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Quantum vertex model for reversible

classical computing

C. Chamon', E.R. Mucciolo?, A.E. Ruckenstein' & Z.-C. Yang'

Mappings of classical computation onto statistical mechanics models have led to remarkable
successes in addressing some complex computational problems. However, such mappings
display thermodynamic phase transitions that may prevent reaching solution even for easy
problems known to be solvable in polynomial time. Here we map universal reversible classical
computations onto a planar vertex model that exhibits no bulk classical thermodynamic
phase transition, independent of the computational circuit. Within our approach the solution
of the computation is encoded in the ground state of the vertex model and its complexity is
reflected in the dynamics of the relaxation of the system to its ground state. We use thermal
annealing with and without ‘learning’ to explore typical computational problems. We also
construct a mapping of the vertex model into the Chimera architecture of the D-Wave
machine, initiating an approach to reversible classical computation based on state-of-the-art
implementations of quantum annealing.
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hroughout the past few decades, problems of computer

science have become subjects of intense interest to

theoretical physicists as paradigms of complex systems
that could benefit from theoretical approaches and insights
inspired by statistical physics. These include neural networks,
Boltzmann machines and deep learning, compressed sensing,
satisfiability problems and a host of other approaches to data
mining and machine learning! ™. The interest in the constraints
on computation and information processing placed by physical
laws is even older and dates to work by Landauer and Bennett>~”.
One of the holy grails at the interface between physics and
computer science is the physical realization of a large-scale
quantum computer in which the processing of information makes
use of quantum-mechanical concepts such as superposition and
entanglement®’. However, building a quantum computer
remains a challenging task because of the practical difficulty
associated with maintaining coherence over the duration of the
computation.

This paper aims at bringing a new class of problems to the
physics—computer science interface by introducing a two-
dimensional (2D) representation of a generic reversible classical
computation, the result of which is encoded in the ground state of
a statistical mechanics vertex model with appropriate boundary
conditions. The vertex model is defined in terms of Boolean
variables (or spins degrees of freedom) placed on the bonds or
links of an anisotropic 2D lattice with vertices representing logic
gates. The corresponding gate constraints are implemented
through short-ranged one- and two-body interactions involving
the spins of the vertex (as we show, this construction can be
realized in physical programmable machines, such as the D-Wave
machine.) One direction of the lattice represents ‘computational
(rather than real) time’, as introduced by Feynman in the history
representation of quantum computation'?, but here used for
classical reversible circuits. The two boundaries of the lattice
transverse to the ‘time’ direction contain the input and output bits
of the computation. It is important to stress that we are not
limiting ourselves to forward computations with fixed inputs.
More interesting are problems in which only partial information
about both inputs and outputs is known. In that case, reaching
the ground state requires flow of information both forwards and
backwards across the lattice, processes that are naturally built into
our approach.

The idea of encoding classical computation in the ground state
of a many body spin model was introduced earlier for irreversible
computation in refs 11-13. Here we focus on reversible rather
than irreversible computation to address problems with both
fixed-input and mixed-boundary conditions on inputs and
outputs, as explained above. Mapping onto a regular 2D lattice
as opposed to an arbitrary graph allows us to use intuitive ideas
from equilibrium and non-equilibrium statistical mechanics,
especially of classical and quantum phase transitions. Also,
while in ref. 12 an error correction scheme was required to
implement fault tolerant computation, in our approach accurate
computation without error correction is possible below moderate
temperatures that scale only as the inverse of the logarithm of the
system size, a consequence of the exponential scaling of the static
correlation length with inverse temperature (see below).

Most importantly, the mapping proposed here defines
statistical mechanics vertex models that, irrespective of the
computation they represent, display no bulk thermodynamic
transition down to zero temperature. Thus our work emphasizes
that the dynamics of relaxation to the ground state rather than
the thermodynamics of the model is essential for understanding
the complexity of ground-state computation.

The absence of a thermodynamical phase transition removes
an obvious impediment to reaching the ground state of the vertex

2

model. For instance, a suboptimal mapping from a computational
problem into a physical system may place the solution within a
glassy phase, even in the case of easy computational problems.
The mapping of XORSAT (a problem in P) into a diluted p-spin
model is such an example!'®. The fact that our vertex model is free
of thermodynamic transitions does not mean that the ground
state can be reached easily. This remains true even for problems
with unique solutions which are encoded by vertex models with
unique ground states. Such problems are in the complexity class
UNIQUE-SAT, which under randomized reduction is as hard
as SAT'>. Hence, even in the absence of a thermodynamic
transition finding the unique ground state of vertex models
encoding problems with a single solution is a problem in
NP-complete!®~18, Of course, this does not mean that one cannot
benefit from speed-ups allowed by either physics inspired
heuristics or by special-purpose physical hardware, such as
quantum annealers.

This paper focuses on the study of vertex-model representa-
tions of random circuits for which the complexity of the
computation is reflected in the concentration of TOFFOLI gates,
the length of the input and output boundaries L and the depth of
the circuit W. We concentrate on computational problems with a
single solution—or problems for which one can discern among an
O(1) number of solutions with a small overhead—a class of
problems that encompass factoring of semi-primes, an important
and nontrivial example that we shall explore in a future
publication.

In our discussion of dynamics we deploy thermal annealing as
well as introduce a more efficient ‘annealing with learning’
protocol. The latter translates into an algorithm for solving
classical problems for which, as expected, forward computation
from a fixed-input boundary reaches solution in a time linear in
the depth of the computational circuit. Finally, we note that
reaching the ground state of the vertex model could be
accelerated by replacing classical annealing with quantum
annealing!®-?2, While approaching computational problems
through quantum annealing is left for future investigations, the
current paper includes the formal derivation of the quantum
version of the statistical mechanics model of reversible classical
computation. This provides the background for an explicit
mapping of our lattice model onto the Chimera architecture of
the D-Wave machine, a development that points to the potential
usefulness of the vertex model as a programming platform for
special purpose quantum annealers.

Results

The vertex model for reversible classical computation. Our
starting point is the fact that any Boolean function can be
implemented in terms of TOFFOLI gates, which are reversible
logic gates with three inputs and three outputs. Starting from a
circuit of TOFFOLI gates, our construction proceeds by first
using SWAP gates to repeatedly swap distant bits in the input that
are acted upon by particular gates of the circuit, until the
operation of every gate is reduced to adjacent bits. The second
step is to associate tiles with each of the gates, as shown in Fig. 1,
where one should imagine placing input and output bits at the
intersections of the tile surfaces with the horizontal lines, as
described in detail in Methods section.

The tiles representing the gates can then be laid down
side-by-side on a plane to implement the computational circuit,
as shown in Fig. 2 for the example of the ‘ripple-carry adder’,
which computes the carry bit that is ‘rippled’ to the next bit when
adding two numbers?®. (The ‘ripple-carry adder’ is the building
block for more complicated circuits such as addition and
multiplication.) As can be seen from this example, one may
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Figure 1| Tile representation of reversible computational gates. (a,b) Elementary tiles representing the three computational gates for reversible circuits:
ID (identity), SWAP and TOFFOLI. (c) construction of the Hamiltonians that encode the gate-satisfying states in the ground-state manifolds.

Spins are placed on the boundary of the tiles. For the TOFFOLI gate, an ancilla spin is placed in the centre of the rectangular tile. Couplings needed in the
Hamiltonians for the three different gates (tiles) are indicated by purple lines connecting two spins. The dashed line denotes the boundary of the tile.

also need to include the Identity (ID) gate in addition to the
TOFFOLI and SWAP gates to represent particular logic circuits
via tiling. Implied in the figure is that common boundaries of
adjacent tiles contain a pair of ‘twin’ bits (one on each tile) whose
values must coincide. The derivations of spin Hamiltonians
implementing the truth tables of individual tiles, the short range
inter-tile Hamiltonian enforcing the consistency between bits of
neighbouring tiles, and the boundary conditions specifying inputs
and outputs are presented in Methods section.

The final step of our mapping, also detailed in Methods
section, is to construct a vertex model on a tilted square lattice,
with each vertex representing either a TOFFOLI gate or four
possible rectangular tiles obtained by combining square ID and
SWAP tiles (ID-ID, ID-SWAP, SWAP-ID, SWAP-SWAP), as
shown in Fig. 2. This construction can always be done by an
appropriate retiling of the circuit so that each rectangular tile has
four neighbours (hence the square lattice). There are six Boolean
(or spin) variables associated to each vertex: two on each of the
two double bonds and one on each of the two single bonds tied to
a vertex. In deriving the vertex model we work in the limit in
which the spin coupling defining the gate Hamiltonians, J— oo
(see Methods section), in which case all gate truth tables are
satisfied exactly. Consequently, each vertex can be in one of
r=23=8 states. Three of the spins are inputs, and we use the
state g of the vertex, where g=0,1,...,7, to read- off the inputs in
binary (which are uniquely related to the spin): xI = bit[a, g],
a=1,2,3 for the three bits of the number g. The output bits are
the bits of the 3-bit number G(gq), where G is the gate function:

xOUT = bit[a, G(q)], a=1,2,3. The energy cost for two adjacent

gates that are incompatible with each other is determined by the
ferromagnetic coupling K.
The resulting vertex model Hamiltonian can be written as
8
H=3 > K
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where ngﬁ;, encodes the energy cost for mismatched nearest-
neighbour vertices (the energies, with scale set by K, depend on
the state of the vertices g, and gy, as well as on the types of gates g;
and gy present at neighbouring vertices s,s’'—an explicit example
is given in Supplementary Note 2); h, encodes the boundary
conditions, which we associate directly with the vertex rather than
with the input or output bits of a gate (since the relationship is
one-to-one); and finally, the transition matrix elements A,
between the states within a vertex s. All these couplings can be
determined given a computational circuit and the boundary
conditions. The quantum term A, ; can be designed from the
internal couplings within the tiles. For simplicity, one should
consider the case, A, s = A for all g,qy, which then represents
the eight-state counterpart of a transverse field.

The vertex model defined by equation (1) is the starting point
for all the subsequent discussions of this paper. For example, a
quantum annealing protocol for solving a factoring problem
would start with K<< A, where the ground state is a superposition
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Figure 2 | Tile and vertex model representation of the ripple-carry adder.
(a) The ripple-carry adder which computes the carry bit that is rippled’ to
the next bit. We add one additional control line s, and set it to 1 to
implement the original CNOT gate with a TOFFOLI gate. (b) The ripple-
carry adder implemented on the tile lattice, with different gates depicted in
different colours: blue tile: ID; green tile: SWAP; gold tile: TOFFOLI. Spins
between adjacent tiles are forced to be equal by the ferromagnetic ‘grout’
coupling K. (¢) The ripple-carry adder mapped to a vertex model with
periodic boundary condition in the transverse direction. After each column
of gate (vertex) operation, bit states are labelled at each bond. Light yellow
and grey stripes represent the P and T matrices used in the transfer matrix
calculation of the partition function.

of all locally satisfied gates independent of one another, and end
with K> A, with the ground state in which each tile satisfies the
gate constraint and also passes and receives the right information
to and from its neighbours.

The quantum vertex model phase diagram. Figure 3 shows our
conjectured equilibrium phase diagram of the vertex model
described by the Hamiltonian in equation (1). For T, A<<], the
local gate constraints are satisfied, which we indicate by ‘local
SAT’. The solution of the computational problem resides at the
origin (T/K=A/K=0), where all the gates are locally satisfied
and globally consistent, which we indicate by ‘global SAT’. In
Methods section we show explicitly that along the classical axis,
0 =A/K =0, the vertex model displays no finite temperature bulk
thermodynamic transition irrespective of the computational
circuit it represents. In particular, the resulting bulk thermo-
dynamic behaviour is always that of a paramagnet:

PF = — [3L(W —1)] In(2 cosh K). (2)
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Figure 3 | Phase diagram of the vertex model. Our exact calculation of the
partition function shows that there is no phase transition along the classical
path (6 =0). We argue that there should be a quantum phase transition for
some critical .

Moreover, along the ‘quantum’ axis T=0 the vertex model must
encounter a zero-temperature quantum phase transition at a
finite value of J. This follows from considering trivial classical
circuits with no TOFFOLI gates in which case an L x W vertex
model is equivalent to 3L decoupled Ising chains of size W in a
transverse magnetic field. Just as in the one-dimensional Ising
model in a transverse field, in the limit of no TOFFOLI gates one
expects a zero-temperature second-order quantum phase transi-
tion at .=1. The addition of TOFFOLI gates complicates the
analysis, but on physical grounds we expect that the phase
transition cannot simply disappear but rather change character
instead, possibly from second order to first order. This could be
the case if the no-TOFFOLI critical point happens to be an
endpoint of a phase boundary in the d-x; plane, where x7 is the
concentration of TOFFOLI gates. Determining the order of the
transition for the vertex model describing a generic computation
is a difficult problem, which we expect to address via quantum
Monte-Carlo simulations in a future publication.

Thermal annealing of the classical vertex model. Here we study
the dynamics of relaxation to the ground state as a function of the
size and depth of the computation via thermal annealing?*. This
proceeds by cooling the system from a high temperature of order
K down to zero temperature over a total time duration, T,
according to the ramp protocol, T(t) =K (1-t/1).

The dynamics is extracted by following an order parameter m
that measures the overlap of the final state {qﬁ“al} reached at t=1

with the reference (solution) state {qs"l}:
81 1 1
m = ; m;éqﬁna11 qgol — g . (3)

(Below we explain in detail how a unique solution state {g*} is
obtained.) Notice that the order parameter reaches m = 1 when the
final state agrees with the solution, and m =0 if the state is
random, in which case it agrees with the solution by chance in
1/8th of the sites. We remark that the ‘solution overlap’ is a much
better indicator of the evolution towards solution than the
total energy. This is because a single vertex flip into an incorrect
state in the middle of the circuit may cost little energy but it
throws other vertices into a completely different state from the
correct one.
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Figure 4 | Scaling of the dynamical correlation length /(7). For all sizes and cases, 2,000 realizations of the boundary states were used. The data-point
code used in a applies to all other panels. When not visible, the error bars are smaller than the size of the data points. (a-¢) Fixed input and output;
(d-f) mixed boundary conditions; (a,d) 20% TOFFOLI; (b,e) 40% TOFFOLI; and (c,f) 100% TOFFOLI. For systems with the smallest depth W studied,
16 x 42, and for circuits with few TOFFOLI gates (20%) and fixed-input and output boundary conditions, ¢(t) tends to saturate, indicating that complete
solutions have been reached. Notice that the functional form of the scaling does not depend on the boundary conditions, and depends solely on the

concentration of TOFFOLI gates.

The details of the numerical Metropolis simulations are
presented in Methods section. Our results are represented in
the form inspired by the dynamic scalin6g theory of ref. 25 that
builds on the Kibble-Zurek mechanism?®?7, namely:

{(z) = (m)(x) WL/Ly, (4)

which defines a dynamical correlation length, ¢(t). Lp is the
number of pinned vertices on both boundaries (see Methods
section). To motivate equation (4) we note that the domain of
satisfied gates that contribute to (m)(t), the fraction of gates that
reach their correct states at time 7, grows from the pinned states
at the boundaries, and covers an area Lyx{(t). Thus #()
describes the growth of correlated regions of satisfied gates that
eventually connect the two boundaries of the circuit. (We note
that recently, the Kibble-Zurek mechanism has been extended to
include systems with zero-temperature order?®, the case relevant
to the current discussion.)

We note that at any temperature T along the annealing path,
the correlation length is ¢7(t) < r(t — o0) = &p, where
&p ~ eX/?T is the thermal correlation length in the paramagnetic
state, and K is a characteristic ferromagnetic interaction strength
in our model. In thermal equilibrium all gate constraints defining
the computational circuit would be satisfied once &7 reaches
the depth of the computation, W. Notice that the exponential
dependence of {7 on temperature implies that achieving the
correct assignment of gates does not require very low tempera-
tures on the scale of K since {7 ~ W already for temperatures
below T~K/InW. However, reaching the solution to the
computational problem is a dynamical process that cannot
proceed to completion until the dynamic correlation length at
the end of the annealing protocol, ¢(t) = ¢r—o(t), reaches W,
allowing the input and output boundaries of the system that
specify the computation to communicate.

In Fig. 4 we present the numerical results for fixed-input and
output, and mixed boundary conditions, with different concen-
trations of TOFFOLI gates (see Methods section for details).
Remarkably, we find that the curves for different system sizes
L and W collapse very well when scaled as in equation (4). In
addition, notice that for shorter circuit with fixed input and
output and low concentration of TOFFOLI gates (20%), £(t)

begins to saturate for large enough 7 (Fig. 4a). As shown more
clearly in Fig. 5a, this saturation occurs when the dynamical
correlation length £(t7) reaches W/2, where the growing domains
of satisfied gates meet. Since in this case Ly=2L, ¢(t;) ~ W/2
corresponds to (m)(t,) =1 establishing 7, as the time-to-solution.
For mixed boundary conditions, however, £(t) ~ W/2 initiates
the communication between the two boundaries and establishes
the system’s capacity to ‘learn’ (see below) but is not sufficient for
negotiating solution. Indeed, Fig. 5a shows that (m)(t) does not
yet saturate when £(t) ~ W/2. As can be seen from Fig. 6 for
computations with mixed boundary conditions, correlations must
develop along the transverse direction (that is, parallel to the
boundaries) before solution can be reached. In those cases it is
this slower process that determines the time-to-solution and
dominates the complexity of computations.

Finally, all non-trivial operations between input and output
bits involve TOFFOLI gates, and it is thus expected that the
increasing the concentration of these gates slows down the
growth of correlations. This expectation is confirmed in Fig. 5b,
where we show curves for the same system size with different
concentrations of TOFFOLI gates. The case of no TOFFOLI gates
is equivalent to 3L decoupled ferromagnetic Ising chains.
In this case the dynamic correlation length behaves as
0(1) = by[(t/70) /In(t/70)]"/* (with £ = 1.42 and 7,=8.33) as
illustrated by the dashed line in Fig. 5b. This behaviour is in
agreement with the exact result for the Kibble-Zurek dynamical
scaling of the density of domain walls in a ferromagnetic
Ising chain®.

Annealing with learning. Simple thermal annealing is not
necessarily an optimal way to reach the ground state. For
example, in the case of forward computation, the time scale for
the dynamic correlation length to grow to ¢(t) ~ W/2 (so as to
reach solution) is slower than ballistic (or linear in 1), as expected
for deterministic forward computation. This can be already seen
from the exactly solvable case with no TOFFOLI gates. Moreover,
for single-solution problems with mixed boundary conditions the
growth of correlations establishing communication between
boundaries scales with the same form as in direct computation
(Fig. 4). However, in that case negotiating solution requires the
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establishment of much slower correlations along the boundaries,
a process for which a ‘vanilla’ thermal annealing approach is
extremely inefficient and would require unreasonably large
computational resources.

These shortcomings are addressed by using a heuristic
‘learning’ protocol in which annealing proceeds through the
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conditions with 20% TOFFOLI gates when £(t) ~ W/2. This indicates
that the solutions have been reached, and is consistent with the domain
growth picture. Notice that for mixed input and output boundary conditions,
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following steps: (1) one starts by annealing Ny identical replicas
of a circuit over some time 7, during which the correlation
lengths grow beyond a few columns of gates such that the
probability for assigning correct gates within that region,
p~exp(—|x|/&)>1/2, within each replica; (2) one then
assigns a specific identity to each gate (with p>1/2) provided
that a fraction of the Ny replicas, greater than or equal to o, agree
on this assignment; (3) with the agreed upon gates frozen, the
annealing process is independently applied again to each of
the replicas allowing only gates not yet fixed to participate in the
Metropolis algorithm; and finally, (4) the procedure is iterated
until all gates are fixed, thus establishing the solution to the
problem.

This protocol raises the question of how many replicas Ng, are
needed to ensure that the learning algorithm reaches the correct
result with a probability greater than 1 —e. In particular, how
does Ng, depend on the system size L x W and the threshold
o? As we show in Supplementary Note 3, the number of replicas
needed to ensure an error rate smaller than ¢ is given by
In|2=L &
N, = g,
gate assignment for one replica. Note that, for fixed « and error
rate &, the number of replicas grows only logarithmically with the
system size, and thus in practice the learning algorithm works
with reasonable resources.

Before describing the results of applying ‘annealing with
learning’ to computations with both fixed and mixed boundary
conditions, in Fig. 6 we plot the average local overlaps of 2,000
replicas with the solution for a fixed circuit and boundary
condition before applying the learning algorithm. The agreement
with the data presented in Fig. 4 substantiates the fact that the
local majority rule implemented through the independent
annealing of the replicas recapitulate the behaviour of the correct
solution to the computational problem.

We start from fixed-input boundary condition. Using the
algorithm described above, we choose 7, = 2! for each iteration,
and set the majority rule threshold at «=10.7. In Fig. 7 we show
the local order parameter of the final states averaged over 2,000
replicas after each iteration. We emphasize that even though we
are plotting the average overlap with the actual solution as a
benchmark, in the learning algorithm no reference to {g*}} is
made. The weight of each possible state of each gate in the circuit
is comguted solely from the replicas. After each iteration, with
7,=21 the correlation length grows to ¢(t,) ~ 10, and by
pinning gates with high percentage of agreement on certain states
we are pushing the ‘boundary’ forward until all gates are fixed.
Since the total number of iterations n, scales linearly with the
circuit depth W, n,oc W, the total time to solution 7 =n,t, also

where p>1 is the probability of a correct

L =015 7 =020
1=2%

Lh i

Figure 6 | Growing correlation length without learning. The average local overlaps (5@0\' qgm\) of 2,000 replicas with {g*°'} for a given circuit and boundary
state without learning. The system size is 16 x 42, with 20% TOFFOLI gates. (a) Fixed-input and output and (b) mixed boundary conditions.
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scales linearly with W, toc Wz, consistent with the expectations
for the time-to-solution for forward computation. For the
computation shown in Fig. 7, it is clear that the ‘annealing
with learning’ process proceeds ballistically and reaches solution
with n, =9 steps.

Now we look at mixed boundary conditions. The results
presented in Fig. 8 are obtained by applying the learning
algorithm with o =0.7. However, in the case of mixed boundary
conditions the process of ‘learning’ proceeds through two series
of annealing steps with different time scales: an initial set of
iterations with 7,=2'3 which build longitudinal correlations
required for learning, followed by a set of longer annealing steps
with 7,=2'% that allow the slower correlations along the
transverse direction to develop. Figure 8 shows the progression
to solution, which could not be reached for the same computation
using the ‘vanilla’ thermal annealing for our longest accessible
times (t ~22°).

We note that this protocol can also be used to solve problems
with a ‘few’, O(1), solutions. This is best illustrated for the case of
two solutions, which can be addressed by carrying out 2n
computations with mixed boundary conditions, where # is the
number of unknown bits in the input. The idea is to define 2n
problems by fixing each bit at a time to be 0 or 1, while leaving
the other n — 1 bits floating. Since the two solutions must differ in
at least one of the n bits, after at most 2n steps, this scheme
transforms the problem into two separate problems, each of
which can be solved by the techniques discussed in this paper. An
important problem that falls precisely within this case is
factorization of semi-prime numbers s=p x g, where there are
exactly two solutions, corresponding to the two ordered pairs
(p,q) and (g,p) of primes p,q (assumed to be different).
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Finally, we turn to the analysis of cases with multiple solutions
and no solution. In both of these cases it is not sensible to
compute the local overlap with a solution, as we did for circuit
problems with only one solution. Instead, we plot the largest
weight of each gate state in the circuit obtained from 2,000
replicas. This is shown in Fig. 9 for an instance with eight
solutions obtained by fixing fewer gates (than in the single-
solution case) on each boundary; and an instance with no
solutions, obtained by fixing a few gates on one boundary to the
wrong states. Figure 9 shows that the learning algorithm
eventually gets stuck when the replicas cease to agree on gate
assignments above the threshold . We note that the learning
algorithm cannot differentiate between these two cases. We
interpret the freezing of the system as an effect of frustration in
satisfying the local gate constraints in the bulk induced by
incompatible boundaries in the case of no solution or compatible
but competing boundaries in the case of multiple solutions.

Mapping onto the D-Wave Chimera graph for quantum annealing.
We close this paper by describing a scheme for ‘programming’
our vertex model into a quantum annealer. In particular, we
present an explicit embedding of the tile model of universal
classical computing circuits into the Chimera graph architecture
of the D-Wave machine. The idea is to use one unit cell to
represent one square tile of our construction presented pre-
viously. Rectangular tiles (that is, TOFFOLI gates) can be viewed
as consisting of two square tiles, thus requiring two unit cells to
be embedded in the Chimera graph. We then implement the
Hamiltonians of equations (5-7) using the programmable
couplers available in the D-Wave machine, as illustrated in Fig. 10
and described in more detail in Methods section.

Iteration 3 Iteration 4

Iteration 8 Iteration 9

Figure 7 | Growing correlation length with learning for fixed-input boundary condition. Annealing with learning for the fixed-input boundary case for a
system of size 16 x 42 with 20% TOFFOLI gates. The annealing time within each iteration is 7, =23 and the gate state probability threshold &= 0.7.
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a-

Figure 8 | Growing correlation length with learning for mixed boundary conditions. Annealing with learning for mixed boundary conditions and systems
of size 16 x 42 with 20% TOFFOLI gates. The annealing time within each iteration is t,=2'3, and the probability threshold o« = 0.7. After iteration 6
(not shown), the correlations fully build up along the longitudinal direction, 7, is then increased to 7, = 2'8.
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Figure 9 | Cases with multiple solutions or no solution. Colour plot of the
largest weight of each gate state in the circuit for a system of size 16 x 42
and 20% TOFFFOLI gates after a relaxation time 1~ 229. (a) Case with
eight solutions and (b) case with no solution. The learning algorithm
eventually gets stuck at the point where no more gates have majority
weight above the threshold a.

Discussion

The results of this paper were motivated by an attempt to use our
statistical mechanics intuition about lattice models of spin
systems to uncover some of the salient features of universal
classical reversible computation. There are questions posed and
open problems raised by these studies. Here we list four that we
find most important.

First, one should understand the scaling of time-to-solution of
the various schemes discussed here, including those that utilize
learning, as a function of input size and depth for specific
computational problems. Under a trivial reduction scheme, one
can solve problems with two solutions using similar annealing
with learning techniques that we deployed for problems with a
unique solution. As an important application we are already
investigating the problem of the factorization of semi-primes. The
scaling properties of the time-to-solution in the context of this
concrete and relevant problem should be contrasted to that
obtained in the random circuit with the same concentration of
TOFFOLI gates.

A second question raised by our work is the nature of the
zero-temperature quantum phase transition encountered in the
quantum vertex model, as depicted in Fig. 3. We demonstrated
that, in the limit of the trivial computational circuit with no
TOFFOLI gates, this transition is second order, in direct analogy
to the case of the one-dimensional Ising model in a transverse
magnetic field. Whether the transition remains second order or
becomes first order for realistic computations (corresponding to a
finite concentration of TOFFOLIs) has very important conse-
quences for solutions of computational problems via quantum
annealing.

Third, the computational problems discussed here should also
be studied directly in a bona fide quantum annealer. An
important result of this paper is the programming of generic
reversible computational circuits into the Chimera architecture of
the D-Wave machine. This paves the way for using this type of
hardware to study annealing protocols along the ¢ axis, as well as
arbitrary directions in the J-T plane. Our approach should also
be used as a guide to the development of alternative machine
architectures optimized for direct implementations of the vertex
model.

Finally, we close with a brief discussion of the broader
implications of the mapping of reversible classical computation
onto the vertex model on the individual disciplines of computer
science and physics. As already mentioned earlier, the line of
argumentation in this paper follows a physics perspective,
namely, it concentrates on ‘typical behaviour’ based on heuristic
approach to explicit instantiations of the vertex model. Computer
science could benefit from further work on more sophisticated
theoretical and computational heuristic approaches, special
purpose hardware (that is, quantum annealers), and new formal
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proofs that rely on statistical mechanics representations of
computational problems. At the same time there are lessons to
be learned from computer science that we believe may have
interesting implications for physics. For example, if NP#P, the
vertex model representing the hardest problems in UNIQUE-SAT
can be also viewed as describing a physical glassy system that
displays slow dynamics even though the model involves no
frustrating interactions, has a unique non-degenerate ground
state, and displays no bulk thermodynamic transitions down to
zero temperature! There are known examples of systems with
glassy dynamics in the absence of a thermodynamic phase
transition, such as the kinetically constrained models discussed in
refs 30-32. However, the non-Arrhenius relaxation characteristic
of these models only translate into a quasi-polynomial time-to-
solution of a computational problem. Thus, within the vertex
model approach, the existence of hard UNIQUE-SAT problems
with exponential or sub-exponential behaviour of the time-to-
solution would suggest the existence of a novel family of glassy
physical systems without a thermodynamic transition but with
exponentially large barriers and corresponding astronomically
long relaxation times. This example underscores the richness of
the possibilities opened by explorations of the vertex model of
classical computation and more generally, of problems at the
interface between physics and computer science.

Methods
Implementing gates with one- and two-body spin interactions. We start by
representing Boolean variables x; = (1 + ¢;)/2 in terms of spins g;= * 1 placed on
the boundary of each tile, as depicted in Fig. 1. Operations of logic gates are then
implemented in a similar way as in ref. 11, by designing a Hamiltonian acting on
the spins associated with individual tiles such that (a) the interactions are short
ranged and involve at most two bodies and (b) spin (that is, bit) states that satisfy
the gate constraint are ground states of the tile Hamiltonian and all other
‘unsatisfying’ spin states are pushed to high energies.

Identity (ID) gate. The ID gate takes two bits (a, b) into (a, b). This is easily
enforced by adding ferromagnetic interactions (J>0) that align input bits a and b
to output bits ¢ and d, respectively, leading to an energy

EID(U'a-,O-b:,Gc-,Ud) = —](O'EO',;-FO'ble). (5>

SWAP gate. The SWAP gate takes (a, b) into (b, a), and can be implemented in
the same manner as the ID gate through a ferromagnetic interaction (J>0),

Eswap(0a,00;0c,04) = —J(0,04+0b0,). (6)

TOFFOLI gate. The TOFFOLI gate is represented by a rectangular tile with the
three input bits (a,b,c) and three output bits (a, V', d) placed on the boundary,
as shown in Fig. 1. Notice that in this case we also place an additional ancilla bit in
the centre of the rectangular tile, which is essential to satisfy the gate constraint
with no more than two-body interactions. The TOFFOLI gate takes the three-bit
input state (a, b, ¢) into (a, b, ab@c). The copying of the first two input bits from
the input into the output is accomplished as before through a ferromagnetic
coupling: — J(6,0, + 0,0). Enforcing the third output bit d=ab@® c requires a
more involved interaction. We present the result below, and leave the detailed
justification for Supplementary Note 1. The complete energy cost associated to the
TOFFOLI gate reads

ErorroLi(0a, Ob, 0c; 00, Oy, 045 05)=
—J(0404 + 0pop) + (64 — 30, — 20, + 20,4 + 405)
+J(—3040p — 20,0, + 4040, + 20,04 — 40,64 — 4004

7)

+40,05 — 80,05 — 60,05+ 65405).

The global constraint and coupling of adjacent tiles. In addition to satisfying
each gate separately, spins shared by neighbouring tiles must be matched across the
entire system in order for the tile model to accurately represent the desired
computational circuit. To be precise one can imagine splitting each boundary spin
into two ‘twin’ spins and identifying input/output spins with each tile. Within this
picture, adjacent spins at the boundary between tiles must be locked together,

a constraint we implement by introducing a ferromagnetic ‘grout’ coupling K>0
between spins on adjacent tiles. The corresponding term in the energy is then
written as

Egrout({0}> = —KZG,' Tj, (8>
(i, j)
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Figure 10 | Mapping onto the Chimera graph. Procedure for embedding a 4 x 4 tile lattice into the Chimera graph. (a) Left: a generic tile lattice rotated by
45°, Spins are put on the boundary of each tile. The lattice can be further divided into two sublattices, depicted by dark and light grey respectively; right:
embedding of the tile lattice into the Chimera graph. The ‘grout couplings’ are indicated by red links. (b) Embedding of each gate into the unit cells of the
Chimera graph. (i) Left: a K4 4 unit cell of the Chimera graph; middle: to couple qubits in the same column, we slave the qubits to their neighbours in the
other column using additional ferromagnetic couplings indicated by red links; right: effectively we are left with four qubits that are fully connected.

For simplicity, we hereafter denote the effective couplings between spins in the same column by a single green link. However, one should keep in mind that
they are obtained by slaving the spins to the opposite column via large ferromagnetic couplings. (ii) The four qubits in the rotated square tile are labelled by
their locations on the tile: N (North), S (South), W (West) and E (East). Tiles corresponding to different sublattices must be embedded differently due to
the special connectivity of the Chimera graph. (iii) Embedding of the TOFFOLI gate consisting of two square tiles into two unit cells. (a,b,c,d) corresponds to
the input and output bits of the gate, and S is the ancilla bit. In the unit cell, ferromagnetic couplings that copy spins are indicated by purple links, and
couplings required in Hamiltonian (7) are indicated by black links.

where (i, j) labels pairs of ‘twin’ spins i and j on the boundary between two adjacent
tiles and the sum ranges over all such pairs of the system.

Boundary conditions. Completing the description of the 2D model of universal
classical computation requires a discussion of boundary conditions, which deter-
mine the type of computational problem one is addressing. For example, if the
N-bit input is fully specified and one is interested in the output, all that is needed is
to transfer the information encoded into the input left to right by applying
sequentially the gates one column of tiles at a time. In this case, if the depth (that is,

the number of steps) of the computation is a polynomial in N, this column-column
computation reaches the output boundary, and thus solves the problem, in poly-
nomial time.

As mentioned earlier, by using reversible gates one can also represent
computational problems with mixed input-output boundary conditions for which
only a fraction of the bits on the left (input) edge and a fraction of the bits on the
right (output) edge are fixed. A concrete example is the integer factorization
problem implemented in terms of a reversible integer multiplication circuit. A
reversible circuit for multiplying two N-bit numbers p and g can be constructed
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using 5N + 1 bits in each column. One needs two N-bit registers for the two
numbers p and g to be multiplied, one N-bit carry register ¢ for the ripple-sums, a
2N-bit register s for storing the answer p x g=s, and one ancilla bit b. For
multiplication, one only fixes the boundary conditions on the input: p and g are the
two numbers to be multiplied, and ¢, s and b are all 0’s. For factorization we must
impose mixed boundary conditions: on the input side the ¢, s and b registers are
fixed to be all 0’s; on the output side the s register is now fixed to the number to be
factorized, and ¢ and b are again all set to 0. Thus, 3N+ 1 bits in the input and
output are fixed, while 2N bits are floating on both boundaries.

Boundary conditions on inputs, outputs, or both are imposed by inserting
longitudinal fields at the appropriate bit sites, namely,

Eboundary({g}) = - Z hi Ois (9)

icboundary

with |h;|=h > J. The sign of an individual k; field determines the value of the
spin o; and thus of the binary variable x;: For h;>0, x; =1, while for #;<0, x;=0.
If no constraint is imposed on a binary variable x;, then h;=0.

Construction of the vertex model. Combining the contributions above leads us to
a classical Hamiltonian that includes the energy functions internal to each tile, the
coupling between the spins at the boundary between adjacent tiles, and the mag-
netic fields associated with the input and output bits defining the boundary
conditions of the computation, namely,

> hii, (10)

Ho =Y El({o},) - KX oo~
& (i, j) icboundary

where {g}, labels all the spins and E{,({J}g) represents the energy function of tile
(that is, gate) g.

This Hamiltonian is the starting point for our mapping of universal classical
computation into the Chimera architecture of the D-Wave machine, one of the
important results of the paper, which we discuss in detail below. To anticipate the
fact that quantum rather than classical thermal annealing may be a more effective
way of reaching the ground state and therefore the solution of these computational
problems, we add a transverse magnetic field I" to equation (10) to obtain the
quantum Hamiltonian

> hi6}

B =5 ((6%)) ~K Do) -
g (i, j) icboundary (11)
+ T 6t

However, we find it more expedient and intuitive to work directly with tiles which
satisfy the logic gate constraint exactly. We thus proceed by projecting the system
onto the manifold of states where all local gate constraints are satisfied by working
in the limit in which both & and J are very large; and we imagine varying K and T’
with K,I" < J, h (ref. 33). This limit is best understood if we switch off the
coupling between tiles, K. Within a given tile, the configurations that satisfy the
logic gate constraints span the degenerate ground-state manifold, while the
unsatisfying configurations have energies of order J and higher. Let {|q,)},
a=1,...,r be all the r states spanned by the spin configurations |a;,...,0,) that
define the ground-state manifold. For two-bit (four-spin) gates we have r =4, while
for three-bit (six-spin) gates r=8.

As long as I' < J we can understand the effect of a transverse field I" on the
r degenerate states by degenerate perturbation theory. Since for reversible gates
maintaining the gate constraints requires at least two spin flips, the transverse field
I induces an effective, second-order or higher spin-spin interaction on the
ground-state manifold of a given tile of order A =I"2/] or lower. This discussion
leads naturally to the quantum vertex model presented in equation (1).

Switching on the K coupling penalizes configurations in which the states of
adjacent tiles are incompatible. Thus, to satisfy both intra- and inter-tile constrains
that define the computational process we must reach the limit of A < K < J, h.

Thermodynamics of the classical vertex model. We start by considering the
partition function of the classical limit of the Hamiltonian in equation (1), that is,
A =0, which we obtain via a transfer matrix calculation. Consider first a system
with free boundary conditions at both ends. The partition function for the vertex
model can be more easily written using the spin variables on the links of the lattice.
Let {o}; denote the spin states on a vertical line, which cuts across 3L spins
(with L the number of vertices or 3-bit gates in a column). For convenience we shall
utilize the notation |{g};) for the vectors in this transfer matrix calculation.
Within this notation, one can write the partition function as

z=3Y o} 1P {o){o}} IT] {os})x - x{oy-1} |P] {o3})
{1}, {oaw}
o} [T {oge1})> - x({oaw -1} [Pw| {o2w}),
(12)
where the matrix T encodes the energy costs for matching spins across the links,

and the matrices P; encode the computations performed by one column of gates.
The two types of slices are depicted in Fig. 2. Notice that the T is the same for all
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slices, and its matrix elements are given by

({oy} [ T|{o241}) = exp (ZﬁKGZj,aGZj+l.u>7 (13)

a=1

whereas ({u’zj,l}|Pj|{62j}) represents the matrix element of P; at the jth column and
thus depends on the particular set of gates within that column. However, all P; are
permutation matrices since all gates are reversible. This fact is essential because it
allows us to compute the partition function exactly, irrespective of the circuit.

For the next step notice that the vector |X) =" |{o}) is an eigenvector of
P; for any operation P;:

P ) =P [{o}) => P {e}) =Y I{o'})
{o} {o} {c'}
=),

(14)

where we used that we can relabel the states after the permutation. The vector
|Z) =" (sl{o}) is also an eigenvector of T

TIS)=TY Hoh)= > HIH{}ITI{a})
o} (o)

=3 H{H Y exp (Z ﬁKa;aa>
{rr’} a a=1

3L

=> Hoh I
} a

{d' a=1
= [{o'}) (2cosh pK)*

(o'}
= (2cosh BK)*" | ). (15)

By collecting all the factors we arrive at the partition function

e[}KUL T
==x1

Z=(S|P, TP, T...TPy|%)

16
= (2coshBK)*" ™ (x| %), (16)
The overlap (Z|Z) =23L reflects the 23! degenerate ground states corresponding to
open boundary conditions on both boundaries. Had we fixed one of the boundaries
to a particular state |{o}gxeq) We would have instead obtained an overlap
({0} fixea|Z) = 1. More generally, in the thermodynamic limit boundaries contribute
an entropic term that counts the number of ground states, but does not affect the
bulk thermodynamics. In particular, the bulk free energy is that of a paramagnet:

BF = — BL(W —1)]In(2 cosh K). (17)

This also implies that thermodynamics alone, which is independent of the specific
form of the circuit, cannot reveal the complexity of a ground-state computation,
which is reflected in the dynamics of the system’s relaxation into its ground state.

Metropolis algorithm for thermal annealing. The Metropolis simulations are
carried out as follows. We work on a lattice of L x W vertices, using the Hamil-
tonian of equation (1) with A, 4, = 0. Periodic boundary conditions are used in
the transverse direction, that is, the circuit is laid down on the surface of a tube of
length W and circumference L. We consider four types of circuits corresponding to
different concentrations of TOFFOLI gates (the other four types of gates are
assigned equal concentrations): a circuit with only TOFFOLI gates (100% con-
centration), and random circuits with 40, 20 and 0% concentration of TOFFOLI
gates.

The first step of the simulation is to construct a reference state {g°'} that solves
the circuit, by fixing the states g**! for the vertices s at the left boundary, and
determining and storing all other states g for vertices s in the rest of the circuit.
Next, we construct three explicit boundary conditions consistent with the reference
state, {qs"l}, that will serve as the input states for our simulations: (1) fixed input,
for which we apply pinning fields at the left boundary that fix the states to match
g% for the vertices s at the left boundary, and leave the other boundary free
(no pinning field); (2) fixed input and output, for which we pin all vertices s on the
left and right boundaries to those defined by ¢*'; and 3. mixed boundaries, for
which we pin Ly=L/2 + 3 vertices on both the left and right boundaries to the
solution values ¢!, but leave all the remaining boundary vertices free. Our
computations proceed in each of these three cases by averaging over 2,000
independent random instances of input states for a given circuit with a fixed
concentration of TOFFOLI gates corresponding to different {g*!} and computing
the average order parameter (m) as a function of the relaxation time 7. Here it is
important to stress that the partial specification of boundaries in the case of mixed
boundary conditions generically leads to multiple solutions which compete in
establishing the local configurations of gates consistent with the global constraints
defining the computational circuit. While we also discuss cases with multiple
solutions and no solution in Results, the focus of this paper is on problems with a
single solution. To ensure a single solution in the case of mixed boundary
conditions we always check that each of the random instances of the input state for
a given circuit allows for one and only one solution.
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Mapping onto the Chimera architecture of the D-Wave machine. Figure 10
shows the ‘flow chart’ of embedding a 4 X 4 tile lattice into the Chimera graph.
The entire tile lattice is rotated by 45° for convenience, and spins living on the
boundary of each tile are shown explicitly. The lattice of tiles can be further divided
into two sublattices labelled by dark and light grey, for reasons that should become
clear shortly. Now let us first consider how to encode the ID and SWAP gates
represented by a single square tile into a unit cell. The embedding involves internal
couplings J that enforce the gate constraints, and the ‘grout’ couplings K that match
adjacent tiles. The Chimera unit cell forms a complete bipartite graph K, 4, as
depicted in Fig. 10b-(i), with each spin in one column coupled to all spins in the
other, but not to those in their own column3*. To obtain the generic spin couplings
to represent the gates on a single tile, which inevitably involves couplings between
qubits in the same column as well, we use an additional ferromagnetic coupling to
slave the spins in one column to their nearest neighbours in the other column.
Thus, effectively we are left with four spins that are fully connected. Details are
shown in Fig. 10b-(i).

To use the connectivity of the Chimera graph architecture and couple adjacent
tiles properly, it is convenient to explore the bipartiteness of the square lattice. Let
us take one tile from the rotated tile lattice, and label the four qubits by their
locations on the tile: N (North), S (South), W (West) and E (East), as shown in
Fig. 10b-(ii). The spins in the adjacent tiles are matched by the ‘grout’ coupling K.
Upon a careful inspection of the resulting tile lattice, we notice that the qubits
labelled by N and W in one tile are always connected respectively to qubits S and E
in its neighbour. Therefore, once we fix the embedding of one sublattice in the unit
cell, the embedding of the other sublattice must be different, because qubits in one
unit cell are only coupled to those at the same place in the neighbouring unit cell.
We map the two sublattices of the tile lattice in the unit cells as illustrated in
Fig. 10b-(ii).

Finally, let us show how to embed the TOFFOLI gate, which corresponds to a
rectangular tile, into the unit cells. The TOFFOLI gate can be viewed as consisting
of two square tiles, thus requiring two unit cells, and the spins coupled between
these two tiles exactly provide the ancilla bit needed in Hamiltonian of
equation (7). Similar to the square tiles considered above, within a unit cell we use
additional ferromagnetic couplings to slave qubits from one column to the other
when necessary. The explicit mapping is shown in Fig. 10b-(iii). As we have already
seen, to come up with a proper embedding, one has to carefully take into account
how qubits are coupled to adjacent unit cells. Putting all of the above ingredients
together, we arrive at the embedding of the entire 4 Xx 4 tile lattice including
TOFFOLI into the Chimera graph, as shown in Fig. 10a.

Data availability. The data that support the main findings of this study are
available from the corresponding author upon request.
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