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Abstract: Cancer initiating cells (CICs) drive tumor formation and drug-resistance, but how they
develop drug-resistance characteristics is not well understood. In this study, we demonstrate that
chemotherapeutic agent FOLFOX, commonly used for drug-resistant/metastatic colorectal cancer
(CRC) treatment, induces overexpression of CD44v6, MDR1, and oncogenic transcription/translation
factor Y-box-binding protein-1 (YB-1). Our study revealed that CD44v6, a receptor for hyaluronan,
increased the YB-1 expression through PGE2/EP1-mTOR pathway. Deleting CD44v6, and YB-1 by
the CRISPR/Cas9 system attenuates the in vitro and in vivo tumor growth of CICs from FOLFOX
resistant cells. The results of DNA:CD44v6 immunoprecipitated complexes by ChIP (chromatin-
immunoprecipitation) assay showed that CD44v6 maintained the stemness traits by promoting
several antiapoptotic and stemness genes, including cyclin-D1, BCL2, FZD1, GINS-1, and MMP9.
Further, computer-based analysis of the clones obtained from the DNA:CD44v6 complex revealed
the presence of various consensus binding sites for core stemness-associated transcription factors
“CTOS” (c-Myc, TWIST1, OCT4, and SOX2). Simultaneous expressions of CD44v6 and CTOS in
CD44v6 knockout CICs reverted differentiated CD44v6-knockout CICs into CICs. Finally, this study
for the first time describes a positive feedback loop that couples YB-1 induction and CD44 alternative
splicing to sustain the MDR1 and CD44v6 expressions, and CD44v6 is required for the reversion of
differentiated tumor cells into CICs.

Keywords: CD44v6; YB-1; MDR1; CIC; stemness genes; CD44v6 CRISPR/Cas9 knockout;
YB-1 CRISPR/Cas9 knockout; CD44v6-therapy; colorectal cancer (CRC)

1. Introduction

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in Western
countries including the USA, with incidences increasing by 2% annually and has a dismal
prognosis with a 14% 5-year survival rate of patients with metastasis [1,2]. Recent develop-
ments in cancer prevention endeavors, including the extensive application of colonoscopy
and the identification and removal of precancerous lesions, have resulted in a consider-
able overall reduction in CRC incidence [3–5]. Conventional treatment for CRC includes
the multicomponent drug FOLFOX that is composed of 5-fluorouracil (5-FU), oxaliplatin
(OXA), and leucovorin. FOLFOX chemotherapy is widely used as a first-line chemothera-
peutic agent which often fails because the targeted cancer cells acquire chemoresistance
over time [6–8]. Even though the prognosis response rate to OXA is approximately 24%,
acquired resistance progresses in nearly all patients after repeated treatment with either
OXA alone, or with FOLFOX, eventually limiting its therapeutic efficacy [6,9]. Improved
understanding of the mechanisms that contribute to acquisition of FOLFOX resistance by
CRC cells is imperative for developing novel therapies to improve FOLFOX efficacy.
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An important step in understanding mechanisms of cancer drug resistance in recent
years, has been a growing body of evidence that tumor tissue is composed of heteroge-
neous, hierarchy of cells that differ in morphology, gene expression, proliferative capacity,
and invasiveness [10]. This heterogeneity originates from a small subset of cancer cells,
called cancer stem cells (CSCs) or cancer initiating cells (CICs), that are the unique source
of all tumor cells and responsible for tumor propagation and relapse [11]. Interactions
between tumor cells and their microenvironment create niches that promote CIC survival.
Moreover, when this niche is disrupted, CICs initiate a series of cellular processes for
self-renewal, replication, and differentiation in an effort to restore the tumor mass and its
microenvironment [12–14]. Since the first identification of CSCs/CICs in breast cancer used
a CD44/CD24 marker [15], CICs have been identified in a variety of solid tumors [16–24],
including colon carcinomas [25–27]. Unlike naturally occurring somatic stem cells, CICs
initiate tumorigenic activity when transplanted into animals [28,29]. Moreover, variation
in the genetics and epigenetic damages of CRC patients is so different that markers to
detect CICs from more differentiated progeny have not been completely informative across
all patient tumors [30–32]. In addition, most CIC enhancement markers mediate interac-
tions between a tumor cell and its stromal environment, indicating that the tumorigenic
characteristics associated with that marker may be lost after depletion of CICs from their
microenvironment. Similarly, human pancreatic CICs expressing the marker CD133 and
the chemokine SDF-1 receptor CXCR4 lost their metastatic activity when the CXCR4+/CIC
population was depleted. This implies that CICs may take over information associated with
the marker (in this case, SDF-1/CXCR4-controlled pathways) to initiate metastasis [33].
CRC cells expressing CD166 [34], CD44 [35], CD44v6 [27], CD66c [34], CD133 [36], and alde-
hyde dehydrogenase (ALDH1) [37] describe CIC characteristics. However, the cell-surface
markers that recognize CICs and have a functional role in the antiapoptotic signaling to
drive tumorigenesis have remained poorly defined.

Our working hypothesis for this study is that CICs are involved in the development
of drug-resistance, treatment failure, and tumor relapse in cancer [38,39]. We base this
hypothesis on observations that CICs acquire high levels of antiapoptotic proteins, possess
low levels of reactive oxygen species, and demonstrate an enhanced efficiency of DNA
damage repair [36,40,41]. Irrespective of the marker used, CICs are the parental source for
which all other malignant cells within a given tumor arise and are responsible for CRC
tumor growth/maintenance, metastatic spread, resistance to conventional chemotherapies,
and relapse after cancer therapy [11,42]. Therefore, CRC CICs must be effectively targeted
to inhibit tumor growth and improve survival of patients with CRC. Our findings indicate
that one mechanism for targeting them is to modulate the expression of a splice variant
of CD44.

CD44 is a multistructural and multifunctional transmembrane glycoprotein that acts
as a receptor for hyaluronan (also called hyaluronic acid). CD44 is encoded by a single gene
containing 20 exons, 10 of which are alternatively spliced to generate the numerous CD44
splice variants (CD44v) [43,44]. The standard isoform of CD44 (CD44s) is small with no
variant exons and is nearly ubiquitous on vertebrate cells [45]. Variant 6 of CD44 (CD44v6)
participates in tumor development and progression in many ways that are restricted to
stem cell subpopulations [27,46]. In agreement with this, CD44v6, but no other variants,
promotes generation of gut adenomas (tumors) in mouse models of familial adenomatous
polyposis [47,48]. Its role in CRC progression derives from its ability to bind ligands
associated with both tyrosine kinase receptors or non-tyrosine kinase receptors including
c-Met, VEGF, TGFβ1, and ERB2 [48–58], leading to changes in biological activities such
as activation of antiapoptotic signaling, cell-matrix adhesion, cell migration, proliferation,
differentiation, and survival [59,60]. Much progress has been made in the assessment of
the molecular structures and functions of the standard isoform (CD44s) and of its various
isoforms in cancer cell signaling in general rather than by analysis of CIC signaling. Recent
studies indicate that CD44 variants are restricted to CIC populations and promote tumor de-
velopment in animals [61]. CD44v6 positive (+)/CICs have been associated with increased
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metastatic behavior in both pancreatic cancer [33,44,62,63] and CRC [27,46], suggesting that
CICs may takeover CD44v6-regulated apoptosis resistance-signaling pathways to initiate
drug-resistance. Experiments using knock-in mice that express either CD44v4-10 or CD44s
isoforms have demonstrated that CD44v isoforms, but not the CD44s isoform, promote
adenoma formation in Apc (Min/+) mice [47]. Thus, CD44v6 predicts poor prognosis and
is a marker of constitutive and reprogrammed CICs that drive CRC metastasis [27].

Although CICs and somatic stem cells exhibit similar transcription factors (TFs), in-
cluding SOX2, OCT4, NANOG, KLF4, and c-Myc, several studies have demonstrated that
the abnormal expression of some distinctive TFs [64] have a crucial role in the reprogram-
ming of these cells [65]. In this case, overexpression of TFs results in dysregulation of
associated signaling pathways that are linked with CIC lineage and differentiation pheno-
type [66]. Transcriptional regulation occurs when certain TFs bind to the DNA at binding
sites of a promoter and affect the transcription of the regulated gene via interactions with
their gene promoters [65,66]. In this circumstance, TFs may have a crucial role in the main-
tenance of CIC stemness. Transcription factor networks can be involved in gene regulatory
networks [67,68], and dictate cell phenotypes when expressed in various settings in an
ectopic manner [69–71]. Several core transcription factors, including TWIST1, Snail, Zeb
1 [72,73] as well as OCT3/4 [74,75], SOX2 [76], and NANOG [77,78] have pivotal roles
in maintenance of pluripotency in both early embryos and embryonic stem cells, adult
stem cells, and CICs. In addition, induced pluripotent stem cells (iPSC) can be directly
generated from fibroblast cultures by the addition of some of these core TFs [79]. Besides
this, several genes that are frequently upregulated in tumors, such as STAT3 [80,81] and
β-catenin [82,83], have been shown to contribute to the long-term maintenance of the stem
cell traits. CRC CICs exhibit characteristics comparable to normal stem cells that could be
associated with the expression of similar TFs including SOX2, OCT4, NANOG, KLF4, Lgr5,
TWIST1, and c-Myc, and signaling pathways including WNT/β-catenin pathways directed
for CRC propagation [65,84,85]. Many studies indicate that the Y-box-binding protein-1
(YB-1) transcription factor can function as an oncoprotein [86–88] to regulate stemness,
drug-resistance and tumorigenic properties in various cancers [89–94] including CRC [95].
As mentioned above, CD44v6, a marker of CICs, drives CRC metastasis [27]. A recent study
shows that YB-1 binds to the CD44 promoter to transcriptionally upregulate its expression
in breast cancer [96]. PGE2 was shown to induce YB-1 expression, which is involved in
the drug resistance and malignance of several carcinomas [97–99]. While we and others
have shown that CD44 regulates MDR1 expression in various cancers [49,100,101] and
controls COX2-PGE2 signaling in CRC [50,102], whether YB-1 may be linked to the ability
of CD44v6 to induce the expression of genes linked to stemness and drug resistance in
CD44v6+CICs is not known. Therefore, this study was designed to assess our hypothesis
that FOFOX-induced CD44v6/COX2-PGE2/mTOR may promote CRC resistance through
upregulation of YB-1 signaling that promotes CD44v6 splicing, and that CD44v6 then
sustains YB-1 signaling. The novelty of our results in this study is that it provides the first
demonstration of a positive feedback loop linking signaling-dependent alternative splicing
of CD44 to the drug-resistance gene MDR1 through YB-1. Further, our results revealed
for the first time that CD44v6 regulated YB-1 signaling is required for the maintenance
of FOLFOX resistance and for the reversion of differentiated CD44v6 knockout-CICs into
CICs with stemness traits.

2. Results
2.1. Upregulation of CD44v6 and YB-1 Contributes to Acquired Chemoresistance and Stemness in
Colon Cancer SW948 Cells

To determine the mechanism of FOLFOX resistance in CRC, we developed a cellular
model of FOLFOX resistance. We screened seven CRC cell lines for CD44v6 expression and
selected few of them including SW948 cells that exhibited lower steady-state expression
of CD44v6 (Supplemental Figure S1A). In order to determine the mechanism of FOLFOX
(combination of 5-Fluorouracil (5-FU) + Oxaliplatin (OXA) + leucovorin) resistance in
CRC cells, we determined the IC50 values of 5-FU and OXA for inhibiting SW948 CRC
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cell growth using a cell viability assay (assessed by ATP based assay (Cell Titer-Glo)) in
the presence of increasing concentrations of these chemotherapeutic drugs. The average
IC50 value for 5-FU of SW948 cell is ≈60 µg/mL, and the average IC50 value for OXA
in these cells is ≈5–10 µg/mL (Supplemental Figure S1B,C). The average IC50 value for
FOLFOX is shown in Supplemental Figure S1D. Next, we evaluated the kinetics of CD44v6
induction upon exposure to 1 × FOLFOX (1x FOLFOX = IC50 of 5-FU + IC50 OXA + 1
µM leucovorin). Resistance from either 5-Fluorouracil (5-FU) or Oxaliplatin (OXA), two
components of FOLFOX, has been associated with increased CD44v6 mRNA expression in
CRC cells [103].Thus, in order to determine whether FOLFOX resistance is associated with
CD44v6, serum depleted SW948-S cells were stimulated by addition of 1 × FOLFOX in
media.

We first examined the expression profile of CD44 variants in SW948 cells after stimula-
tion with FOLFOX by exon-specific reverse transcription-PCR (RT-PCR) analysis (Figure 1A).
Several variant isoforms are indeed expressed. Exon v6 seems to be expressed together with
exons v6–v8 and also as an independent isoform (shown in Figure 1A). The expression lev-
els of CD44 variants were examined by RT-PCR using different sets of primers (Figure 1A).
The variants were detected using a 5′ primer from a constitutive exon 5 of CD44 and two
distinct 3′-primers complementing to v6, and v8 exons of CD44, respectively. In addition,
the CD44s standard form having no alternate splicing was detected using primers for the
constitutive exons 5 and 6 of CD44. The CD44v6 primers and CD44s primers each princi-
pally amplified a single product (Figure 1A). The v8 primer gave rise to three alternately
spliced variants of CD44 containing (1) variant exons v6, v7, and v8 (illustrated as v6–v8);
(2), variant exons v3 and v8 (illustrated as v3.v8); (3) and variant exon v8 (shown as v8),
all joined to the 5′-constitutive exon 5 (Figure 1A). All products were confirmed by DNA
sequencing as described [58]. Following 24 h of serum starvation, the relative expressions
of CD44 variants were low, while stimulation with FOLFOX upregulated v6 mRNA expres-
sion that peaked between 4 and 16 h and returned to basal levels at 24–48 h likely due to the
exhaustion of FOLFOX within the media (Figure 1B; primers are in Supplemental Table S1).

To explore whether the induction of CD44v6 expression by FOLFOX was not modu-
lated by various stress environments such as ischemic, or hypoxic, or oxidative stress condi-
tions, we examined the expression of CD44v6 in SW948 cells by treating them with various
chemical agents for 48 h. To create ischemic, and/or oxidative stress conditions, we cultured
the cells in serum-free medium. For hypoxic stress we employed low-pH condition, 300 µM
CoCl2 and for creating oxidative stress, we used 300 µM H2O2. In addition, for chemother-
apeutics induced cytotoxic stress, we used 60 µM 5-FU, or 5–10 µM OXA (IC50 of 5-FU
(Supplemental Figure S1B), and IC50 of OXA for SW948 cells (Supplemental Figure S1C),
respectively) as well as 1 × FOLFOX in culture medium. CD44v6 expressions were deter-
mined using QPCR analysis. Our data demonstrated that basal CD44v6 expression was
very low in SW948 cells but significantly increased with chemotherapeutics (5-FU, or OXA,
or FOLFOX), whereas stress creating chemical agents did not induce CD44v6 expression
(Figure 1C). Similar results were found in HT29 cells (Figure 1C). Overall, our data indicate
that in CRC cells (SW948 and HT29 cells), FOLFOX and its components 5-FU and OXA
considerably and distinctively induced CD44v6 expression, which could interact with vari-
ous cellular targets and offer one of the fundamental mechanisms for the drug resistance in
CRC cells.
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Figure 1. Establishment of FOLFOX resistant colorectal cancer (CRC) cells that exhibit increased CD44v6 expression and
signaling. (A) A schematic diagram of the CD44 gene, where constitutive (c) and variable (v) exons, and the PCR primers
used to amplify CD44 variable (v) and standard (s) isoforms are shown. The primers for both the CD44v6 and CD44s
predominantly generate one PCR product, whereas the primers for the CD44v8 variants amplify three variant PCR products.
(B) A time course of FOLFOX (FOLFOX: 50 µg/mL 5-Flurouracil + 10 µM Oxaliplatin + 1 µM leucovorin) stimulation on
CD44 isoform mRNA expressions (analyzed by semiquantitative RT-PCR) in SW948 cells was depicted. (C) QPCR assays
for variant 6 of CD44 (CD44v6) expression under low-pH (ischemic stress), CoCl2 (hypoxic stress), H2O2 (oxidative stress),
5-FU, OXA, and FOLFOX treatment (chemotherapeutic stress) in SW948 cells are shown. (D) shRNA-mediated knockdown
of CD44v6 affects alternative splicing of CD44 and downregulates YB1 and MDR1 expression. (E) Validations of CD44v6
shRNAs were done by the indicated shRNA mediated knockdown and the corresponding shRNA resistant knock-in
(KI) gene overexpression. (F) SW948-FR and HT29-FR cells selectively overexpressed CD44v6, MDR1, and YB-1 mRNAs
(by QPCR) compared to sensitive (“S”) pairs of cells. The expression of indicated proteins in FR cells compared to sensitive
pairs are presented as mean ± SD (n = 3); *, p < 0.01. Student’s t test was used to assess the significance. The experiment
was performed three times and representative data are shown. (G) Western blot (WB) analyses for β-catenin and β-tubulin
of “S” and “FR” cell lysates of SW948 and HT29 cells are shown. (H) β-catenin luciferase activity of “S” and “FR” lysates of
SW948 and HT29 cells treated with or without WNT 3A are shown. The relative luciferase in FR cells compared to sensitive
pairs are presented as mean ± SD (n = 3); *, p < 0.01. Student’s t test was used to assess the significance. The experiment
was performed three times and representative data are shown. (I) Anchorage-independent growth in soft agar is shown
for SW948-FR and HT29-FR cells and compared with their “S” pairs (magnification, 50 ×). (J) Tumor-sphere formation
assay was done for the SW948-FR and HT29-FR cells and compared with their “S” pairs (magnification, 100×). (K,L) Tumor
formation is shown in nude mice injected with 500,000 SW948-FR cells or with 500,000 SW948-S cells. SW948-FR cells
formed tumor nodules in all injected mice (8/8), whereas SW948-S cells did not induce any tumor nodules until 5 months
(left, 0/7 mice) (K). Growth curves are shown for these xenograft tumors in BALB/c nude mice (L). Values in C, I, and J
represent means ± SD; n = 3–6; * p < 0.05 for FOLFOX resistant cells compared to sensitive cells. Scale bar, 50 µm.
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Resistance to chemotherapeutics has been independently associated with increased
CD44v6 expression [26,27], and YB-1 overexpression has already been reported to be asso-
ciated with possible chemoresistance through the regulation of MDR1 in breast cancer [99]
and multiple myeloma cells [104]. Therefore, we postulated that CD44v6 and YB-1 may
be associated to FOLFOX resistance in SW948 cells. To address this, we evaluated the
effects of FOLFOX on protein expressions of YB-1 and the ATP-binding cassette subfamily
B member 1 (ABCB1), also known as multidrug-resistance-1 (MDR1), protein expressions
in SW948 cells following treatment with or without FOLFOX and CD44v6 shRNA. Knock-
down of CD44v6 in SW948 cells downregulated both YB-1 and MDR1 protein expressions
and inhibited the FOLFOX-induction of v6-containing variants but not CD44 standard
(CD44s), v3.v8 or v8 variants (Figure 1D). Validations of CD44v6 shRNA1 and CD44v6
shRNA2 are shown in Figure 1E. Overall, these results indicate that CD44v6 has key roles
for YB-1 and MDR1 expressions in response to FOLFOX.

To further determine the mechanism of FOLFOX resistance, we used serially escalated
doses of FOLFOX (1 × FOLFOX–5 × FOLFOX) in parent sensitive CRC cells (SW948-S and
HT29-S) to generate FOLFOX-resistant (FR) cells. After recovering from 1 × FOFOX, cells
were treated with 2 × FOLFOX. The survived cells were then treated with 4 × FOLFOX to
delete most of the cell population. After high-dose 5 × FOLFOX treatment, a small number
of cells survived and slowly repopulated to form colonies. Finally, FOLFOX-resistant CRC
cells were established, and the IC50 values of FOLFOX in SW948-FR and HT29-FR cells
were 3.5 × FOLFOX and 2.8 × FOLFOX (p < 0.001, compared with each parental cell).
The response of the SW948-FR and HT29-FR cells to FOLFOX treatment resistance were
evaluated using QPCR assay for CD44v6, YB-1 and MDR1 mRNA expressions and com-
pared to their sensitive pairs (Figure 1F). SW948-FR and HT29-FR cells have significantly
higher levels of CD44v6, YB-1, and MDR1 expressions compared to their sensitive pairs
SW948-S and HT29-S (Figure 1F).

Given that activation of the WNT/β-catenin pathway is the hallmark of colorec-
tal cancer initiating cells (CRC-CICs) [27] and because CICs are naturally resistant to
chemotherapy through their quiescence, capacity for DNA repair, and ABC transporter
expression [105], we evaluated stemness in FR cells. Figure 1G,H shows that FOLFOX
promoted stemness in FR cells via a WNT/β-catenin pathway with higher active β-catenin
expression and increased β-catenin/TCF4 TOP-Flash transcriptional activity. To determine
the clonogenicity of FR cells in vitro, we compared their clonal capacity to sensitive pairs
employing a soft agar colony formation assay. Compared to parental sensitive cells, FR
cells were able to form increased anchorage-independent growth assessed by formation
of soft agar colonies (Figure 1I). It has been recently documented that CRC-CICs could be
expanded as tumor-spheres [26,27]. Therefore, we investigated sphere-forming activity
of both parental and FR cells. Compared with parental sensitive cells, FR cells were able
to form significantly greater numbers of tumor-spheres in serum free medium (Figure 1J).
Next, to evaluate, whether the effects of FOLFOX resistance offer increased in vivo tumor
growth compared to that implanted with the corresponding sensitive cells, we implanted
5 × 105 cells of sensitive and resistant FR cells of SW948 into immunocompromised mice
(# of mice = 7 for sensitive and # of mice = 8 for FR cells implanted xenograft tumor for
each of the experiments; n = 3 experiments). In agreement with the soft agar growth and
tumor sphere formation results (Figure 1I,J), 5 × 105 resistant cells generated tumors in at
least 90–100% of immunocompromised mice injected from SW948-FR cells (Figure 1K, red,
tumor formation = 8/8 mice), whereas 5 × 105 sensitive cells (SW948-S) were not adequate
to form tumors (Figure 1K, black, tumor formation = 0/7 mice). However, implantation of
20-fold more sensitive SW948-S cells (1 × 107) were able to initiate tumors in three indepen-
dent experiments. When tumor volumes were examined every day to evaluate the latency,
tumors initiated from 5 × 105 SW948-FR cells began to increase at 2 weeks while tumors
initiated from 1 × 107 SW948-S cells began to increase later at 3–4 weeks and had much
smaller size at 8 weeks (900 mm3 compared to 1800 mm3 at 8 weeks, Figure 1L). The results
from Figure 1G–L provide evidence that FOLFOX-resistant FR cells were more tumorigenic
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in vitro and in vivo and had greater sphere-forming activity than parental sensitive cells,
which are hallmark characteristics of CRC-CICs. This suggests that expansion of CICs
might have an important role for the acquisition of FOLFOX resistance.

2.2. Expansion of CD44v6 (+) CICs during Acquisition of FOLFOX Resistance

Given that FOLFOX maintained the stemness feature of CRC cells (Figure 1F–K), CICs
were isolated from the freshly dissociated subcutaneous tumors (SQ) from the sensitive
and resistant cells of SW948 and HT29 by FACS sorting using several of the previously
reported candidate markers (CD44v6, CD133, EpCAM, and ALDH1) [14,27,35,106,107].
First, we isolated EpCAM+/Ecadherin- cells by FACS analysis. These cells were then sorted
for CD44v6+/ALDH1+ cells which were further sorted for CD44v6+/ALDH1+/CD133+
CICs by flow cytometry. Our data show that CD44v6+/CICs overlapped with cells that
also expressed the epithelial marker EpCAM, and with CIC markers ALDH1 and CD133
antigen expressions in SW948-FR/SQ cells (Figure 2A–C). In agreement with the results
of Figure 1D, which showed that CD44v6 regulated YB-1, we found the colocalization
of CD44v6 and YB-1 in the SW948-FR/CICs (Figure 2D). The data in Figure 2E indicate
that resistant cells enriched CICs coexpressing CIC markers (EpCAM, CD44v6, ALDH1,
and CD133) compared to their sensitive pairs. The coexpression of EpCAM, CD44v6,
ALDH1, and CD133 in CICs was validated in four independent samples (Figure 2E).
Figure 2F validates the expression of marker proteins in non-CICs and CICs. Collectively,
these data in Figure 2 provide evidence that CICs can be prospectively identified and
characterized in the CD44v6 (+) CIC cell population, whereas non-CICs are CD44v6 (-) pop-
ulations, and that CICs coexpress CD44v6 and YB-1, which further validated coregulation
of CD44v6 and YB-1 in response to FOLFOX.

2.3. Generation of CD44v6 and YB-1 Knockout CICs Using the CRISPR/Cas9 System

To assess the role of CD44v6 and YB-1 in CICs, the CD44v6 and YB-1 genes were
knocked out in SW948-FR/CICs using the CRISPR/Cas9 system that has been reported
to efficiently disrupt genes in various organisms [108,109]. CD44s (with no alternate
splicing) and CD44v6 regions are shown in different colors (Supplemental Figure S2A).
Sequence comparison of human CD44s and the CD44v6 isoform are shown in Supplemental
Figure S2B. Guide RNAs (gRNA) for CD44v6 genes were designed at exon 6 of CD44
(Supplemental Figure S2C). We obtained two CD44v6 knockout SW948-FR/CICs clones
named CD44v6-Mu1 clone (v6 Mu1) and CD44v6-Mu2 clone (v6 Mu2). To design the gRNA
for YB-1 we used exon 1 of YB-1 as described previously [110]. Guide RNAs (gRNA) for
YB-1 genes are shown in Supplemental Figure S3A. We obtained two YB-1 knockout SW948-
FR/CICs clones named YB-1-Mu3 clone and YB-1 Mu4 clone. The data in Supplemental
Figures S2D,E and S3B,C demonstrated that the amplified DNA from the gRNA-transfected
CICs (v6 Mu1, v6 Mu2, YB-1 Mu3, and YB-1 Mu4) were cleaved into two bands by the T7E1
enzyme (Supplemental Figures S2E and S3C). In contrast, there was no cleaved band for
control CICs (Supplemental Figures S2E and S3C). These results indicate that the CD44v6-
and YB-1-targeting sgRNA/Cas9 expression plasmids were introduced into the genome of
SW948-FR/CICs. After the isolation of single cells from the CD44v6 sgRNA- and the YB-1
sgRNA-transfected SW948-FR/CICs, the CD44v6 gene from the CD44v6-mutated CICs
(v6 Mu1 and v6 Mu2) and from the YB-1-mutated CICs (YB-1 Mu3 and YB-1 Mu4) were
sequenced. DNA sequencing of v6 Mu1, v6 Mu2, YB-1 Mu3, and YB-1 Mu4 cells revealed
deletion of the indicated number of bases in both alleles (Supplemental Figures S2F and
S3E). Western blotting (Supplemental Figure S2G) and immunofluorescence (Supplemental
Figure S2H) showed that CD44v6 was completely knocked out in v6 Mu1 and v6 Mu2 cells
and YB-1 was completely knocked out in YB-1 Mu3 and YB-1 Mu4 cells (Supplemental
Figures S3D,F). The data in Supplemental Figures S2 and S3 confirmed that CD44v6 and
YB-1 knockout SW948-FR/CICs were generated.
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Figure 2. Flow cytometric analyses of EpCAM+/CD44v6+/ALDH+/CD133+ cells in SW948-FR cells isolated from
SW948-FR/subcutaneous (SQ) tumors. Alexa fluor-tagged antibodies at the indicated laser lines were used to iso-
late: (A) EpCAM+/ECadherin- cells; (B) CD44v6+/ALDH1+ cells from EpCAM+/ECadherin-cells; (C) CD133+ cells
from CD44v6+/ALDH1+ cells. (D) Immunofluorescence staining shows colocalization of CD44v6 (Red) and YB-1
(Green) in EpCAM+/CD44v6+/ALDH1+/CD133+ (CICs), scale bar, 50 µm. (E) Percentages of EpCAM+/E-cadherin-,
CD44v6+/ALDH1+, and CD44v6+/ALDH1+/CD133+ on sorted cells were assessed by flow cytometry on freshly purified
CRC cells isolated from subcutaneous (SQ) SW948-FR tumor cells. (F) Western blots are shown for EpCAM+/CD44v6-
/ALDH-/CD133- (Non-CICs) and EpCAM+/CD44v6+/ALDH+/CD133+ (CICs) by probing with E-Cadherin, EpCAM,
CD44v6, ALDH1, YB-1, and CD133 antibodies. FACS, immunofluorescence and WB data are representative of three
experiments. Enrichment of CICs in FR cells compared to sensitive pairs in Figure 2E are presented as mean ± SD (n = 3);
*, p < 0.01. Student’s t test was used to assess the significance. The experiment was performed three times and representative
data are shown.
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2.4. CD44v6 Regulates YB-1 through a PGE2-MTOR Pathway

Given that shRNA suppression of CD44v6 protein significantly blocked the FOLFOX-
induced YB-1 (Figure 1D), and that the involvement of CD44/CD44v6 in regulating
COX2 derived PGE2 production [50,102], which in turn regulates YB-1 in other cancer
cell types [111], we investigated a possible interconnection between FOLFOX induced
CD44v6-PGE2 signaling and YB-1. First, the v6 Mu1 CICs were transfected with a vector
expressing a CD44v6 rescue plasmid in order to rescue CD44v6, and then the expression of
CD44v6 and its regulation on YB-1 expression were assessed. Protein analysis by Western
blot (WB) showed that CD44v6 protein expression was rescued in v6 Mu1 plus v6 WT CICs
(Figure 3A). Importantly, the rescue of CD44v6 also rescued substantial levels of expression
within 24–36 h (Figure 3A).

Second, to address the mechanism of CD44v6/PGE2 regulation of YB-1 in CICs,
we first evaluated how the CD44v6-PGE2 pathway is affected in FOLFOX resistant SW948-
FR CICs. To address this, the levels of secreted PGE2 in the culture media of v6 Mu1, or v6
wild-type (WT) CICs with or without FOLFOX therapy were examined using an ELISA
assay. The results (Figure 3B) show that FOLFOX treatment induced significant secretion
of PGE2 in SW948-S CICs, and this induction of PGE2 was significantly decreased in v6
MU1 CICs of SW948-S cells. Similarly, v6 MU1 CICs showed substantial reduction in PGE2
production compared to v6 WT CICs of SW948-FR cells. These data (Figure 3B) indicate
that a CD44v6/PGE2 signaling axis may have an important role in FOLFOX resistance.

Third, to further explore the mechanism of CD44v6 regulation of YB-1 in CICs, SW948-
S CICs were treated with synthetic PGE2 (17-P-T-PGE2) for the indicated times shown in
Figure 3C, and PGE2 greatly increased the expression level of YB-1 with time. This stim-
ulation was apparent after 4 h, peaked at 12–16 h (Figure 3C, lanes 4–5 vs. lane 1) and
decreased to basal level at 24 h (Figure 3C, lane 6 vs. lanes 4–5) probably due to the
depletion of PGE2 in the medium. Importantly, SW948-FR CICs demonstrated consti-
tutively high expression of YB-1 without exogenous addition of PGE2 (Figure 3C, lane
7 vs. lane 1). Next, we found that knockout of CD44v6 protein (v6 Mu1 significantly
blocked both the FOLFOX-induced (Figure 3D, lane 4 vs. lane 2) and the PGE2-induced
YB-1 expressions (Figure 3D, lane 5 vs. lane 3). These findings indicate that CD44v6 was
able to upregulate YB-1 expression through PGE2 in CRC CICs after FOLFOX therapy
(Figure 3D, lanes 4 or 5 vs. lanes 2 or 3), or in FOLFOX resistant SW948-FR CICs (Figure 3D,
lane 8 vs. 7). Since PGE2/EP1/mTOR promoted YB-1 expression in other cancer cell
types [111], we investigated whether PGE2/EP1 receptor and mTOR are also involved in
the CD44v6 induced YB-1 expression in SW948-FR CICs. Figure 3E shows that SW948-FR
CICs strongly express YB-1 (lanes 1, 2) that is greatly inhibited in v6 Mu1 cells (lane 4 vs.
lane 2) and by treatment with EP1 inhibitor AH6809 (lane 3 vs. lane 1), or with mTOR
inhibitor PP242 (lane 5 vs. lane1). Moreover, v6 Mu1 SW948-FR CICs treated with EP1
inhibitor AH6809 (Figure 3E, lanes 6 vs. lane 3) or mTOR inhibitor PP242 (Figure 3E, lane 7
vs. lane 5) further inhibited the YB-1 expression more than single treatment (lanes 6, 7 vs.
lanes 3, 5). These observations indicate CD44v6 regulated mTOR has important roles in
YB-1 expression induced by PGE2/EP1 in response to FOLFOX resistance.
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induces YB-1 in CICs that were treated with PGE2 at 5 µM for the indicated times. YB-1 expression levels were 
determined by immunoblotting with anti-YB-1 antibody; β-tubulin as loading control. (D) Effects are shown of CD44v6 
Mu1 knockout on PGE2 and FOLFOX induced YB-1 expression. CICs isolated from SW948-S and SW948-FR that were 
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Effects are shown of PGE2/EP1 receptor, and of mTOR signaling on YB-1 expression. CICs were either transfected with in 
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PP242) for 2 h. They were then cultured in serum-free medium for 16 h and treated with synthetic PGE2 at 5 µM, or 1 × 
FOLFOX for 24 h. The cell lysates were processed for YB-1 and β-tubulin (as loading control). PGE2 secretion data in 
Figure 3B represent means ± SD; n = 4–6; * p < 0.05 compared to either vehicle control, vector + FOLFOX treatment group, 
or vector control group. 

Figure 3. Mechanism of CD44v6 induced YB-1 expression. (A) Time course results are shown of CD44v6 and YB-1 protein
expressions after transfecting the v6 rescue plasmid (described in the Methods section) into v6 Mu1 SW948-FR CICs.
Expression of proteins at 0 h was not shown because of the absence of CD44v6 in the protein lysate. (B) Effects of knocking
out CD44v6 in in v6 Mu1 CICs of sensitive and resistant SW948 cells on PGE2 production (analyzed by ELISA as described
in Methods) in the presence and absence of FOLFOX treatment are shown. (C) 17-P-T-PGE2 (synthetic PGE2) induces
YB-1 in CICs that were treated with PGE2 at 5 µM for the indicated times. YB-1 expression levels were determined by
immunoblotting with anti-YB-1 antibody; β-tubulin as loading control. (D) Effects are shown of CD44v6 Mu1 knockout on
PGE2 and FOLFOX induced YB-1 expression. CICs isolated from SW948-S and SW948-FR that were previously transfected
with either v6 Mu1 or vector for 48 h and then treated with or without synthetic PGE2 or FOLFOX. YB-1 expression
levels were determined by immunoblotting with anti-YB-1 antibody; β-tubulin as loading control. (E) Effects are shown of
PGE2/EP1 receptor, and of mTOR signaling on YB-1 expression. CICs were either transfected with in v6 Mu1 or vector for
48 h and then treated with or without EP1 inhibitor (5 µM AH6809) or mTOR inhibitor (10 nM PP242) for 2 h. They were
then cultured in serum-free medium for 16 h and treated with synthetic PGE2 at 5 µM, or 1 × FOLFOX for 24 h. The cell
lysates were processed for YB-1 and β-tubulin (as loading control). PGE2 secretion data in Figure 3B represent means ± SD;
n = 4–6; * p < 0.05 compared to either vehicle control, vector + FOLFOX treatment group, or vector control group.

2.5. CD44v6-YB-1 Signaling Defines the Stemness of CICs

Therapeutic resistance has been reported to be a defining feature of CICs [27,112–114].
A few recent studies have shown that CD44v6, or YB-1 individually stimulate the drug-
resistance in CRC [27,95]. However, the role of CD44v6-YB-1 signaling in stimulating
FOLFOX resistance in CRC is unknown. To explore the role of CD44v6 in CICs, the prolif-
eration and viability of v6 WT CICs, v6 Mu1 CICs, and v6 Mu1 CICs plus CD44v6 rescue
plasmid, were evaluated. The results of ATP Glo assays revealed that the viability of
v6 Mu1 SW948-FR CICs was significantly decreased compared with that of CD44v6 WT
SW948-FR CICs (Figure 4A). Rescue of CD44v6 expression in v6 Mu1 CICs led to viability
similar to that of v6 WT CICs (Figure 4A). These data indicate that CD44v6 promoted the
proliferation of CRC CICs. Next, the cell cycle of CICs was characterized by flow cytometry,



Int. J. Mol. Sci. 2021, 22, 753 11 of 37

and the results in Figure 4B show that the percentage of v6 MU1 CICs in G1 phase was
significantly increased compared with that of the corresponding WT CICs. Importantly,
when the expression of CD44v6 was rescued in v6 MU1 SW948-FR CICs, the percentage of
cells in G1 phase was similar to that of wild-type CICs (Figure 4B).

To characterize the influence of v6 Mu1 knockout on the apoptosis of CICs, apoptotic
activities of v6 Mu1, v6 WT, or v6 rescue in v6 Mu1 CICs were examined using Annexin V
assays by flow cytometry. The results showed that v6 Mu1 led to a significant increase in
apoptotic activity in SW948-FR CICs compared with that in v6 WT cells, while apoptotic
activity in v6 rescued Mu1 CICs was closely resembling that in v6 WT cells (Figure 4C,D).
The Annexin V data indicated that v6 Mu1 knockout in CICs promoted the apoptosis of
CICs (Figure 4C,D).

To explore the mechanism underlying the requirement of CD44v6 for the stem-
ness of CICs, the DNA sequences bound by nuclear CD44v6 complexes were analyzed
by ChIP assays in CICs from sensitive and resistant cells of SW948 using a CD44v6-
specific antibody. DNA fragments bound by nuclear CD44v6 complexes were pulled
down by the anti-CD44v6 antibody from a total of 15 clones. A National Center for
Biotechnology Information basic local alignment search tool analysis shows that these
clones contained sequences/binding elements for transcription factors (TFs) (Figure 4E;
(Supplemental Table S2)) associated with 5-motifs (cell-survival, proliferation, anti-apoptosis,
invasion, and stemness) containing genes (CyclinD1, BCL2, MMP9, FZD1, and GINS1)
(Figure 4F) that are involved in cell survival, cell proliferation, apoptosis resistance, inva-
sion, and stemness in CICs. Moreover, expressions of these TFs were either very negligible
or null in sensitive cell CICs compared to resistant cell CICs (Figure 4E). The promoter
sequences associated with TFs (Supplemental Table S2) that bound to the CD44v6 pro-
tein could be classified into two themes: (1) genes for 5-motifs such as, Cyclin D1 for
cell proliferation/apoptosis-resistance/stemness [115], BCL2 for cell survival [115], FZD1
for stemness [116,117], GINS-1 for DNA replication modulation to regulate proliferation
in CICs [118], and MMP9 for cell invasion [119]; (2) four core-stemness genes (ALDH1,
NANOG, Lgr5 and ABCB1) for drug-resistance and maintenance of stemness of CRC
CICs [115]. The quantitative real-time PCR (QPCR) results showed that the mRNA levels
of Cyclin D1, BCL2, FZD1, GINS-1, and MMP9 were significantly increased with res-
cue of CD44v6 expression in v6 Mu1 SW948-FR CICs (Figure 4F), suggesting that the
CD44v6 was responsible for the expression of these 5-motifs related genes. Like other
cell surface receptors, CD44v6 is known to migrate to the nucleus as an intact polypep-
tide or as a proteolytic fragment with or without their ligands. Nuclear localized re-
ceptors have been shown to act as co-transcription factors to regulate genes like Cyclin
D1 [120,121], FGF2 [122], COX2 [123], c-Jun [124], BCL2 [121], CD49f [96], and MMP9 [125]
by interacting with various transcription factors including STAT3 [120,121], RUNX2 [125],
NFkB [126,127], p300 [121], E2F1 [128], and YB-1 [96,129]. Although other groups showed
binding of nuclear CD44 to chromatin [121,125], our study is the first to demonstrate that
posttranslational modification of CD44 is required for efficient interaction between nuclear
CD44v6 with the multiple transcription factors (E2F1, YB-1, STAT3, NFkB, and RUNX2;
(Supplemental Table S2)) to induce Cyclin D1, BCL2, MMP9, FZD1, and GINS1 promoters.
Therefore, in this study, we demonstrate that CD44v6 once engaged with YB-1 is translo-
cated to the nucleus, where it binds to various promoters of genes for 5-motiffs (CyclinD1,
BCL2, MMP9, FZD1, and GINS1) in order to maintain CIC growth.
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(A) The effects are shown of CD44v6 knockout on cell viability (using ATP Glo method) of CD44v6 Mu1, CD44v6 WT,
and on CD44v6-rescue SW948-FR/CICs (1 × 103 cells/well of 96-well plate) which were cultured for the indicated times.
The time point 0 h represents the number of inoculated cells (data not shown). (B) The influence of CD44v6 on cell cycle
of CD44v6 Mu1, CD44v6 WT, and CD44v6-rescue SW948-FR CICs are shown. Cells (1 × 104) were cultured for 48 h, and
the percentage of cells in G1, S, and G2 phases of cell cycles were examined with flow cytometry. (C,D) Indicated SW948-

Figure 4. Requirement of CD44v6 and YB-1 for the stemness of SW948-FR CICs after acquisition of FOLFOX resistance.
(A) The effects are shown of CD44v6 knockout on cell viability (using ATP Glo method) of CD44v6 Mu1, CD44v6 WT,
and on CD44v6-rescue SW948-FR/CICs (1 × 103 cells/well of 96-well plate) which were cultured for the indicated times.
The time point 0 h represents the number of inoculated cells (data not shown). (B) The influence of CD44v6 on cell cycle
of CD44v6 Mu1, CD44v6 WT, and CD44v6-rescue SW948-FR CICs are shown. Cells (1 × 104) were cultured for 48 h,
and the percentage of cells in G1, S, and G2 phases of cell cycles were examined with flow cytometry. (C,D) Indicated
SW948-FR CICs were seeded into a 6-well plate at 1 × 105 cells/well and cultured for 48 h. The extents of apoptosis of
CICs in the cultures were examined by flow cytometry. (E) A ChIP assay was performed with chromatin from SW948-FR
CICs using an anti-CD44v6 antibody. The immunoprecipitated DNA was amplified by PCR and subcloned. A total of 13
clones were sequenced. Computer-based analysis revealed the presence of various consensus binding sites for common
transcription factors in these DNA sequences (see Supplemental Table S2). QPCR analyses show the expressions of these 13
transcription factors in CICs of “S’ and “FR” cells of SW948. (F) Expressions are shown for antiapoptosis/stemness-related
genes in v6 WT CICs, v6 Mu1 CICs, YB-1 WT overexpressed v6 Mu1 CICs, and in CD44v6 rescue plasmids overexpressed
v6 Mu1 CICs. QPCR was conducted to detect the expression levels of the genes. (G,H) Influence of v6-rescue plasmid
into v6 Mu1 CICs for stemness-related gene expressions (G) and stemness-related TFs (c-Myc, TWIST1, OCT4, and SOX2)
(H) were measured by QPCR. (I,M) The CD44v6-WT plasmid, or the constructs of the “CTOS” (c-Myc, TWIST1, OCT4,
and SOX2) TFs either alone or with CD44v6-rescue plasmid, were transfected into the v6 Mu1 SW948-FR CICs. At 72 h
after transfection, QPCR (I) or Western blot (M) analyses were done to examine the expression levels of these transcription
factors. (J,K,L,N,O) Effects of simultaneous expressions of the “CTOS” with the CD44v6-rescue plasmid are shown on
sphere formation (J), on the expressions of indicated stemness-related genes and protein (K,L), and on differentiation-related
genes and protein (N,O) in v6 Mu1 SW948-FR CICs. The experiments were biologically repeated for three times. QPCR data
represent means ± SD; n = 4–6; * p < 0.05 compared to vector control, WT control, or vehicle cell control group. Western blot
data are representative of three experiments.
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CICs maintain self-renewal to form matching daughter cells by cell division and dif-
ferentiate into multilineage cells present within tumors [10]. These differentiated cells
differ from their normal counterpart by maintaining their malignancy by expressing
tissue-specific stemness-marker protein profiles via various core-stemness associated TFs,
which define the phenotype of the cells [71]. Recent studies showed that core-stemness
associated TFs, including OCT4, KLF4, SOX2, and c-MYC (also known as OKSM), dictate
key functions in gastrointestinal tumorigenesis, by regulating cell migration, metastasis,
and resistance to therapy [79,130,131]. However, their specific roles in CRC have not been
revealed in every aspect so far, particularly with respect to CD44v6 regulation. Of four
core transcription factors (CTOS) (c-Myc. TWIST1, OCT4, SOX2), TWIST1 is described
to be essential for CRC propagation [85,132], and c-Myc, OCT4, and SOX2 are sufficient
to fully reprogram differentiated gastrointestinal cells to gastrointestinal stem cells [133].
In addition, we found that, the DNA:nuclear CD44v6 clones contained cis-regulatory ele-
ments c-Myc, TWIST1, OCT4, and SOX2 (Supplemental Table S2), which can define the
phenotype of cells of specific tissue, by expressing stemness-related cell surface markers
(ALDH1, NANOG, Lgr5, and ABCB1) [84,85,134–136] of CICs. Indeed, QPCR data showed
that four (ALDH1, NANOG, Lgr5, and ABCB1) stemness-related genes [84,85,134–136]
were significantly downregulated in v6 Mu1 SW948-FR CICs, respectively (Figure 4G).
Rescuing the expression of the CD44v6 protein (v6-rescue) did not restore these inhi-
bitions (Figure 4G). Similarly stemness-related TFs (CTOS) (c-Myc [137], TWIST1 [85],
OCT4 and SOX2 [84,138]) were also downregulated in v6 Mu1 SW948-FR CICs, respec-
tively (Figure 4H). These data indicate that these CTOS TFs and the stemness-related genes
(ALDH1, NANOG, Lgr5, and ABCB1) as well as CD44v6 were essential for the reversion of
differentiated cancer cells.

To restore the differentiated cancer cells into CICs, expression vectors expressing c-
Myc, TWIST1, OCT4, and SOX2 (CTOS) were separately transfected into v6 Mu1 SW948-FR
CICs with or without a v6-rescue plasmid to express these genes and proteins (shown in
Figure 4I,M). Consistently, YB-1 is regulated by CD44v6 (Figure 4I,M). The results in
Figure 4J showed that the tumor sphere formation capacities of SW948-FR CICs or HT29-
FR CICs were significantly decreased in the absence of CD44v6, even if the CTOS were
expressed. Nevertheless, in simultaneous expression of CD44v6 and the CTOS, the tumor-
sphere forming capacity of v6 Mu1 knockout CICs was comparable to that of wild-type
CICs (Figure 4J). Quantitative real-time PCR analysis showed that the expressions of four
stemness genes and proteins (ALDH1, NANOG, Lgr5, and ABCB1) were significantly
downregulated in v6 Mu1 SW948-FR CICs even when the CTOS were overexpressed
(Figure 4K,L). However, the simultaneous expression of CTOS withYB-1 WT plasmid,
or CTOS with CD44v6 rescue plasmid promoted the expression of stemness genes and
proteins in v6 Mu1 SW948-FR CICs, which was consistent with the results in v6-WT SW948-
FR CICs (Figure 4K,L). These data indicate that CD44v6 and the other CTOS TFs are capable
of reverting the differentiated cancer cells into CICs.

To further evaluate the effects of the CTOS on the dedifferentiation of v6 Mu1 knockout
CICs, the expression levels of differentiation genes in CRC (cytokeratin 20 (CK20) and
mucin 2 (MUC2) [139]) were examined. The results revealed high expression levels of CK20
and MUC2 genes and proteins in v6 Mu1 CICs (Figure 4N,O). Overexpression of the CTOS
in v6 Mu1 CICs generated similar results (Figure 4N,O). However, with simultaneous
expression of CTOS with YB-1 WT plasmid, or CTOS with CD44v6 rescue plasmid in
v6 Mu1 CICs, the expression profiles of differentiation (CK20 and MUC2) genes were
consistent with those in CD44v6 wild-type CICs (Figure 4N,O). These results indicate
that CD44v6 was required for the reversion of differentiated cancer cells into CICs with
stemness.

2.6. Analysis of CIC Stemness Associated Genes and Drug-Resistance Proteins in SP Cells

Side population (SP) cells are a subset of enriched progenitor cells with CIC-like
phenotypes that exhibit the ability to self-renew as well as give rise to differentiated
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tissue cells with a distinct low Hoechst 33342 dye staining pattern [140–142]. In order to
determine whether CD44v6 affects the population of CRC cells, we investigated this aspect
by flow cytometry.

We isolated v6-Mu1 SW948-FR, and YB-1 Mu3 SW948-FR single clones, and v6 Mu1
plus YB-1 Mu3 SW948-FR single clones targeted by CD44v6-sgRNA (v6 Mu1), YB-1-sgRNA
(YB-1 Mu3) expression plasmids. We cultured individual clones each in 96-well plates
and allowed them to grow by changing the media 3× times a week until colonies were
formed. After dissociation of single clones, we cultured them in 24-well tissue culture
plates, and further cultured them in 6-well plates to get increased cell numbers. These
cultures were purified by flow cytometric analysis using a CK (pan)-fluorescein isothio-
cyanate antibody. Flow cytometric analyses were done with SW948-FR cells after treatment
with verapamil, or from v6 Mu1, or YB-1 Mu3 clones. The cells were stained with Hoechst
33342 (Figure 5A,B). The levels of SP cell populations were substantially diminished in
the presence of verapamil or from v6 Mu1, and YB-1 Mu3 clones. Our results (Figure 5B)
also suggest that a significantly higher population of SP cells were reduced with v6 Mu1
(0.15%) compared to YB-1 Mu3 cells (0.31%). Purified isolated SP cells and non-SP cells
from various sgRNA transfectants of SW948-FR cells were cultured separately and grown
in fresh medium for 2 weeks. Afterwards, cultured SP cells and non-SP cells were sub-
jected to flow cytometric analysis using Hoechst 33342 dye again to reanalyze these SP
and non-SP populations. The freshly sorted SP were further processed for cell viabil-
ity/cell proliferation analysis using ATP Glo and clonogenic assays. The data shows that
SW948-FR-SP cells demonstrated substantially increased cell proliferation compared to
non-SP cells (Figure 5C, ≈ 5 fold at day 6). Consequently, the SP cells were analyzed
for FOLFOX-sensitivity in chlonogenic growth assay. The results in Figure 5D show that
1 × FOLFOX sensitizes the non-SP cells (34% survival) whereas the SP-cells are resistant
to apoptosis/death (Figure 5D, 91% survival), suggesting that the SW948-FR SP cells are
highly resistant to FOLFOX.

Results from Figure 5E demonstrate that CD44v6 and YB-1 downregulation sensitizes
SW948-FR/SP cells to 1 × FOLFOX and more to 2 × FOLFOX treatment. Knockdown
of CD44v6 led to increased cytotoxicity compared to YB-1 Mu3 SW948-FR/SP cells in
response to 1 × FOLFOX and to 2 × FOLFOX treatment with reduced colony formation
(Figure 5E). The residual colony number after knockdown of CD44v6 and YB-1 (Figure 5E)
suggests that in addition to CD44v6 regulation of YB-1, YB-1 may also be regulated by
other signaling. Thus, CD44v6-YB-1 signaling activity mediates FOLFOX resistance in
resistant SP cells.

A recent study demonstrated that overexpression of the drug resistant transporter
contributes to Hoechst dye expulsion and the drug-resistance properties of SP cells in solid
tumors including CRC cells expressing stemness genes [143,144]. We analyzed the stemness
gene expressions of ALDH1, NANOG, LGR5, ABCB1, as well as CD44v6 in SP and non-SP
cells from the SW948-FR cells. QPCR analysis revealed that these stemness genes were more
highly expressed in SP cells than in non-SP cells (Figure 5F). Subsequently, mRNA analysis
revealed that the protein expression of cell proliferation/apoptosis-resistance/stemness-
related genes (CyclinD1, BCL2, FZD1, GINS-1, MMP9, and MDR1) were significantly
decreased in v6 Mu1 SP cells (Figure 5G). To further evaluate the role of the dedifferentiation
of non-SP cells versus differentiation of SP cells, the expression levels of differentiation
genes (CK20, MUC2) in SP and non-SP cells of SW948-FR cells were examined. The results
revealed high expression levels of these differentiation genes in non-SP cells compared to
SP cells (Figure 5H). These findings clearly demonstrate that elevated expression of CD44v6,
YB-1, and MDR1 (ABCB1) as well as other stem cell and antiapoptotic genes/proteins are
likely responsible for the FOLFOX apoptotic resistance, self-renewal capacity, and rapid
proliferation, and for the reversion of differentiated cancer cells into CICs.
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2.7. Nuclear YB-1 Associates with CD44v6 and Functions to Modulate CD44v6 and
MDR1 Transcription

A recent study demonstrated that YB-1 regulated CD44 in primary breast cancer
cells [96]. Moreover, YB-1 also regulates MDR1 in primary breast cancer cells [99]. To un-
derstand the mechanism of YB-1-CD44v6 regulation, chromatin immunoprecipitation
(ChIP) was done to identify DNA sequences bound by nuclear CD44v6 complexes. DNA
fragments were pulled down by anti-CD44v6 antibody from a total of 15 clones. A National
Center for Biotechnology Information basic local alignment search tool analysis shows that
these clones contained sequences (Supplemental Table S2) corresponding to the promoters
of several genes, including β-catenin. Among them, 13 clones contained sequences for YB-1.
Thus, we tested whether nuclear CD44v6 exerts its transcriptional regulatory function on
MDR1 through interacting with YB-1. Coimmunoprecipitation (Co-IP) showed nuclear
colocalization of CD44v6 and YB-1 in unstimulated SW948-FR and FOLFOX stimulated
SW948-S nuclear extracts (Figure 6A). Our data also showed that very little CD44v6 and
YB-1 were associated with YB-1 immunoprecipitates (IPs) of nuclear extracts of SW948-S
cells, whereas elevated expressions of CD44v6 and YB-1 were found with YB-1 IP in the nu-
clear extracts of SW948-FR cells that endogenously express high levels of CD44v6 and YB-1
(Figure 6A). Knocking down CD44v6 in v6 Mu1 CICs significantly suppressed expression
of CD44v6 and YB-1 in nuclear lysates of SW948-FR cells (Figure 6A).

To further evaluate the relative contribution of the YB-1 transcription factor to the
regulation of MDR1 promoter activity, we performed transient transfection assays using
SW948-FR cells with constructs containing YB-1 binding sites within the MDR1 promoter
(Figure 6B) cloned into a luciferase reporter plasmid. These PGL3-mdr (1) and PGL3-mdr
(2) constructs were transfected with or without manipulations of CD44v6 and YB-1, and lu-
ciferase activities were measured. The results showed that luciferase activity increases in
the presence of YB-1 binding sites in these SW948-FR CICs (Figure 6C). Even with only one
YB-1 binding site in the pGL3-mdr1 (2), the activity was only slightly less than pGL3-mdr
(1) with more than one YB-1 binding site (Figure 6C). The MDR1 promoter luciferase
constructs negatively responded to cotransfection with v6 Mu1 and YB-1 Mu3 in SW948-FR
CICs (Figure 6C). These reductions show that YB-1 promoter binding and activation of
MDR1 is mediated through both CD44v6 and YB-1 in the nucleus of SW948-FR CICs.

To identify whether CD44v6 binds to YB-1 binding sites in the MDR1 promoter in
SW948-FR CICs, ChIP assays were done. Immunoprecipitated YB-1-, CD44v6-, and IgG-
chromatin complex and input DNA were amplified using primers (Supplemental Table S3)
covering the indicated YB-1 binding sites of the MDR1 promoter (as shown in Figure 6D).
Semiquantitative ChIP RT-PCR assays (Figure 6D) showed that YB-1 bound to two MDR1
sites, and expression levels were almost null in sensitive SW948-S cells and significantly
increased in resistant SW948-FR cells. CD44v6 only bound to these two sites in resistant
cells with markedly increased binding to YB-1 when compared to very less or no association
with sensitive cells (Figure 6E). Knockdown of CD44v6 and YB-1 reduced endogenous
MDR1 promoter binding to CD44v6 and YB-1 in DNA complexes in SW948-FR CICs
(Figure 6F), thus validating our results from luciferase reporter assays that CD44v6 and
YB-1 coregulate MDR1 expression in a CD44v6-regulated manner in FOLFOX resistant
SW948-FR CICs.

Several putative YB-1 binding sites were located 2.1 kilobases upstream of the tran-
scriptional start site of the CD44v6 gene (Figure 6G). A fragment of the CD44v6 gene
promoter (−2100 to 500 bp) was fused upstream of the firefly luciferase gene in pGL3-
CD44v6 (1), and similarly in pGL3-CD44v6 (2) it was fused upstream (−1700 to 500 bp).
pGL3-CD44v6 (1) and pGL3-CD44v6 (2) contain YB-1 binding sites. Luciferase assays were
used to directly examine the interaction between YB-1 and the CD44v6 promoter. The lu-
ciferase activities in SW948-FR cells transfected with v6-Mu1 and YB-1 Mu3 SW948-CICs
were significantly lower than vector control group, while YB-1 overexpression significantly
increased the luciferase activity (Figure 6H). This provides evidence that YB-1 increases
CD44v6 transcription activity. To validate these results, conventional ChIP analyses were



Int. J. Mol. Sci. 2021, 22, 753 16 of 37

done, and they provided direct evidence for the ability of YB-1 to bind to the promoters of
CD44v6 (Figure 6I–K). Thus, the results in Figure 6 show that a YB-1 pathway promotes
both CD44v6 and MDR1 gene expressions. Overall, the above results indicate that FOLFOX
treatment mediates a CD44v6-PGE2-mTOR-YB-1 pathway that promotes CD44v6 expres-
sion (Figures 3 and 6) and functions through a positive feedback loop between CD44v6
and YB-1 that activates MDR1 gene expression and CD44v6 splicing through noncanonical
signaling and thereby mediates FOLFOX resistance.
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(C) Cell proliferation rates were measured by ATP GLO assay for SP and non-SP cells. SP cells underwent rapid prolifer-
ation compared with non-SP cells. (D) SP cells exhibited high resistance to 1 × FOLFOX whereas the non-SP cells were 
sensitive to 1 × FOLFOX. (E) CD44v6 and YB-1 knockdown in SW948-FR cells decreased the drug resistance. Control, v6 
Mu1, and YB-1 Mu3 SW948-FR cells were treated with various doses of FOLFOX for 10 days in 3% FBS DMEM. Cell 

Figure 5. CD44v6-YB-1 defines CIC-like SP cells. (A) SW948-FR cells labeled with Hoechst 33342 showed 3.3% of SP cells
in the SP gated region. Following treatment with verapamil, the SP cells were reduced to 0.26%. (B) v6 Mu1 and YB-1
Mu3 regulate the side population. The SP cells were <10% of vector cells in the v6 Mu1 cells, and the YB-1-Mu3 SW948-FR
cells. (C) Cell proliferation rates were measured by ATP GLO assay for SP and non-SP cells. SP cells underwent rapid
proliferation compared with non-SP cells. (D) SP cells exhibited high resistance to 1 × FOLFOX whereas the non-SP cells
were sensitive to 1 × FOLFOX. (E) CD44v6 and YB-1 knockdown in SW948-FR cells decreased the drug resistance. Control,
v6 Mu1, and YB-1 Mu3 SW948-FR cells were treated with various doses of FOLFOX for 10 days in 3% FBS DMEM. Cell
viability was assessed using the clonogenic assay. The clonogenicity of CD44v6-Mu1 cells was significantly decreased
compared with YB-1-Mu3 cells. (F) Expressions of core stemness genes in SW948-FR/SP and non-SP cells by QPCR are
shown. (G) Expressions of anti-apoptosis/stemness-related genes in vector and v6 Mu1 transfected SW948-FR/SP cells are
shown. (H) Expressions of CRC differentiation genes in SW948-FR/SP and non-SP cells are shown. Each bar represents the
means of three determinations ± SD. * p < 0.05 among the indicated groups compared to respective control group. FACs
data are representative of three experiments.
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CD44v6 Mu1, or YB-1 Mu3, or vector (Control) for 24 h. (D,F) MDR1 is transcriptionally regulated by YB-1 in SW948-
FR/CICs. (D) The sketch map shows the predicted YB-1 binding sites (CAAT or ATTG) within the MDR1 promoter 
(MDR1(A) and MDR1(B)). PCR primers designated for MDR1(A) and MDR1(B) were used for amplification of the poten-
tial YB-1 binding sites of the MDR1 gene by ChIP semiquantitative PCR assays using anti-CD44v6, anti-YB-1, or an irrel-
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Figure 6. Nuclear YB-1 binds with CD44v6 and modulates CD44v6 and MDR1 transcription by binding to CD44v6 and
MDR1 promoters. (A) Nuclear extracts were isolated from SW948-S and SW948-FR cells first transfected with vector, or v6
Mu1, and then treated with or without 1 × FOLFOX for 8 h. Nuclear extracts were immunoprecipitated by YB-1 antibody
followed by Western blotting of the indicated proteins. (B) The scheme shows the MDR1 promoter constructs with YB-1
binding sites (mdr1(1) and mdr1(2)). (C) MDR1 Luciferase activities are shown for SW948-FR/CICs overexpressing CD44v6
Mu1, or YB-1 Mu3, or vector (Control) for 24 h. (D,F) MDR1 is transcriptionally regulated by YB-1 in SW948-FR/CICs.
(D) The sketch map shows the predicted YB-1 binding sites (CAAT or ATTG) within the MDR1 promoter (MDR1(A) and
MDR1(B)). PCR primers designated for MDR1(A) and MDR1(B) were used for amplification of the potential YB-1 binding
sites of the MDR1 gene by ChIP semiquantitative PCR assays using anti-CD44v6, anti-YB-1, or an irrelevant IgG antibody
(control). Total genomic DNA was used as input for the ChIP PCR. (E) ChIP QPCRs representing the PCR products in
CD44v6, YB-1, or IgG immunoprecipitated DNA versus 10% input DNA in SW948-FR/CICs using primers for MDR1(A)
and MDR1(B) sites are shown. (F) ChIP QPCRs representing the PCR products in CD44v6, YB-1, or IgG in SW948-FR/CICs
overexpressing CD44v6 Mu1, or YB-1 Mu3, or vector for 24 h are shown. (G) The sketch map of predicted YB-1 binding
sites (CD44v6 [1] and CD44v6 [2]) within the CD44v6 promoter is shown. (H) CD44v6 luciferase assays are shown for
SW948-FR/CICs overexpressing v6 Mu1, or YB-1 Mu3, or vector for 24 h. (I) Semiquantitative PCR products using ChIP
QPCR primers are shown for designated YB-1 binding sites as CD44v6(A) and CD44v6(B). (J) A representative ChIP QPCR
representing the PCR product in immunoprecipitated CD44v6 is shown. (K) ChIP QPCR using PCR primers for designated
CD44v6(A) sites were used for amplification of the YB-1 binding sites of the CD44v6 gene in ChIP assays in untreated
CICs, or CICs overexpressing CD44v6 Mu1, or YB-1 Mu3, or vector (Control) for 24 h. Values represent means ± SD;
n = 3–5; * p < 0.05, compared to whole cell lysate and nuclear fractions isolated from sensitive cells, sensitive cell groups,
vehicle control, IgG control, vector control, and appropriate control groups. Western blot and semiquantitative PCR data are
representative of three experiments.
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2.8. Role of CD44v6-YB-1 in the Tumorigenesis of CICs of Resistant Cells In Vivo

To evaluate the impact of CD44v6-YB-1 on the tumorigenesis of CICs in vivo, v6 Mu1
and YB-1 Mu3 knockouts in SW948-FR-CICs and WT CICs, were injected into nude mice.
Our results indicated that tumor growth in mice injected with v6 Mu1 CICs and YB-1 Mu3
CICs transplanted tumors were significantly suppressed compared with those in control
mice (Figure 7A). The tumors in mice injected with v6 Mu1 CICs were smaller and weighed
less than YB-1 Mu3 CICs (Figure 7B). In addition, Western blot data revealed that the
CD44v6 and YB-1 proteins were detected lesser in tumors in mice injected with v6 Mu1
CICs or with YB-1 Mu3 CICs (Figure 7C). The residual expression of YB-1, and ABCB1
(MDR1) protein in v6 Mu1 CIC injected tumors (Figure 7C) suggest that in addition to
CD44v6-YB-1, other signaling cascades may also mediate the potential of FOLFOX to
stimulate YB-1 expression/activity.Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 20 of 38 
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Figure 7. Role of CD44v6 in the SQ tumorigenesis of SW948-FR/CICs in vivo. (A,B) Effects of CD44v6, or YB-1, or a
combination of CD44v6 + YB-1 knockout on tumor growth in nude mice are shown. CD44v6 Mu1, YB-1 Mu3, or v6
Mu1 + YB-1 Mu3 knockout FOLFOX resistant CRC CICs and wide-type CICs were injected into nude mice. The tumor
volumes in mice were measured every five days (A). Sixty days later, the mice were sacrificed. A solid tumor was
collected from each mouse. (B) The impacts of v6 Mu1, YB-1 Mu3 knockout FOLFOX resistant CRC CICs on tumor
weights are shown. (C) The CD44v6, MDR1, and YB-1 protein levels in tumors of mice injected with v6 Mu1, YB-1 Mu3
knockout FOLFOX resistant CRC CICs or WT CICs are shown. β-Tubulin was used as an internal control. (D) Expressions
of proliferation/antiapoptosis/invasion/stemness related genes (by QPCR) in these solid tumors are shown. Data are
presented as mean± SD (n = 7); * p < 0.05. ANOVA followed by Bonferroni’s post-hoc test was used to assess the significance.
Western blot data are representative of three experiments. QPCR data are presented as mean ± SD (n = 4); * p < 0.05.
Scale bar, 50 µm.
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These results showed that CD44v6 knockout v6 Mu1 SW948-FR cells inhibited the tu-
morigenesis of CICs in vivo. As CD44v6 defined CICs autonomous resistance (Figure 4A–D)
and has been proven to participate in the transcriptional regulation and activation of stem-
ness factors in resistant SW948-FR CICs and SP cells (Figures 4E and 5D,F), we investigated
the effects of CD44v6 knockout on the expression of CD44v6/YB-1 target genes in vivo.
The QPCR analysis of the xenograft tumor RNAs showed that the stemness-associated
genes were considerably decreased in YB-1 Mu3 knockout tumors compared with those in
WT control tumors (Figure 7D). These findings further suggest that CD44v6 promoted the
expression of stemness-associated genes including MDR1 to enhance the tumorigenesis of
CICs in vivo and that this function of CD44v6 requires a positive feedback loop coupling
CD44 alternative splicing and it’s downstream target YB-1 activation.

3. Discussion

Classically, CSCs/CICs are most often defined as being multipotent, long-lived, slow
cycling/quiescent, self-renewable, and asymmetrically dividing cells within a tumor that
have tumorigenic potential when transplanted into immune-deficient mice [10,145–147].
Thus, CICs are primarily involved in maintenance of tissue homeostasis and recovery
from injury. CICs can be separated from other cancer cells based on their distinctive cell
surface markers depending on the cancer of origin [148]. Due to CIC’s self-renewal and
multilineage differentiation characteristics, tumors are composed of a biological hierarchy
of cell types that is dictated by CICs [149]. As a result of its self-renewing capabilities, CICs
can be serially transplanted through multiple generations to relapse the tumor with strong
drug-resistance and metastatic traits [38]. While surgical removal and adjuvant therapy
can cure well-confined primary tumors, resistant tumors that are metastatic are largely
incurable because of the resistance of disseminated tumor cells to existing therapeutic
agents of standard care [150–152]. Thus, the identification of the molecular mechanisms
involved in FOLFOX resistance provides strong impetus to investigate therapeutically
tenable cellular/molecular pathways for reversal of resistance.

With regard to cancer mimicking development and wound response outcomes, CICs
function in two settings. First, stem cells were initially described in acute myeloid
leukemia [153], but soon were also found in solid tumors including colorectal cancers [154].
Single hematopoietic stem cells repopulate to the bone marrow niche via systemic blood
circulation, and the niche then directs instructive signals to sustain proliferative potential
of stem cells. Second, organ regeneration by single hematopoietic stem cells is less evident
in solid tumor tissue. Recent work in CRC has shown that the inner surface epithelium of
the colon is folded into crypts where stem cells display a cooperative relationship with sup-
portive CD24+ (or cKit+) accessory cells similar to small intestinal Paneth cells. Paneth cells
(CIC niche cells) potentially proliferate significantly relative to single stem cells, and they
provide maintenance signals and restrain uncontrolled growth. When a stem cell exits its
niche, it undergoes lineage specification and differentiation, providing an essential role for
the stromal-environment to influence normal cellular hierarchies [147].

Colorectal CICs with epithelial characteristics, i.e., EpCAM (+) CD44v6 (+) [27,154],
share the major intestinal stem cell features, including self-renewal, telomerase activity, organ-
specific differentiation potential, unusual activation of proliferating signaling including
CD44v6 and WNT/β-catenin, elevated tumorigenic potential, and drug-resistance [155–157].
In CRC, tumor cells are closely associated with cancer associated fibroblasts, which se-
crete different stromal factors, including hepatocyte growth factor, WNT, TGFβ, periostin,
prostaglandin E2 (PGE2), bone morphogenetic protein (BMP), and interleukins produced
by the tumor microenvironment, which in turn promotes tumor stemness and CIC clono-
genicity [13,72,158–160]. These factors in turn induce the expression of different transcrip-
tion factors (TFs), including TWIST1 and Snail. These TFs repress E-cadherin expression,
and trigger EMT, which enables cancer cells to disseminate and acquire the ability to
self-renew and resist apoptosis [72,134]. For self-renewal and drug resistance function CICs
express a distinct set of markers (ABC transporters, CD133, EpCAM, Lgr-5, or ALDH1) [84]
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as well as their associated TFs, and stemness genes including BIM-1, NANOG [134,135],
TWIST, OCT-4 [161–163], SOX2 [161,164], and FZD1 [117]. In addition to being CIC mark-
ers, these molecules are biologically functional and can be expressed in tumor cells by
continuous activation of transcriptional networks that constitutively express high levels of
stemness-associated TFs [79,134,135,161,164,165].

In this study, we demonstrated that CRC-CICs express CD44v6, which is a functional
marker involved in autonomous resistance of CICs to FOLFOX therapy and was vali-
dated by the major inverse correlation between tumor survival and CD44v6 expression.
Additionally, we showed that the YB-1 oncogene is widely expressed in CD44v6+ CICs,
thus enabling these CICs to be highly resistant to FOLFOX therapy. Further we show for
the first time that CD44v6 induces YB-1 through CD44v6 regulated PGE2-mTOR signaling
in response to FOLFOX, and that CD44v6-YB-1 promotes tumor sphere, soft agar colony
formation, and drug-resistance in CRC-CICs. In addition, we found that FOLFOX resistant
cells contained more SP cells compared to the FOLFOX sensitive cells. Furthermore, SP cells
highly expressed stemness-related genes and resistance to FOLFOX. Importantly, we found
that SP cells in CRC had significantly increased activation of CD44v6 and YB-1 expressions
compared to non-SP cells. Knocking down CD44v6 in SP cells significantly decreased
stemness related genes and increased differentiation markers. Further, SP cells in FOLFOX
resistant CRC cells were highly tumorigenic in vivo compared to non-SP cells. Therefore,
these findings indicate that SP cells are likely to be a major driving force of CRC resistance
to FOLFOX, indicating that the CD44v6-YB-1 signaling pathway may be an important
target for eliminating CICs in CRC.

The CIC subpopulation can differentiate into non-CIC tumor cells and promote phe-
notypic and functional heterogeneity within the tumor. In 2006, Yamanaka lab showed that
terminally differentiated fibroblasts can be reprogrammed to induced pluripotent stem
cells (iPSC) using four transcription factors OCT4, SOX2, KLF4, and c-Myc by initiating
several synergistic processes [130,166]. Thus, any somatic cell can be reprogrammed into
iPSC cells by coexpression of stemness-related core transcription factors that are specific
for tumor cell type, and these TFs can act in partnership to regulate the expression of
discrete genes specific for maintaining stem cell pluripotency and self-renewal [167–170].
Such factors specific to each tumor type maintain the dynamic balance between CICs and
differentiated cells in a proper equilibrium. Dedifferentiation can alter this equilibrium
resulting in metastasis/aggressiveness since CICs are resistant to chemotherapy and ra-
diation. In this study, our results showed that CD44v6 knockout induced differentiated
CICs, leading to the decrease of sphere-forming ability and downregulation of stemness
genes related to CICs. However, CD44v6 rescue alone in the v6 Mu1 SW948-CICs did not
reprogram the differentiated cells into CICs, which was in agreement with the previous
studies [79,130]. Our results revealed that v6 Mu1 knockout CICs significantly promoted
the expression of differentiation genes (CK20 and MUC2). We also revealed that the simul-
taneous expressions of c-Myc, TWIST1, Oct 4, and SOX2 (CTOS)), and a v6 rescue plasmid
reverted v6 Mu1 CICs into CICs. Therefore, our study showed that differentiated cells can
be reprogrammed into CICs via combined expression of CTOS TFs and CD44v6. This in-
dicates that CD44v6 induced YB-1 was required for the reversion of differentiated cancer
cells into CICs. Overall, we can conclude that after FOLFOX stimulation, internalized
CD44v6 complexes with YB-1, and the combined signaling complex reaches the nucleus,
where CD44v6 regulated YB-1 stimulates promoters for the MDR1 and CD44v6 genes,
which sustains FOLFOX resistance and tumor formation through CD44v6 overexpressing
CICs. This provides evidence that CD44v6 is a biomarker and a likely therapeutic target.
In addition, CD44v6-YB-1 interaction could promote CIC proliferation, maintain CIC stem-
ness, and suppress CIC apoptosis by enhancing the expression of TFs (NFkB, E2F1, STAT3,
and RUNX2) for proliferation/antiapoptosis/invasion/stemness related promoters (Cyclin
D1, FZD1, GINS1, BCL2, and MMP9). Therefore, CD44v6-YB-1 signaling has a vital role in
the activation and reversion of the differentiated cancer cells into CICs.
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4. Material and Methods
4.1. Materials

Dulbecco’s Modified Eagle’s Medium (DMEM), Eagle’s Minimum Essential Medium
(EMEM), McCoy’s 5A Medium, F-12K Medium, Leibovitz’s L-15 Medium, L-Glutamine,
Sodium pyruvate, Penicillin (100 µ/mL), and Streptomycin (100 µg/mL), sodium pyruvate,
0.05% EDTA solution (Versene), Phosphate buffered saline (PBS, Calcium and Magne-
sium free), and 0.05% Trypsin were from Corning Inc. (Upstate, NY, USA). Fetal Bovine
Serum (FBS) was from Atlanta Biologicals (Minneapolis, MN, USA). Amphotericin B was
from Hyclone (Logan, UT, USA). Nonidet P-40, EGTA, sodium orthovanadate, glycerol,
phenylmethylsulphonyl fluoride, leupeptin, pepstatin A, aprotinin, and HEPES, Insulin
and B-27, Hoechst 33342 were from Sigma (St. Louis, MO, USA). Collagenase was from
Worthington Biochemical (Lakewood, NJ, USA). Fc blocking reagent was from Millenia
Biotech (Gieβen, Germany). bFGF, Blocking antibody for CD44v6 (2F10), IL17A and iso-
type control were from R&D Systems (Minneapolis, MN, USA). TrypLE, Lipofectamine
2000 was from Invitrogen (Carlsbad, CA, USA). The 50 µm nylon mesh was from BD
Biosciences Thermo Fisher (Waltham, MA, USA). Lipofectamine 2000 was from Invitrogen
(Carlsbad, CA, USA). T7E1 was from New England Biolabs (Beverly, MA USA). The an-
tibodies against CD44v6, YB-1, E-Cadherin, EpCAM, ALDH1, NANOG, Lgr5, EpCAM,
CD133, β-catenin, Anti-Active-β-catenin (anti-ABC) antibody, clone 8E7, TCF4, MDR1,
Cyclin D1, BCL2, FZD1, GINS-1, MMP9, β-tubulin, horseradish peroxidase-linked anti-
rabbit and anti-mouse antibodies, and Luminol reagent were purchased from commercial
sources (R&D (Minneapolis, MN, USA), Santa Cruz Biotechnology Inc. (Dallas, TX, USA),
Abcam (Cambridge, MA, USA), Ebioscience Thermo Fisher, Thermo Fisher (Waltham, MA,
USA), and Cell Signaling Technology (Danvers, MA, USA). Blocking antibody for CD44v6
(2F10), IL17A and isotype control were from R&D Systems. Blocking antibody for periostin
(OC-20) was from Adipogen Life sciences (San Diego, CA, USA). Blocking antibody for
WNT3A (1H12L14) was from Thermo Fisher (Waltham, MA, USA).

4.2. Cell Lines

Human colorectal adenocarcinoma cell lines: (1) HT29 (HTB-38) purchased from ATCC
(Manassas, VA, USA)was maintained in McCoy’s 5A medium+ 2mM Glutamine + 10% Fetal
Bovine Serum (FBS); (2) pre-neoplastic Apc 10.1 cells isolated from Apc min/+ mice were
cultured in Dulbecco’s modified Eagle medium supplemented with 20% FBS and harvested
by a 15–30 min treatment with trypsin-EDTA solution [48,171]; (3) Colo 205 and Colo
320DM, SW707, and HCT15 cells purchased from ATCC and Cellosaurus were cultured in
ATCC-RPMI 1640 + 2mM Glutamine + 10% FBS; (4) SW620 and SW948 cells purchased from
ATCC were cultured in Leibovitz’s L-15 Medium + 2mM Glutamine + 10% FBS. The cell
lines were maintained in medium mentioned next to the cell line in humidified atmosphere
in the presence of 10% FBS, penicillin (100 µg/mL), and streptomycin (100 µg/mL), 5% CO2
at 37 ◦C.

4.3. Generation of FOFOX Resistant (FR) Cells

To determine the mechanisms of FOLFOX resistance, we selected three cell lines
(HT29, and SW948) out of seven cell lines (Supplemental Figure S1A), which have low
basal levels of CD44v6 gene expression. Using these cell lines, we determined their IC50
values for 5-Flourouracil (5-FU) and their IC50 values for Oxaliplatin (OXA) (Figure S1B–D)
because these molecules are the components of FOLFOX. To determine these IC50 values,
cells were separately pretreated with various concentrations of 5-FU, or OXA, or vehicle.
After a 24-h incubation at 37 ◦C, growth assays were analyzed as described above. The 50%
inhibitory concentration (IC50) was identified as a concentration of drug required to achieve
a 50% growth inhibition relative to untreated controls. The average IC50 values for HT29,
and SW948 cells for 5-FU is 50 µM and for OXA is 10 µM. FOLFOX resistance cells were
generated by incubating the sensitive parental (HT29-S, and SW948-S) cells with increasing
concentrations from 1 × FOLFOX (50 µM 5-FU + 10 µM OXA + 1 µM leucovorin) to
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5 × FOLFOX over 3 days. The surviving FOLFOX resistant (FR) cells were cultured in
normal medium for 5 days. This exposure and withdrawal cycle were repeated five times
for each dose of FOLFOX. The resistances of these FR clones were compared to sensitive
pairs by determining the number of colonies in soft agar growth with 1 × FOLFOX–5 ×
FOLFOX therapy.

4.4. Isolation of CICs

Our FOLFOX resistant (FR) clones and the corresponding sensitive pairs were main-
tained through subcutaneous xenografts in the flanks of immunocompromised SCID mice.
Fresh normal colonic tissue and colorectal tumors were rinsed in DMEM (Life Technologies)
supplemented with 200 units/mL of penicillin, 200 µg/mL of streptomycin, and 4 units/mL
of amphotericin B and minced, followed by incubation with 300 units/mL of collagenase
at 37 ◦C for 3 h. A single cell suspension was obtained by filtration through a 40 µm filter.
After discarding lymphocytes by gradient centrifugation, the cells were washed twice in
fluorescence-activated cell sorting (FACS) buffer (Phosphate-buffered saline (PBS) + 2%
BSA + 1 mM EDTA + 0.1% sodium azide), incubated with Fc blocking reagent and stained
with directly with conjugated antibodies by incubating on ice for 20 min. They were then
sorted in a Mo Flo cell sorter for EpCAM+CD44v6+ALDH1+CD133+ (CD44v6 high CICs)
by using appropriate fluorescent conjugated antibodies. They were further confirmed by
tumor sphere formation abilities and in vivo tumorigenicities by testing for tumor sphere
formation at 37 ◦C in an atmosphere of 5% CO2. CICs were cultured in serum-free medium
with basic fibroblast growth factor (bFGF, 10 ng/mL) and epidermal growth factor (EGF,
10 ng/mL), 5 µg/mL of insulin, and 2% of B-27 at 37 ◦C in a humidified atmosphere with
5% CO2. For cell counting, before each experiment, a single-cell suspension was achieved
using TrypLE (Invitrogen) dissociation.

4.5. Labeling of Cells with Hoechst 33342

Approximately 106 cells/mL from WT, v6 Mu1, YB-1, Mu3 SW948-FR cells in 10%
DMEM were labeled with Hoechst 33342 stock bis-benzamide (5 µL/mL) either with
dye alone or in combination with drug treatment (verapamil, 0.8 µL/mL). After 90 min
incubation in a water bath at 37 ◦C, cells were subjected to centrifugation at 2500× g for
10 min at 4 ◦C and resuspended in 500 µL of Hank’s balanced salt solution containing
10 mM HEPES (4-[2-hydroxyethyl]-1-piperazineethanesulfonic acid). Finally, cells were
counterstained with propidium iodide (2 µg/mL sample) at 4 ◦C to exclude dead cells. Cells
were filtered through a 50 µm nylon mesh to remove cell clumps into labeled fluorescence-
activated cell sorting (FACS) tubes. The SP cells and main population (non-SP) cells were
sorted using a flow cytometer. The Hoechst 33342 dye was excited at 355 nm, and its
dual-wavelength fluorescence was analyzed (blue, 450 nm; red, 675 nm).

4.6. Establishment of CD44v6 Knockout Mutant and YB-1 Knockout Mutant of CICs by the
CRISPR/Cas9 System

A guide RNA for CD44v6 and a guide RNA for YB-1 were designed using the ZiFit
Web application (http://zifit.partners.org/) to aim at exon 6 of CD44, and at exon 1 of YB-1.
The gene-specific guide RNA sequence for CD44v6 was 5′-GGGGTAGGGTCTGCTTCTGT
CAGGG-3′; and for YB-1 was 5′-CGGCGGGGGGGGCGGGG-3, which were cloned sep-
arately into the px458 vector (Addgene, Cambridge, MA, USA). Plasmid construction,
transfection into sensitive and FR-resistant CRC CICs using Lipofectamine 2000 from
Invitrogen (Carlsbad, CA, USA), and isolation of clonal CICs were conducted as described
previously [172]. To evaluate the gene editing activity of gRNA, the genomic DNAs of
gRNA-transfected CICs were extracted, and the CD44v6 and YB-1 genes were amplified
using sequence-specific primers followed by digestion with T7 endonuclease 1 (T7E1) from
New England Biolabs (Ipswich, MA, USA) at 37 ◦C for 30 min. The digested products
were analyzed with agarose gel electrophoresis. Subsequently, the cells were cultured
in the serum-free medium with basic fibroblast growth factor (bFGF, 10 ng/mL; R&D
Systems) and epidermal growth factor (EGF, 10 ng/mL; R&D Systems), 5 µg/mL of insulin

http://zifit.partners.org/
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(Beyotime, Shanghai, China), and 2% of B-27 (Sigma, St. Louis, MO, USA) at 37 ◦C in a
humidified atmosphere with 5% CO2 for 2 days. Single colonies were selected by antibiotic
selection, passaged, and genotyped. The knockout mutants were confirmed by DNA
sequencing and Western blot with CD44v6 and YB-1-specific antibodies.

4.7. RNA Silencing

For determining shRNA sequences used in this study, (1) coding nucleotide sequences
of the genes were obtained from the NCBI, National Institutes of Health, website (www.
ncbi.nlm.nih.gov); (2) hairpin shRNAs were designed to target a transcript sequence
using the Broad Institute GPP Web Portal (http://portals.broadinstitute.org/gpp/public/);
(3) sequences for cloning in pSico/pSicoR vectors were designed following the MIT Jackson
Lab website (http://web.mit.edu/jacks-lab/protocols). The resulting pSicoR-CD44v6
shRNA1 (CD44v6 sh1), pSicoR-CD44v6 shRNA2 (CD44v6 sh2) transfectants constitutively
silence respective CD44v6 genes in the cells. The pSicoR-Non targeted shRNA (NT sh)
transfectants were used as control to the above shRNA transfectants (see Table 1 for shRNA
sequences used in this study).

Table 1. shRNA sequence in pSico and pSicoR vectors (https://jacks-lab.mit.edu/protocols).

Genes
Primers

Sense Sequence (5′–3′) Antisense Sequence (5′–3′)

CD44v6 shRNA1 TCCTCCCAGTATGACACATATTTTCAAGAGA
-AATATGTGTCATACTGGGAGGTTTTTTC

TCGAGAAAAAACCTCCCAGTATGACACATATT-
TCTCTTGAA-AATATGTGTCATACTGGGAGGA

CD44 shRNA2 TGGACCAATTACCATAACTATTTTCAAGAGA
AATAGTTATGGTAATTGGTCCTTTTTTC

TCGAGAAAAAAGGACCAATTACCATAACTATT
TCTCTTGAA-AATAGTTATGGTAATTGGTCCA

To rescue the shRNA knocked out gene, cells were transfected with the gene replace-
ment vector containing the modified target gene (Knock-In (KI; shRNA-immune cDNA))
that no longer contains target sites for the shRNAs but still encodes a functional protein.
This can often be achieved by utilizing one or more silent third-codon point mutations
within the targeted region. This construct restores full function and rescues any loss-of-
function phenotype as used in our previous study [57,58].

4.8. CR1SPR/Cas9 Knockout Mutant Gene Rescue Plasmids

When a gene is knocked out in cells, it is important to know if rescue of the original
gene would reverse the downstream changes in order to authenticate the gene function.
In both scenarios, reintroducing a mutant(s) and/or rescuing of a wildtype gene would
fail because Cas9-gRNA by nature disrupts introduced genes. To overcome both hurdles,
we used modified cDNAs for gene rescue. In case of CR1SPR/Cas9 gene knockout, because
Cas9 cleaves where gRNA binds, one or a few nucleotides in the gRNAS binding site of
the CD44v6 and YB-1 were modified by three nucleotides, while the amino acid sequences
remained unchanged as described previously in generating shRNA resistant constructs
and gRNA rescue constructs [57,58,173]. Total cell lysates were examined by Western blot
analysis for the indicated proteins and β-tubulin or β-actin were used as internal standards.
In some cases, total mRNAs were analyzed for the indicated mRNAs by QPCR.

4.9. Cell Growth Survival or Apoptosis Assays

Five thousand cells were plated in triplicate into 96-well plates containing appropriate
growth media and incubated overnight. After 16 h of growth, cultures were incubated in
media containing no serum for 16 h at 37 ◦C in 5% CO2, 95% air. Vehicle or chemotherapy
drug was added to the plate. In each experiment, a total of five plates (six wells/treatment)
were used. Experiments were repeated three times. The growth of these cells was de-
termined by measuring increases in readings of ATP levels for viability (Cell Titer-Glo,
Promega). The luminescent signal is proportional to cell viability and is measured using
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a luminometer (PerkinElmer). The Caspase-Glo® 3/7 assay depends on the formation
of free amino luciferin after adding caspase-3/7 DEVD-amino luciferin substrate to cell
lysates and measuring amino luciferin by the luciferase present in the substrate reagent.
The luminescent signal is proportional to caspase 3/7 activity and measured using a
luminometer.

4.10. Tumor Sphere Formation

An optimized serum substitute (1 × B27 supplement) (from Creative Bio array)
was freshly added to tumor formation medium (500 mL Dulbecco’s Modified Eagle
Medium/F12 containing, 20 ng/mL epidermal growth factor; 10 ng/mL basic fibrob-
last growth factor; 5 µg/mL insulin; 0.4% bovine serum albumin). After harvesting the
cells, 200 live cells in 200 µL of tumor sphere medium were suspended in ice. This suspen-
sion was kept on ice and mixed well for plating. PBS was added to the first and last columns
(columns 1 and 12) of the 96-well plate to help minimize medium evaporation. This leaves
10 wells available for each row. Then, 200 µL aliquots of the cells were suspended in tumor
sphere medium into each well (200 cells per well). For each treatment, cells were seeded
into the wells of two rows for a total of 20 wells. The upper and lower edges of the 96-well
plate were sealed with laboratory tape to avoid evaporation of medium, and cells were
placed in an incubator at 37 ◦C and cultured in 5% CO2 for 10–14 days. After stipulated time
of incubation, tumor sphere numbers were counted under a phase-contrast microscope
using the 40×magnification lens. Data are presented as a percentage of wells containing
tumor spheres compared to the total number of wells.

4.11. Cell Lysis and Immunoblotting

Cells were cultured until they were 75% confluent. They were washed twice at 4 ◦C
with phosphate buffered saline (PBS), harvested with 0.05% Versene, and then washed
in cold PBS again. The cells were pelleted by centrifugation at 5000× g for 2 min at 4 ◦C.
The pellets were treated with the lysis buffer containing 1% Nonidet P-40, 0.5 mM EGTA,
5 mM sodium orthovanadate, 10% (v/v) glycerol, 100 µg/mL phenylmethylsulphonyl
fluoride, 1 µg/mL leupeptin, 1 µg/mL pepstatin A, 1 µg/mL aprotinin, and 50 mM
HEPES, pH 7.5. The lysates were clarified by centrifugation at 12,000× g for 10 min
at 4 ◦C and then stored at −80 ◦C as described previously [57,58,174–176]. Cell lysates
(normalized for protein concentration) were analyzed by immunoblotting as described
previously [57,58,174–176]. The proteins on the blots were analyzed with antibodies from
commercial sources for specific antibodies for each experiment using appropriate primary
antibodies (β-tubulin and β-actin were used as internal standards). Proteins probed
with primary antibodies were detected by treatment with horseradish peroxidase-linked
anti-rabbit or anti-mouse antibodies as secondary antibodies followed by treatment with
luminol reagent (Santa Cruz Biotechnology). Each protein was analyzed in samples from
at least three independent experiments from each set of tumor cells and from CICs.

4.12. Coimmunoprecipitation and Pulldown

The roles of CD44v6 knockout on colocalization of CD44v6, YB-1, and MDR1 in
nuclear extracts were determined by pull down with YB-1 antibody followed by Western
blotting analysis. After immunoprecipitation, cells were washed with ice cold PBS and
lysed in lysis buffer as described above for 30 min. The 10% cell lysates were kept without
antibody immunoprecipitation (IP) for input control, and were analyzed by SDS PAGE on
the same gel with the Co-IP samples. Immunoprecipitation was done on cleared lysates
(12,000 rpm for 15 min at 4 ◦C) with indicated antibodies and protein G agarose beads
(Merck) at 4 ◦C overnight. The precipitates were washed (3 X) in lysis buffer and boiled
in SDS-sample buffer containing 100 mM dithiothreitol (DTT). Whole cell lysates as well
as immunoprecipitates were subjected to Western blotting analysis using CD44v6, MDR1,
and YB-1 antibodies and were detected as above.
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4.13. Plasmids and Reporter Assays

Expression vectors: pDSET YBX-1 pDESTmycYBX1 was a gift from Thomas Tuschl
(Addgene plasmid # 19878; http://n2t.net/addgene:19878; RRID:Addgene_19878); pcDNA3-
cmyc was a gift from Wafik El-Deiry Addgene plasmid # 16011; http://n2t.net/addgene:
16011; RRID:Addgene_16011); pTK-TWIST was a gift from Bob Weinberg (Addgene plas-
mid # 36977; http://n2t.net/addgene:36977; RRID:Addgene_36977); pGEM-OCT4 was
a gift from James Thomson (Addgene plasmid # 16352; http://n2t.net/addgene:16352;
RRID:Addgene_16352); SOX2 (Origene) CD44v6 specific PCR amplification products were
isolated with polyadenylated RNA from the HT29 cell line. The PCR product was cloned
in pcDNA3.1 vector and used as previously described [58].

4.13.1. Reporter Vectors

The MDR1 and CD44v6 reporter constructs were synthesized by Bio basic (US) and
cloned into the firefly pGL3-basic vector (Promega, Madison, WI, USA)) upstream of the
Luciferase reporter gene. The constructs were named as follows: (1) mdr1 (1) contains
the basal promoter (−2300/+1); (2) mdr1 (2) contains promoter site (−500/+1). Both of
the MDR1 promoter constructs contain multiple YB-1 binding sites. For the CD44v6
promoter, the constructs were named as follows: (1) CD44v6 (1) contains promoter site
(−2000/+1); (2) CD44v6 (2) contains promoter site (−700/+1). Both of the CD44v6 promoter
constructs contain multiple YB-1 binding sites. The M50 Super 8x TOPFlash vector (plasmid
12456) with a luciferase gene under the control of seven TCF/LEF-binding sites, and the
corresponding M51 Super 8x FOPFlash vector (plasmid 12457) with mutated TCF/LEF-
binding sites were obtained from Addgene (Cambridge, MA, USA). The normalization
vector pRL-TK Renilla with a HSV-TK promotor driving Renilla luciferase was purchased
from Promega (Madison, WI, USA).

4.13.2. Transient Transfection and Luciferase Reporter Assay

For the transient assays, 1.0 × 105 cells from both cell lines were cotransfected using
Lipofectamine LTX 2000 (Invitrogen, (Carlsbad, CA, USA)) with 1 µg of each Luciferase
construct and 100 ng of pRL-SV40 vector (Promega), according to the manufacturers’ in-
structions. Firefly and Renilla Luciferase activities were measured in cell lysates 48 h after
transfection using the DualGlo Luciferase Assay System (Promega, Madison, WI, USA)
on a Veritas TM Microplate Luminometer (Perkin Elmer, Waltham, MA, USA) following
the manufacturer’s protocol. All experiments were done in triplicate. Ratios of Renilla
luciferase readings to firefly luciferase readings were taken for each experiment, and tripli-
cates were averaged. The average values of the tested constructs were normalized to the
activity of the empty pGL3-basic vector, which was arbitrarily set at value 1.

4.13.3. β-Catenin/TCF Reporter Assays

All reporter gene assays were done in 96-well plates. Sensitive and resistant SW948
and HT29 cells (1.0 × 104/well) were transfected with SuperTOPFLASH reporter (25 ng)
and TK-Renilla (5 ng), and with the respective plasmid DNA as indicated using Lipo-
fectamine™ 3000 transfection reagent (Invitrogen, (Carlsbad, CA, USA) according to the
manufacturer’s protocol. Each transfection was adjusted to 150 ng DNA/transfection with
pcDNA3.1 empty vector. Where indicated, cells were transfected at 50–70% confluency with
shRNA constructs using Lipofectamine™ 3000 transfection Reagent in 6 cm petri dishes
according to the manufacturer’s protocol 24 h before seeding the cells for the reporter as-
says. Then, 50 ng/mL of WNT3A was added 24 h after DNA transfection. Cells were lysed
72 h after DNA transfection with 1 × Passive Lysis Buffer (Promega), and the luciferase
activity was measured using the Luminescence counter (PerkinElmer, Waltham, MA,
USA). TOPFLASH experiments were normalized to cotransfected Renilla gene expression.
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4.14. Primer Design and PCR

• RNA extraction and cDNA synthesis [177]

Harvested cells were transferred to 1.5 mL Eppendorf tubes with a small amount of
1x PBS, and 1 mL of TRIzol (Invitrogen, Carlsbad, CA, USA) was added. After vortexing,
the tube was kept in room temperature for 5 min. Then, 200 µL chloroform was added
and left at room temperature for 10 min. The tube was centrifuged at 1300 rpm for 15 min
at 4 ◦C. The upper phase containing RNA was transferred to a new tube, and 600 µL
ice cold isopropanol was added. The tube was inverted several times, kept in ambient
temperature for 10 min, and centrifuged at 1200 rpm for 13 min at 4 ◦C. After removing the
supernatant, the white RNA pellet was washed with 1 mL of 75% alcohol and left air-dried.
Then, the sample was dissolved in 50 µL DEPC-treated water. The quality and quantity of
extracted RNA was checked by a spectrophotometer. The extract was electrophoresed on
1% agarose gel. DNA contamination was removed from all RNA samples by treating the
samples with DNAase. Then, 500 ng of RNA was used for cDNA synthesis. In total, 1 µL
primer, 1 µL buffer (5 x), 0.5 µL RNase inhibitor, 1 µL dNTP (10 mM), and 0.5 µL Reverse
Transcriptase (Thermo Fisher scientific) were mixed in a microtube (0.2 mL). The synthesis
was performed at 50 ◦C for 60 min in a thermal cycler (BioRad).

• Primer design and semiquantitative RT-PCR [177]

Primers were designed by online Primer Quest Tool (https://eu.idtdna.com). The qual-
ity of designed primers was analyzed by OligoAnalyzer Tool software. The semiquantita-
tive PCR primer sequences used for CD44 exon specific PCR are given in Supplemental
Table S1, and the primer sequences used in analyses of various genes are discussed in
Section 4.15. Semiquantitative PCR was done using different amounts of cDNA of RNA
samples. In total, 1 µL forward (F) and reverse (R) primers were used. For each sample,
PCR was repeated three times. Each reaction contained 1 µL of a cDNA sample, 0.5 µL
of a primer, 5 µL Taq DNA Polymerase 2× Master Mix Red (Amplicon Co., Brighton,
UK), and 3 µL of water in a final volume of 10 µL. Before the main reactions, the PCR
conditions, including thermal conditions, the number of cycles, and the cDNA concentra-
tions, were optimized. During the main PCR cycles, temperature conditions, including
one initial denaturation cycle (3 min at 95 ◦C), was followed by 35 cycles with a denatura-
tion step for 5 s at 95 ◦C and a combined annealing and extension step for 35 s at 61 ◦C.
The PCR products were electrophoresed on 2.5% agarose, stained with ethidium bromide,
and photographed. The analysis of band intensities was done by ImageJ software.

4.15. Quantitative Real-Time RT-PCR (QPCR)

Total RNA was isolated from cells after various treatments and transfections as de-
scribed in the figure legends for each specified experiment using the RNeasy mini kit
(Qiagen, Beverly, MA, USA) according to the standard protocol provided by the manufac-
turer, with on-column DNA digestion. RNA integrity and concentration were analyzed
using Bioanalyzer, and 100 ng of RNA was retrotranscribed into cDNA using the First
Strand cDNA synthesis kit from Roche Applied Science. SYBR Green technology (Bio-Rad,
Thermo Fisher, Waltham, MA, USA) was used for all real-time PCR experiments. Amplifi-
cation was done with the real-time PCR analyzer (Bio-Rad cfx96). The PCR mixture (25 µL)
contained 12.5 µL of 2 SYBR Green PCR Master Mix (Bio-Rad), 5 µL of diluted RT product
(1:20), and 0.5 µM sense and antisense primer sets. The real-time PCR assays were done in
three individual experiments with duplicate samples using standard conditions in a CFX96
real-time PCR detection machine. After incubations at 95 ◦C for 3 min, the amplification
protocol consisted of 50 cycles of denaturing at 95 ◦C for 10 s, annealing, and extension at
60 ◦C for 30 s. The standard curve was made from a series dilution of template cDNA. Ex-
pression levels of tested genes were calculated after normalization with the housekeeping
gene GAPDH. Primer sequences used in QPCR are presented in Table 2.

https://eu.idtdna.com
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Table 2. Real-time PCR (QPCR) primers for various genes used in this study.

Genes
Primers

Forward Sequence (5′–3′) Reverse Sequence (5′–3′)

NFkB GTGACAGGAGACGTGAAGATG TGAAGGTGGATGATTGCTAAGT

E2F1 TCCCTGAGCTGTTCTTCTG CCTCCCTCACTTTCCCAATAAA

STAT3 GAGAAGGACATCAGCGGTAAG CAGTGGAGACACCAGGATATTG

RUNX2 CGGAATGCCTCTGCTGTTAT TGTGAAGACGGTTATGGTCAAG

Snail ACTATGCCGCGCTCTTTC GCTGGAAGGTAAACTCTGGATTA

TWIST1 AGACTCTGGAGCTGGATAACT GCCTGTCTCGCTTTCTCTTT

SOX2 GGACTGAGAGAAAGAAGAGGAGAG CGCCGCCGATGATTGTTATTA

Cyclin D1 GGTTCAACCCACAGCTACTT CAGCGCTATTTCCTACACCTATT

FZD1 AAGACCGAGTGGTGTGTAATG TGGCCATGCTGAAGAAGTAG

GINS1 TCAGGTGGACGAAGTGATTTG CGAAGCAAGCGGTCATACA

MMP9 GAACTTTGACAGCGACAAGAAG CGGCACTGAGGAATGATCTAA

Lgr5 GGGAAACGCTCTGACATACA CTTCTGTGGGTACGTGTCTTAG

OCT4 GGAGGAAGCTGACAACAATGA CTCTCACTCGGTTCTCGATACT

c-Myc AAGCTGAGGCACACAAAGA GCTTGGACAGGTTAGGAGTAAA

EpCAM AGCTGGTGTTATTGCTGTTATTG GCATCTCACCCATCTCCTTTAT

ALDH1 CTTGGAATTTCCCGTTGGTTATG GAGAGCAGTGAGAGGAGTTTG

Nanog GCCTGTAGTCCCAGCTATTTG GGAGTGCAGTGGTGTGATATT

ZEB1 GGCTCCTATAGCTCACACATAAG TGCTGAAAGAGACGGTGAAG

CD44v6 GACAGAATCCCTGCTACCAATAG TCCTTCGTGTGTGGGTAATG

4.16. Chromatin Immunoprecipitation (ChIP) Assay

The chromatin immunoprecipitation (ChIP) assay was done using the ChIP assay kit
(Upstate Biotechnology) following the manufacturer’s directions as described [58]. After
crosslinking with formaldehyde, nuclear fractions from SW948-FR/SQ/CICs were im-
munoprecipitated with 5 µg of anti-CD44v6 or anti-YB-1 antibody, or with 1 µg of normal
mouse IgG for 3 h. Chromosomal DNAs were purified and analyzed using semiquanti-
tative PCR to detect the MDR1 and the CD44v6 promoter regions (Figure 6D for MDR1,
and Figure 6I for CD44v6 promoters). Nuclear CD44v6, or YB-1-associated chromatins
from v6 Mu1, YB-1 Mu3, and Vector transfected SW948-FR CICs were immunoprecipi-
tated with YB-1 or CD44v6 antibodies for 3 h. Chromosomal DNAs were purified and
analyzed using QPCR with primers for YB-1 sites of MDR1 (Figure 6F) to detect the MDR1
promoter regions. Similarly, nuclear CD44v6, or YB-1-associated chromatins from V6 Mu1,
YB-1 Mu3, and Vector transfected SW948-FR CICs were immunoprecipitated with YB-1
or CD44v6 antibodies for 3 h. Chromosomal DNAs were purified and analyzed using
QPCR with primers for YB-1 sites of CD44v6 (Figure 6K) to detect the CD44v6 promoter
regions. Control IgGs were used as negative controls for immunoprecipitation. Chromatin
inputs were used as loading controls for PCR. The primers used for ChIP PCR studies are
presented in Table S3.

4.17. In Vivo Tumorigenic Potential of CICs

All animal studies described were approved by the IACUC protocol (# IACUC-2019-
00829 approved till 09/24/2022) from the Medical University of South Carolina and con-
ducted in accordance with the National Institutes of Health Guide for the Care and Use of
Animals. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) female
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mice weighing ≈25 g and aged ≈5–6 weeks were obtained from the Jackson Laboratory
and was used for the in vivo experiments. v6-Mu1 and YB-1 Mu3 knockout SW948-
FR CICs were collected at 5 × 105 cells/mL in physiological saline. Matrigel (Becton,
Dickinson) was added to the cell suspension at a ratio of 1:2, and 200 µL of the cell
suspension was subcutaneously injected into mice to induce tumor growth. The tumor
sizes were measured by a caliper every 5 days, and tumor volume was calculated as
(length (mm) × width (mm) × width (mm))/2. Sixty days later, the mice were sacrificed,
and the solid tumors were collected. The tumor sizes and weights were examined to evalu-
ate the tumor development (Figure 7A,B). Total RNAs extracted from the fresh tumors were
processed for QPCR analysis for Cyclin D1, BCL2, FZD1, GINS1, and MMP9 (Figure 7D).
Tumor lysates were analyzed for CD44v6, YB-1 and MDR1 by Western blot analyses
(Figure 7C).

4.18. Statistics

A two-tailed Student’s t-test was used to compare mean values between sensitive and
resistant cells using the following parameters: mean ∆∆CT values for QPCR; mean colony
number for soft agar growth assays; mean densitometry values for QPCR and WB; mean
percentage of cell viability assay (Cell Titer-Glo) and FACS analysis; mean luminescence for
ATP activity in cell growth, Caspase Glow assays in apoptosis measurements; mean tumor
weights in xenograft studies. Chi-squared analysis was performed to compare incidences
between sensitive and resistant cells for the following assays: number of positive wells
containing tumor spheres in the sphere formation assay; numbers of mice developing
tumors in xenograft studies. For experiments involving three or more groups, statistical
significance was calculated with GraphPad Prism Software v.8 (San Diego, CA, USA)
using a 1-way or 2-way ANOVA with a Bonferroni’s posttest, Student’s t test, or log-rank
(Mantel-Cox) test where appropriate (GraphPad Prism Software v.8 (San Diego, CA, USA).
Data are represented as the mean ± SD.

5. Conclusions

In conclusion, collectively, our data (Figure 8) indicate that (1) FOLFOX therapy in-
duces overexpression of CD44v6, and of YB-1, a key oncogenic transcription factor to
maintain stemness of CRC CICs; (2) our data link CD44v6-induced PGE2 with mTOR
signaling to induce YB-1 expression; (3) we identified a novel function for CD44v6 in tran-
scriptional modulation through nuclear translocation of CD44v6 and complex formation
with stemness-associated transcription factors, including YB-1 in CICs, where YB-1 exerted
its specific functions in cancer initiating cells via CD44v6 and MDR1 DNA transcription.
As a result, a positive feedback loop couples YB-1 activation and CD44 alternative splicing
to sustain CD44v6 and FOLFOX resistance through MDR1 expression; (4) in addition,
we demonstrated that YB-1 is associated with CD44v6 in a nuclear complex. In CD44v6
Mu1 SW948-FR CICs, ectopic expression of the YB-1, and CD44v6-rescue plasmids en-
hanced expression of proliferation/anti-apoptosis/invasion/stemness associated Cyclin
D1, BCL2, FZD1, GINS-1, and MMP9 genes providing evidence that CD44v6-elicited
expressions of stemness related genes are mediated through CD44v6 and YB-1([178], (Sup-
plemental Table S2); (5) CD44v6-YB-1 signaling has an essential role in the activation and
reversion of the pluripotency of differentiated cancer cells; (6) owing to their potential roles
in chemoresistance, targeting CD44v6 significantly reduces tumor formation in vitro and
in vivo. Thus, CD44v6 signaling could be a potential therapeutic target molecule combined
with conventional chemotherapy to elevate the chemosensitivity of CRC (Figure 8).
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