for
Patients 6, 11 and 12, almost half the identified breaths
are removed due to unidentifiable readings or breaths
with APE values far too high to be considered as
unaffected breaths without asynchrony or patient ef-
fort. Consequently, Patient 11 is unable to contribute

FIGURE 3. Examples of breaths that fail true breath criteria.
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any EN data pairs as the little EN data it has are non-
subsequent. In this study, non-subsequent data occurs
when either EN or EN+1 is missing from the data pair.
This result can arise when, within an entire interval
from a mechanical ventilated patient, the breaths are
noisy, asynchronous, and, as a result, none have pas-
sed the filtering criteria. Hence, a data pair cannot be
formed, which typically occurs due to significant pa-
tient effort occurring for an extended period, or
intermittent and limited breath data due to technical
difficulties. Furthermore, data collection for Patients 9
to 13 was intermittent due to a technical difficulty with
the CURESoft system, and Patient 6 has a lower
number of breath data available due to discontinua-
tion of the trial by staff for clinical reasons. However,
the overall data set is relatively large for this type of
analysis.

The collected Ers,N pairs are shown in Fig. 5a and
are the main foundation of the stochastic model shown
in Fig. 5c. The resulting stochastic model in Fig. 5c is
very dependent on the data from which it is generated.
If given data with lower local data density, the distance
between percentile lines (Fig. 5e) would potentially
increase to compensate for any greater spread between
data, indicating greater variability or lack of data to

create a more detailed distribution. However, overall
data density appears good in Fig. 5 and the resulting
stochastic model in Fig. 5c has no discontinuities or
inexplicable values.

Figure 5e shows a cascade plot of conditional den-
sity functions across the Ers,N range. From this figure,
the conditional probability density functions are lar-
gely uni-modal and symmetric except for exceptionally
low and high values of Ers,N+1 where data is more
scarce. For example, for Ers,N = 70 cmH2O/L and
higher, the conditional density functions appear to
have more variation in shape, which could indicate the
stochastic model of Ers,N is absorbing an underlying
physiology or dynamic not captured by Eq. 1. How-
ever, given it only occurs at extremely high values of
Ers,N, it is more likely the uneven conditional density
function is caused by the data scarcity at these higher
values. For this reason, the axis limits of the stochastic
model have been limited the 10–100 cmH2O/L range.

FIGURE 4. Examples of breaths that meet APE criteria < 15%, with dotted dash line being the model-fitted pressure.

FIGURE 5. Stochastic model results. (a) Spread of Ers,N data
pairs, (b) conditional probability density P(Ers,N+1|Ers,N), (c)
stochastic model percentiles and (d) stochastic model
probability intervals. (e) Cascade plot of Ers,N probability
density functions.

c
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Further data and larger data sets would enable
expansion using the same methodology.

Overall, this model can be used as a look-up table in
real-time to predict the next most probable range and
distribution of future elastance over the next N+1
interval given the current elastance value at interval N,
as illustrated in Fig. 5d. Knowing the future distribu-
tion and range enables MV settings to be optimised
using the model in Eq. 1 to minimise risk of extreme
values in this range increasing the risk of VILI.

From self-validation results, 92.34% and 67.81% of
Ers,N+1 fall within the model-predicted 5–95% and 25–
75% range, as shown in Fig. 6. Ideally, 90 and 50% of
the data should lie within these ranges to demonstrate
the model perfectly represents the cohort. However,
self-validation produces overly optimistic, best case

results, as model performance has been evaluated on
using the same data to build the model.38 Equally, this
over estimation is likely due to the assumed normal
distributions used in the stochastic model not fully
capturing the distributions seen, where a tightening
coefficient could be used to improve these results.39

However, clinically, such over estimation, which is
modest at the clinically more relevant 5–95% range,
would represent a conservative choice as slightly more
results lie within this range, thus offering an ~ 93%
likelihood of elastance in the range.

Table 2 indicates a very similar overall cross-vali-
dation performance of 92.59% and 68.56% of Ers,N+1

within the 5–95% and 25–75% ranges respectively.
This performance is encouraging as it is near the ideal
values, albeit slightly conservative in over-estimating

FIGURE 6. Stochastic Ers,N model self-validation graphical results, with zoomed-in section solely for clarity. Black solid lines are
the percentile lines, dash dotted line is the median percentile, dots are data points within the 25–75% range, circles are within the
5–95% range and x’s are outside the prediction range.

TABLE 2. Stochastic Ers,N model cross validation results.

Group

Groups used in

creating stochastic

model

Percentage of

actual Ers,N+1 within

5–95% range (%)

Percentage of

actual Ers,N+1

within 25–75% range (%)

A [–, B, C, D, E] 92.60 69.17

B [A, –, C, D, E] 91.71 68.49

C [A, B, –, D, E] 92.35 67.33

D [A, B, C, –, E] 94.45 71.15

E [A, B, C, D, –] 91.81 66.68

Average � standard deviation 92.59 � 1.12 68.56 � 1.74

aA hyphen (–) indicates that the group in place was not used as a training set to create the stochastic model.
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slightly the 5–95th percentile range. The very consis-
tent results for both self- and cross-validation, partic-
ularly for the clinically relevant 5–95th percentile
range, suggest the model contains sufficient data to
account for the range of dynamics observed in this
cohort.

As shown in Fig. 7, the potential application of the
stochastic model in a clinical setting presents the pos-
sibility of better optimising patient-specific ventilator
settings. Provided the current patient-specific Ers,N, the
stochastic model can predict the likely range of patient-
specific Ers,N+1 values over the next 10 min. By util-
ising the developed stochastic model in a clinical set-
ting, a decision support system can be developed to
assist recommending optimal patient-specific MV set-
tings based on the produced patient-specific Ers,N

predictions. The stochastic model can also be utilised
together with the single compartment model to predict
other parameters, such as pressure and flow which
could serve as guides to limit driving pressure and tidal
volume settings. However, model-based respiratory
mechanics are required as patient specific elastance
cannot be directly obtained without an additional real-
time computational platform to allow model analysis
and identification, breath-to-breath if required. In
practice, this potential application would require a
computational device to be provided or installed
within the ICU or as part of the ventilators themselves
(e.g. Refs. 48,59).

More specifically, understanding possible variation
in elastance can provide clinicians an approximate
forecast of other important parameters, such as mon-
itoring plateau pressure when in volume control ven-
tilation or monitoring tidal volumes when in pressure

control ventilation. An illustrative example for volume
control ventilation is presented in Fig. 8. The potential
process begins with using the stochastic model to
predict future Ers. Together with pre-set MV settings,
the volume and flow waveform from the ventilator can
be used as input to a single compartment model, with
airway pressure waveform as the output. By using the
5th and 95th percentiles of predicted Ers, a forecast of
plateau pressure can be created. If the forecast value
exceeds recommended plateau pressure safety limits of
30 cmH2O,31,42 clinicians could pre-emptively adjust
other MV settings to avoid potential lung injury. This
approach can potentially be used in pressure-con-
trolled ventilation as well to provide a forecast of
outcome tidal volume to avoid VILI.

More generally, in pressure controlled MV, the low
end of the range would capture risk of volutrauma and
the high end the potential risk of under ventilation and
atelectasis for any given setting.52 These limits can be
tested in the same model to pick a best PEEP and other
settings to best account for the risk of very high (95th
percentile) or low (5th percentile) elastance due to
evolution of patient condition over time. Figure 8
illustrates this potential process. This risk-based dosing
approach is unique to a limited number of model-
based methods and has been extensively proven clini-
cally in glycemic control studies.12,57,64

The prediction interval of the stochastic model was
chosen to have prediction limits of 10 to 100 cmH2O/
L. While a majority of elastance values usually fall
within this range,3 it could be useful to be able to ex-
tend the predictive capabilities of the stochastic model
beyond these limits. With more patient data, the
stochastic model can be extended to much lower and

FIGURE 7. Time-step prediction of Ers,N+1 for first 12 hours of Patient 5, Session 2.
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higher values, as was the case in the glycemic control
application.41,63 Further studies could include assess-
ing interval to interval variability in sub-cohorts, where
similar analyses in glycemic control and MV have
found differences between sexes that can impact
care.24,36,62

Furthermore, the interval size N of 10 min was
arbitrarily chosen as a proof of concept in this work.
To link the gap between simulation and practical
application to ICU patients, intervention intervals
need to be clinically and physiologically relevant to
ensure unnecessarily increase of workload, and to
capture changes in care in a timely manner. Hence,
future work should check the validity of producing
stochastic models to predict average future elastance
values of longer intervals, such as 30 min or 1 h, where
the 10 min range is a likely lower limit for physiological
evolution of lung mechanics in critical illness. How-
ever, a larger interval size would require a greater
amount of data, which can be collected readily using

the software used in this study, noting the number of
data pairs in this research was more than adequate
given the consistency of results in cross-validation.
Such data could arise from clinical trials such as in the
work of Kim et al.37 Stochastic models with different N
values could thus be created to match clinical needs or
specific cohorts. With more data, patients can be fur-
ther broken down into more distinct categories, based
on gender, age or probable illnesses. In this study, a
broad, diverse range of patients is used to ensure good
coverage of patient types and provide enough data to
create a valid stochastic model.39,41 This model and
data level was validated as acceptable in the 5-fold
cross validation presented. Overall, it would be valu-
able to generate unique stochastic models for each sub-
cohort to further increase patient-specificity and fur-
ther improve personalised care, but it will require a
level of data not yet available to the study authors.

While there exist more descriptive lung mechanics
models,47,60,69 the single compartment linear lung

FIGURE 8. Potential application of using Ers prediction together with pre-set settings to forward simulate possible plateau
pressure predictions using the single compartment model. Step 1 uses current patient Ers to produce a forecast of Ers at the next
interval. In Step 2, pre-set MV settings such can produce the volume and flow breath waveform shown in Step 3. All the information
in Step 1, 2 and 3 can then be used as input for a single compartment model in Step 4. The potential output airway pressure
waveform is shown in Step 5, and a graph of potential plateau pressures can be forecasted. *Flow, volume, and pressure graphs in
this figure only show the inspiratory phase of a single breath. **Plateau pressure safety limit of 30 cmH2O follows
recommendations based on literature.31,42.
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model was selected as it forms the basis for all other
models, and is readily identifiable using linear and
nonlinear basis functions while providing very good
predictive accuracy.16,47,65 Furthermore, the respira-
tory elastance and resistance identified using the model
has shown to be clinically relevant and similar to those
identified from other models.51 Finally, more descrip-
tive nonlinear models risk issues, even when identifi-
able, with model mismatch to dynamics in the
observed and measured data, which can lead to inac-
curate parameter identification54,71 and thus poor
prediction and bedside decision support. It is impor-
tant to note the single compartment linear lung model
is also easily identifiable, which is of singular impor-
tance so it can be used with available clinical data.
While many FEA model studies do a remarkable job
of providing thorough descriptions of the physiology
of the lung,6,45,50,60 many are simply not identifiable, or
at least require invasive procedures to assist in identi-
fying specific parameters. This data is often not clini-
cally feasible or available,11 and can interrupt patient
care and increase clinical workload. Validating the
concept of a stochastic model using a relatively simple
model will eventually pave the way towards incorpo-
rating more descriptive models using the distributions
and likelihoods defined in the results of this analysis.

Finally, as noted, the percentages within the 5–95%
and 25–75% range are higher than the ideal values of
50 and 90% in both self-validation and cross valida-
tion results. This over estimation could indicate over
smoothening of the produced stochastic model. Hav-
ing prediction ranges that are too wide may not help in
deducing optimal MV settings. To alleviate this prob-
lem, a constant could be introduced to adjust the
variance estimators used to produce P(Ers,N+1|Ers,N),
as done by Le Compte et al.39 By adjusting this
introduced constant, the produced stochastic model
could possess tighter percentile lines which could
consequently yield performance results closer towards
the ideal 50 and 90%. However, equally, the relatively
slight over estimation at the 5–95th percentile interval
could be considered a conservative choice and thus
useful in clinical implementation.29

To surmise, the key potential limitations of this
work include the smaller sample size and the relatively
simple lung mechanics model used, where these issues
trade-off with computational issues of identifiability
and the cross validation used. With regards to future
work, an increase in available data will not only allow
larger interval sizes, but also allow further distinction
between patients and patient sub-groups, allowing an
even greater level of personalisation via sub-cohort
specific stochastic models based on distinctive charac-
teristics, such as gender, age, and diagnoses. Based on
the results in this study, it would be interesting to

observe the effect on the stochastic model produced if a
different lung mechanics model was used, as well to
ensure adequacy of the underlying modelling methods
in addition to their already demonstrated clinical
utility. A more descriptive model could potentially
more accurately a stochastic model better reflecting a
cohort.

CONCLUSION

A stochastic model of mechanically ventilated pa-
tient-specific respiratory elastance was developed.
Cross validation shows promising results with 92.59%
and 68.56% of actual Ers,N+1 values within the 5–95%
and 25–75% range respectively. Thus, the model can
predict future Ers,N values well, particularly in the
clinically more relevant 5–95th percentile range. The
overall outcomes justify prospective validation of the
clinical utility of this model in helping personalise and
more optimally guide mechanical ventilation. Limita-
tions include a smaller sample size, restricting analysis
to the full cohort, and relatively simple model used,
where these limitations are offset by its identifiability
and cross-validation results. Future works point to-
wards increasing the sample size to further categorize
patients by age, gender, and diagnosis to create more
patient-specific models with greater clinical utility.
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