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Mathematical modeling is seen as a key step to understand, predict, and control the

temporal dynamics of interacting systems in such diverse areas like physics, biology,

medicine, and economics. However, for large and complex systems we usually have only

partial knowledge about the network, the coupling functions, and the interactions with

the environment governing the dynamic behavior. This incomplete knowledge induces

structural model errors which can in turn be the cause of erroneous model predictions

or misguided interpretations. Uncovering the location of such structural model errors in

large networks can be a daunting task for a modeler. Here, we present a data driven

method to search for structural model errors and to confine their position in large and

complex dynamic networks. We introduce a coherence measure for pairs of network

nodes, which indicates, how difficult it is to distinguish these nodes as sources of an

error. By clustering network nodes into coherence groups and inferring the cluster inputs

we can decide, which cluster is affected by an error. We demonstrate the utility of our

method for the C. elegans neural network, for a signal transduction model for UV-B light

induced morphogenesis and for synthetic examples.

Keywords: complex systems, open systems, fault detection, error localization, input reconstruction

1. INTRODUCTION

The dynamic systems we have to handle today, like ecological, biochemical or epidemiological
networks, electric circuits or economic relations, are growing larger and more complex than
they have ever been before (Kunegis, 2013; Rossi and Ahmed, 2015). The COVID-19 pandemic
has highlighted one of the key limitations in our understanding of large and interconnected
networks: An initially small disturbance can spread rapidly, which makes it difficult or impossible
to reconstruct the root cause of the original perturbation. Modeling such processes is difficult
in practice because it is hardly possible to understand each single interaction within a complex
network, to monitor all external inputs, and to isolate the system from unwanted perturbations. In
nearly all cases we have to deal with the presence of unknown structural model errors. We call these
model errors structural, for they can lie in the functional form or in the very network topological
structure of a system and can not be fixed by adjusting the parameters, compare (Engelhardt et al.,
2016, 2017; Kahl et al., 2019; Villaverde et al., 2019).

Structural model errors impair the prediction of the future evolution of the system and also
the estimation of the state from measured outputs. If the model is not trustworthy, it becomes
questionable, whether the mathematical model reflects the reality at all (Tsigkinopoulou et al.,
2017). Like in the pandemic, where the backtracking of infection chains plays a central role
to keep the virus spreading under control—or at least to keep in sight—the reconstruction of
structural model errors would aid manifoldly: We could recover the system’s state, the location
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of the structural model error, and understand, which part of
the system is affected. If we could infer a quantitative or
qualitative description of the model error, we might be able to
gain knowledge about the origin of the error.

Closely related to the problem of structural model errors is the
theory of fault detection, an important topic in the engineering
literature, see for instance Isermann (2011) and Blanke et al.
(2016) for textbooks on fault detection, Fonod et al. (2014)
and Chakrabarty et al. (2017) for works on unknown input
observers. Geometrical and algebraic (Sain and Massey, 1969;
Hirschorn, 1979; Fliess, 1988) treatments of the theory behind
unknown input observers and fault detection of linear and non-
linear systems have found renewed interest (Martinelli, 2019;
Villaverde et al., 2019). A fault of the system, e.g., a mutation
impairing a chemical reaction in a signal transduction network,
can be seen as an endogenous model error. The practically
most common approach to fault detection is to utilize unknown
input observers. But those make strong assumptions about the
system and especially about the ability to precisely understand
the interactions and to collect data, see for instance Fonod et al.
(2014) and Chakrabarty et al. (2017). These assumptions may be
justified for systems which went through a design process, but
they become questionable as soon as we work with biological
systems like a cell or even an organ, which permanently interact
with their exterior, whereas we do not even oversee the vast
number of internal processes.

Dynamic systems in continuous time are often formulated as
systems of ordinary differential equations,

ẋ(t) = f (x(t), t)

x(0) = x0

y(t) = c(x(t)) ,

(1)

where x(t) ∈ R
N represents the current state of the system

at time t, x0 is the initial state, and y(t) ∈ R
P represents the

directly observable outputs at time t. Often we are not able to
monitor each and every state variable xi, but we can only measure
some state variables or combinations of them. As the observables
are the only experimentally accessible quantities of the system,
any knowledge about the system can only be inferred from a
comparison between the model output y and the measured data
ydata. Henceforth, we assume that we have experimental data ydata

for the system of interest, whereas y describes the output expected
from our theoretical model (1). In reality, the system might be
affected by structural model errors, i.e., a mis-specification of
the vector field f encoding the interactions between the state
variables. As a consequence, data and model output do not
coincide, ydata 6= y. Due to this discrepancy, conclusions and
predictions based on themodel (1) can be incorrect or inaccurate.

Algorithms for recovering the errors of a given model (1)
from data implicitly assume that the root cause for an error can
uniquely be identified (Kolodziej and Mook, 2005; Engelhardt
et al., 2016, 2017; Villaverde et al., 2019; Newmiwaka et al.,
2020). However, this uniqueness assumption is often violated
because the output function c does not provide sufficient
information (Engelhardt et al., 2016; Kahl et al., 2019) about
the root cause for the observed discrepancy y − ydata between

model and data. Based on the representation of model errors as
unknown inputs (Kolodziej and Mook, 2005; Engelhardt et al.,
2016) to the system (1), it was possible to relate the problem of
error reconstruction to the problem of system invertibility (Kahl
et al., 2019). This enabled us to utilize algebraic and graph
theoretic results (Fliess, 1988; Wey, 1998) to derive conditions
on the system (1), which guarantee the unique reconstruction of
model errors (Kahl et al., 2019, 2020). The analysis of biological
systems revealed that the unique reconstruction of model errors
is often difficult, unless the measurements [i.e., c in (1)] are
carefully selected (Kahl et al., 2019). This lead to a powerful
sensor node placement algorithm, which can drastically improve
the invertibility properties of a given system (Kahl et al., 2019).
However, this algorithm is restricted to the case that we know
already the potential location of the error in the system.

In this paper, we present a strategy to handle systems for which
it is impossible to pinpoint the exact state variables affected by
model error. To the best of our knowledge, this problem has not
been discussed before. First, we provide a new measure of input
coherence between two different state variables in the system (1).
This coherence quantifies, how difficult it is to decide which of the
two state variables is targeted by an error with unknown location.
The coherence measure is based on the concept of weighted
gammoids as a representation for dynamic input-output systems.
We use the pairwise coherence between all states in the system
to group system states into input clusters. Whereas we are not
able to recover the model error, we will at least be able to localize
it up to the level of input clusters. In duality, we also form
output clusters of coherent outputs. This will help to identify
redundant measurements and to select new observables that yield
complementary information. Finally, we show that an iterative
strategy of clustering error sources and sensors can narrow down
the possible error sources successively until we, in the best case,
are able to pin it down exactly.

2. METHODS

2.1. Background on Input-Output Networks
and the Reconstruction of Model Errors
If the system (1) does not correctly describe the observed data
ydata, it is affected by a structural model error. Such errors include
endogenous errors like missing or wrongly specified interactions
in the vector field f as well as exogeneous errors originating from
interactions of the systemwith the environment. Mathematically,
all these errors can be represented by unknown inputsw(t) acting
additively on the vector field (Engelhardt et al., 2016; Kahl et al.,
2019). Thus, we modify (1) to

ẋ(t) = f (x(t))+ w(t)

x(0) = x0

y(t) = c(x(t)) .

(2)

Can we reconstruct the errorw(t) from themeasured output data
ydata? A unique reconstruction of the error requires that there
is only one possible input function w(t) = (w1(t), . . . ,wN(t))

T

generating the measured output ydata. This means, that the input-
output map8 :w 7→ y needs to be injective (one-to-one).
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Assume for the moment that we know, which state variables
are affected by an error. This means that we know at least the
non-zero components of the underlying true model error w∗(t)
which we are aiming to reconstruct. If we denote the index set
of all the states x ∈ R

N in (2) as N = {1, . . . ,N} we will
call the subset S ⊆ N of states affected by an error the input
set. In a similar way, we define the output set Z ⊆ N of state
variables appearing in the output function c(x). Mathematically,

this means that i ∈ Z is equivalent to
∂cj(x)
∂xi

6= 0 for some output
index j ∈ {1, . . . , P} and at some state x. The output nodes in Z
are also often called sensor nodes in the literature and we will use
these terms synonymously (Liu and Barabási, 2016).

It turns out that under the (unrealistic) assumption of
zero measurement noise in the data, the question of unique
error reconstruction can be answered from a purely graphical
condition (Kahl et al., 2019). The vector field of a dynamic system
of the form (1) or (2) can be represented by an influence graph
g (see e.g., Lin, 1974; Dion et al., 2003; Boukhobza et al., 2007;
Lunze, 2016). This directed graph g is formed by identifying the
state variables xi with the nodesN of g. The directed edge xi → xj
exists in g if xi appears in the differential equation for xj, i.e., if
∂fj/∂xi 6= 0. The set of all such edges E in g indicates, which
states interact with each other.

The condition for the unique recovery of the model error w
for a known input set S is related to the invertibility (Sain and
Massey, 1969; Fliess, 1988) of the dynamic system (2). One can
derive a graphical condition for the invertibility (Wey, 1998) of
a non-linear system and thus decide, whether the error w can
uniquely be recovered (Kahl et al., 2019): If there is a set of node
disjoint paths linking each node in the input set S with a node in
the output set Z, then the system is invertible. From the graphical
condition (Kahl et al., 2019) one can conclude a necessary
condition on the minimum of number of sensor nodes, i.e., the
cardinality P = |Z| of the output node set Z. For invertibility,
we need |Z| ≥ |S|, i.e., at least as many measurements as
inputs. However, this is not always sufficient. Many badly placed
sensors can also prevent us from reconstructing the unknown
input. A very efficient sensor node placement algorithm to
select a minimum output set Z which guarantees invertibility is
available (Kahl et al., 2019).

The graphical condition for model error recovery (Kahl et al.,
2019) is limited to the case that the input set S is known and that
there is no measurement noise. If the measurement data ydata

are noisy, then we can ask whether we can minimize the error
‖ydata − 8(w)‖22 between the output y(t) = 8(w)(t) from (2)
and the data with respect to the unknown input w. However, one
can show that even in the invertible case the inverse of the input-
output map 8 is highly sensitive to measurement noise. Thus,
the reconstruction requires a suitable regularization (Kahl et al.,
2020).

The most challenging case is that the input set S is unknown
and that the data ydata are corrupted by noise. Recently, we
derived conditions that the minimization of the error functional

J[w] =
1

2
‖ydata −8(w)‖22 + β‖w‖1 . (3)

recovers the correct unknown input w∗ to a certain level of
accuracy from the data (Kahl et al., 2020). These conditions,
however, require two additional assumptions: The first one is
invariable sparsity of the input w. This essentially means that the
unknown input set S is assumed to have a maximum cardinality
and to be constant over time. This assumption, is, however,
reasonable for structural model errors and also for system faults,
because the location of an error or fault (not the error signal
itself) is unlikely to change over time. This is to be distinguished
from other definitions of sparsity in control theory, where the
input location can jump between different states (Nagahara et al.,
2016). The second, more severe, assumption for the recovery of
the model error by minimizing (3) is the linearity of the input-
output map 8. This does not mean that the minimization of (3)
or related cost functions (Kolodziej and Mook, 2005; Engelhardt
et al., 2016) for non-linear systems is impossible. It only says
that we have currently no guarantee to recover the correct model
error w∗(t).

In many cases, it is hard to decide whether the recovery of the
true model error w∗ is possible or not (Boukhobza et al., 2007;
Villaverde et al., 2019; Kahl et al., 2020). As described above, it
is sometimes useful to divide the problem into two parts: First,
one needs to find the input set S and second one needs to recover
the error signal w (Kahl et al., 2020). However, in this text we will
take a slightly more pragmatic approach: For a given model (1)
augmented by an unknown input (2), is it possible to narrow
down the input set S to a smaller subset? That means, can we at
least identify a region in the network (influence graph g) which is
affected by the model error?

2.2. Gammoids and Coherence of Dynamic
Systems
For a given system with errors or unknown inputs, we assume
that we have at least the influence graph g, the output set Z
and time course data ydata(t) for these data. Typically, these are
taken at discrete time points t1, . . . , tT . In addition, we might
have weights F(i → j) indicating the strength of the interaction
between the states xi and xj. For a dynamic model (12) we can
obtain the weights from the Jacobian

F(i → j) : =
∂fj

∂xi
(x(r)) (4)

at a certain reference point x(r). This reference point could, for
instance, be a stationary state or an initial condition. The weights
might also be obtained from other sources, see our example in
section 3.1.

If the input node set S is unknown, we have to consider
all nodes N in g as potential input nodes. However, unless we
measure all states or make further assumptions, we can not
reconstruct the location S of the unknown input (Kahl et al.,
2019). To isolate at least the regions in the network g, where
errors or inputs are located, we need a measure of independence
between potential input nodes L ⊂ N . We will refer to this set L
of potential input locations as the ground set. If we have some
prior information on the location of the error, the ground set
could be a proper subset of the set of state nodes N . However,
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in the absence of any prior knowledge, L = N is also possible in
our approach.

The available structural information can be collected in a
mathematical structure called a gammoid.

DEFINITION 1. Let g = (N , E) be the influence graph of a
dynamic system (2), L ⊆ N an input ground set and Z ⊆ N

an output set. We call Ŵ : = (L, g,Z) the gammoid of the system.

The gammoid of the system combines all possible input sets
into one structure. The idea of the input ground set L is that it
comprises all allowed input nodes, such that each subset S ⊆ L

serves as a candidate for the true input set. If we combine the
weight function F : E → R given by (4) with the gammoid Ŵ,
one can show that we obtain a so called weighted gammoid (Kahl
et al., 2020). Thus, a weighted digraph with inputs and outputs
can be regarded as a weighted gammoid.

The advantage of the additional abstraction to gammoids
is the fact, that they give rise to an abstract independence
structure on the input ground set (Perfect, 1968; Pym, 1969a,b;
Mason, 1972). This independence structure can be used to derive
conditions on the recovery of invariable sparse inputs to non-
linear systems in the case that the input set S is unknown (Kahl
et al., 2020). These conditions are, however, still restricted to
perfect data ydata without measurement noise. It does not make
any statements about the numerical stability of a numerical
recovery algorithm like minimizing (3). Here we will exploit the
independence structure to detect groups of potential input nodes
in L which can not be distinguished from any measured output
data ydata acquired at the sensor nodes Z of the gammoid.

2.2.1. Concatenation of Gammoids
For a gammoid Ŵ = (L, g,Z) we can introduce the transposed
gammoid Ŵ′

: = (Z′, g′,L′) in the following way (Kahl et al.,
2020): For each node i ∈ N we introduce a node i′ ∈ N ′. Here,
the prime helps to distinguish the nodes in g = (N , E) and the
transposed graph g′ = (N ′, E ′). Then, g′ is obtained from g by
flipping all the edges and the corresponding weights. Thus, for
each edge (i → j) ∈ E there is a flipped edge (i → j)′ =

(j′ → i′) ∈ E . Accordingly, the weights of Ŵ and Ŵ′ are related by
F(i → j) = F(j′ → i′). At the same time, also the ground set L
and the output set change roles in Ŵ′

: = (Z′, g′,L′). The output
nodes Z in Ŵ correspond to the inputs of Ŵ′ and the inputs of Ŵ
to the outputs of Ŵ′.

Then, one can concatenate Ŵ with its transpose Ŵ′ by
identifying each output node zi ∈ Z with the corresponding
input node z′i ∈ Z′. Thereby we obtain again a gammoid, denoted
Ŵ◦Ŵ′ = (L, g◦g′,L′), where g◦g′ is the resulting graph produced
by identifying Z with Z′.

2.2.2. The Shortest Path Coherence and Clustering of

Similar Input Nodes
The composed gammoid Ŵ ◦ Ŵ′ will be used in the
following to compute a measure of coherence between different
potential inputs.

DEFINITION 2. Let Ŵ be a weighted gammoid with ground set
L = {l1, . . . , lL}. For two nodes li, lj ∈ L let ψij denote the shortest

path from li to l
′
j in (Ŵ ◦ Ŵ′). We call

µshort
ij : =

|F(ψij)|
√

F(ψii)F(ψjj)
(5)

the shortest path coherence between li and lj.

The shortest path coherence can readily be computed even for
large (N > 100) networks. One simply computes the shortest
path between the two nodes and the corresponding weight and
normalizes this according to (5).

The shortest path coherence can be used as a measure for the
similarity of the output patterns that can be generated from state
node i and j. The larger µshort

ij is, the harder it is to decide from

the output data ydata, whether there is an input wi(t) at state i or
an input wj(t) at j. An exact proof for this is beyond the scope of
this paper, see our more theoretical exposition (Kahl et al., 2020).
There, we also show how the shortest path coherence can also be
used for testing, whether an error can exactly be localized, or not.

If there is a high pairwise shortest path coherence between
different nodes, it is natural to combine these nodes into a group
of highly coherent states. Thus, we try to identify clusters of nodes
which are highly coherent to each other, i.e., where we can not
decide, which of the states within the cluster is targeted by an
error or unknown input. For clustering, it is often easier to work
with a distance measure between the input nodes i, j. Thus, we
define the (shortest path) distance as

dij : =
1

µshort
ij

− 1
(

i, j ∈ {1, . . . ,N}
)

. (6)

The corresponding shortest path distance matrix D = (d)ij can
readily be used as a distance matrix for standard hierarchical
clustering algorithms. We used complete linkage clustering, i.e.,
the distance between a node i and a cluster C is the maximum
of dij for all j ∈ C. For our computations we used the
python package networkx for graph theoretical algorithms
and scipy and seaborn to perform a hierarchical clustering of
the distance matrix. Sometimes it is helpful to rescale D and use
the normalized variant D/maxij(dij) for visualization purposes.
It shall be noted that it is not unusual to find some shortest
path coherences µij to be zero or close to zero. This results in a
divergence of the distance matrix. It has proven practical to work
with an appropriate upper bound for the distances.

3. EXAMPLES

3.1. Coherences in the Caenorhabditis

elegans Neural Network
Caenorhabditis elegans (C. elegans) is a small worm. Its
connectome, i.e., the network of neurons and synapses was
completely mapped and is available as a comprehensive
resource (Altun et al., 2002–2020; Corsi et al., 2015) and a
network scientific treatment of the C. elegans connectome in
Varshney et al. (2011) and Yan et al. (2017). But, a neural
structure like the one of C. elegans does not only offer a network
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FIGURE 1 | Neural input clusters for C. elegans. (A) The C. elegans connectome plotted in three layers of neurons [presented in Varshney et al., 2011, data set

available (Altun et al., 2002–2020)]. Red nodes indicate sensor neurons, black nodes represent inter neurons, blue nodes are the motor neurons. (B) A heat map of

the distance matrix D = (dij ) of the 82 sensor neurons. Nodes of low distance (high coherence) are difficult to distinguish by their outputs. Thus stimuli to nodes within

the same cluster are likely to induce the same movements. We used a distance bound d̄ = 10 and distance threshold dthreshold = 10−5.

interpretation. Due to the input-output structure it naturally
induces a weighted gammoid: For the network interpretation, the
neurons are the nodes and the synapses are directed edges which
allow for a direct information transfer from one neuron to the
following one. Some links comprise several synapses, so that we
can take the number of synapses between two neurons i and j
as the weight of (i → j). Finally, neurons are divided into sensor
neurons which are sensible to inputs, inter neurons which process
the input, and motor neurons which finally pass the processed
information to the muscles and induce the locomotion of the
worm. Please note, that sensor neurons are the inputs in this
example. They should not be confused with the sensor nodes or
outputs (here motor neurons). See Figure 1A for a view on the
C. elegans neural network (Varshney et al., 2011) in a simplistic
three layer illustration with the sensor neuron layer on top, the
inter neuron layer in the middle, and the motor neuron layer
at the bottom [data obtained from the worm atlas (Altun et al.,
2002–2020)].

An individual of C. elegans is either of male sex or
hermaphrodite. These two differ slightly in their connectome.
Here, we used the hermaphrodite data with a total node number
of N = 283. Figure 1B presents a heat map of the distance
matrix obtained from the shortest path coherence of the 82 sensor
neurons of C. elegans already sorted into clusters. We find that
the input ground set, i.e., the sensor neurons, fall into few (four
to five) large clusters which cover most of the 82 input nodes.
Inputs to nodes within the same cluster cannot be distinguished
by the outputs of the network. Thus, stimuli targeting sensor
neurons of the same cluster are likely to generate the same signal
in the motor neurons and thus the same movement. This result is
consistent with earlier work (Stephens et al., 2008), where it was
shown that 95% of the worm’s locomotion can be described by
only four characteristic movements.

This example illustrates the ability of our gammoid approach
to define highly coherent input nodes, i.e., nodes which will
induce the same outputs. In this way, the coherence clustering
can be used to classify the set of potential output patterns and
to investigate the generalizing effect characteristic for neural

networks. In principle, the same approach can be used for other
directed and weighted networks.

3.2. Cluster Localization of Perturbations in
a Model for Signal Transduction in
Response to UV-B Light
In this example we use an ODE based model of a signal
transduction network for the induction of photomorphogenesis
by UV-B light (Ouyang et al., 2014). There are 11 state
variables x1, . . . , x11 and five outputs y1, . . . , y5, see the
Supplementary Material for the equations. We first generate
pseudo-experimental data for a system that is perturbed
by two model errors. We randomly chose w∗

3 and w∗
6

acting on the state variables x3 and x6, respectively. The
error signals w∗

3(t) and w∗
6(t) are documented in the

Supplementary Material. We initialized the model close to
the stationary point by setting the initial value to x(r) =

(1.89, 0.17, 0.0007, 34.34, 1.63, 0.048, 0.098, 2.27, 0.40, 8.17, 11.82)T

and added Gaussian measurement noise to each measurement
yi(tk) with a relative standard deviation of 5% of yi(tk). Here, tk
is the time of the k-th data point.

We used a hierarchical clustering on the distance matrix for
the input ground set L = {1, . . . , 11}. See Figure 2A for the
influence graph of the system. The node coloring encodes the
assignment to the six clusters

C1 = {6∗, 7, 8}, C2 = {4, 10}, C3 = {1, 3∗, 5}, C4 = {2}, C5 = {9},

C6 = {11} .

The asterisk marks the input nodes that are affected by the
model error.

To mimick a situation, where the location of the errors
is unknown and has to be inferred from the output time
courses y1(t), . . . , y5(t), we minimized the error functional (3)
and obtained estimates for the unknown inputs w1, . . . ,w11.
We used the python implementation of the CasADi package
for optimization and optimal control (Andersson et al., 2019).
The regularization parameter can be chosen by the discrepancy
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FIGURE 2 | Cluster based localization of unknown inputs in a signal transduction model of UV-B light induced photomorphogenesis (Ouyang et al., 2014). (A) The

influence graph for the model with 11 state variables. The states x6 and x3 are targeted by a simulated model error. Computing the coherence matrix (5) at a stationary

point and clustering yields six input clusters C1, . . . ,C6. For state nodes within the same input cluster it is difficult to distinguish them as the sources of the error. (B)

The time courses of the true inputs w∗
3(t) and w∗

6 (t) together with the input reconstruction by the recovery algorithm based on the minimization of the error

functional (3), with β = 10−2. The strong coherence within the different clusters makes a reconstruction of the input impossible. (C) The input strength (7) for the

different input clusters using the reconstructed input signals in (A). Clearly, the input clusters C1 and C3 are reconstructed. These are also the clusters containing the

true inputs at nodes 6 ∈ C1 and 3 ∈ C3.

method (Honerkamp and Weese, 1990; Engelhardt et al., 2016).
One can also incorporate an invariable sparsity assumption and
check, howmany non-zero input nodes are needed to recover the
output data ydata1 (t), . . . , ydata5 (t) with sufficient accuracy.

As shown in Figure 2B, this unknown input reconstruction
seems to be a failure. This is not caused by numerical problems,
but by the high coherence of the states within the inputs
clusters C1, . . . , C6. States within one and the same cluster can in
principle generate the same output functions, what prevents us
from reconstructing inputs and their localization.

Nevertheless, let us compute an input strength for each cluster
by summing the signal norms within each cluster according to

‖wCi‖1 : =
∑

k∈Ci

(

∫ T

0
|wk(t)|

p dt

)1/p

. (7)

In this paper, we chose p = 3, however, this parameter is
theoretically arbitrary. The input strengths of each input cluster
are plotted in Figure 2Cwith colors corresponding to the clusters
shown in (A). Clearly, we can identify clusters C1 and C3 as the
ones of highest input strength. These clusters indeed contain the
true inputs nodes 3 and 6.

So, one strategy to narrow down the location of errors is
to group the state nodes in the influence graph into input
clusters based on their coherence. Then, we minimize (3) to
compute the input strength (7) of these clusters. Now, we
can see from the input strength, which clusters are most
likely to be targeted by errors or other perturbations. We
will further illustrate and extend this strategy in the next
two examples.

3.3. Iterative Error Localization of an
1-Sparse Model Error
In this and the next example, we consider a linear dynamic system
of N = 30 state variables. The equations can be found in the
Supplementary Material, the influence graph is also shown in
Figure 3C. The system has five outputs y1, . . . , y5 as indicated
by the square shaped output nodes in the figure. To simulate a
structural model error, we added a single additional input to one
of the differential equations of the system.

Our aim is to localize and recover this artificial model
error. We will first apply the recovery algorithm and see that
it does not lead to the desired outcome due to the high
coherence of the input nodes. Next, we will cluster the input
nodes by their coherence and identify the cluster targeted
by the model error. To further narrow down the location
of the error, we need a different set of output nodes. We
show, that output nodes can be clustered in a similar way
as inputs into groups of redundant outputs. Then, we can
relocalize the sensor nodes to have non-redundant output
measurements. The output clusters also allow to decide, whether
more observables are needed. This enables us to iteratively
narrow down the possible sources of the model error. Finally,
we are able to pin down the location of the model error exactly
and to compute an appropriate estimate of the ground truth
error signal.

3.3.1. Direct Recovery Attempt
Without prior knowledge about the model error, we must
consider each of the N = 30 nodes to be a potential input
node, hence the input ground set is L0 : = {1, . . . , 30}. Again, we
minimize the error function (3) to recover the unknown inputs.
We will use a symbolic notation for this recovery algorithm,
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FIGURE 3 | Error localization at the level of input clusters. (A) A direct application of the recovery algorithm 1 yields estimates ŵi for the model error, w∗ shows the

ground truth, β = 10−2. (B) The normalized distance matrix of the system presented as a heatmap. Highly coherent state nodes were grouped together by

hierarchical clustering. (C) The influence graph of the system. The square shaped nodes represent the five outputs y1, . . . , y5. The node coloring encodes the affiliation

to input clusters. We chose a clustering depth that produces five input clusters. (D) The total input strength (7) for each of the five input clusters.

the expression

1 :

(

ydata1 , . . . , ydata5

)

7→
(

ŵ1 . . . , ŵ30

)

. (8)

means, that we use time course measurements ydata1 , . . . , ydata5 to
reconstruct the outputs in the ground set L0 : = {1, . . . , 30}.

As can be seen from Figure 3A, the result of this direct
reconstruction attempt is not satisfactory.

3.3.2. Localization of the Erroneous Cluster
Figure 3B reveals why the direct recovery attempt of the model
error was bound to fail: In the (normalized) distance matrix (6)
of the system one can see a strong cluster hierarchy. The output
signal ydata1 (t), . . . , ydata5 (t) can be caused by inputs from different
nodes within one and the same input cluster. This makes a
reconstruction of the model error impossible. Heuristically, we
have found that a clustering into P clusters is usually a robust
choice, where P is the number of sensors. In this example we work
with P = 5 sensors.

In Figure 3C, we depict the influence graph of the system
with the nodes colored according to the five input clusters
of the system. The nodes within one and the same cluster
are indistinguishable by the outputs of the system. Thus, it is
impossible to localize the model error at a finer resolution than
this given by the clusters. When computing the total input cluster
strength (7), we see that the input to cluster C1 is significantly
larger than the input strength estimated for the other clusters
(Figure 3D). Though we are not able to detect the model error
exactly, we deduce that it must lie somewhere in cluster C1.

3.3.3. Sensor Replacement
Remember that we have computed the distance matrix for the
input nodes using Ŵ ◦ Ŵ′ (see section 2.2.1). Due to the notion

of the transposed gammoid we can also do a reverse action and
compute a distance matrix for the output nodes via Ŵ′ ◦ Ŵ. More
precisely, we perform the following procedure: Let M be an
output ground set, i.e., the set of all nodes that can potentially
be monitored. For this example, say M = N . Since we have
already deduced a new input ground set L1, we will work with
Ŵ̃ = (C1, g,M) to compute a distance matrix forM.

Output nodes with a high coherence provide redundant
information, i.e., they can not help distinguishing inputs from
different input nodes. See Figure 4A for the output clusters of the
system. The output nodes y3 and y5 lie within the same output
cluster. To enhance the informative value of our data, we replace
y3 as indicated in Figure 4B such that it now covers a different
output cluster.

3.3.4. Final Localization and Recovery of the Model

Error
We have already found that the model error is located in input
cluster C1. With this information we can define a new input
ground set L1 : = C1 and in combination with the less redundant
output nodes we can try to further narrow down the source of the
model error.

To this end, we perform again an input clustering using L1 as
ground set with the result shown in Figure 4B. Then, we apply
the recovery algorithm 1 using the new output data and the
(smaller) ground set L1 : = C1. The cumulated input strength
(7) for each cluster is shown in Figure 4C. It turns out that input
cluster C′2 plays the predominant role so that we again reduce the
input ground set and obtain L2 : = C′2.

The new input ground setL2 consists of only one node. Hence,
we have pinned down the source of the model error to only one
possible input node. Figure 4D presents the estimate obtained
from 1 with L2 as input ground set as well as the ground truth.
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FIGURE 4 | Iterative error reconstruction. (A) The influence graph of the same system as in Figure 3C. Here, the node coloring indicates output clusters. Measuring

nodes within the same cluster provides only redundant information about errors. (B) The influence graph with node coloring indicating input clusters w.r.t the new

ground set C1 identified from the previous clustering in Figures 3C,D. The gray nodes do not lie in the input ground set and are therefore not considered. (C) The total

input strength (7) for each new cluster in (B). (D) The estimated model error ŵ6 compared to the ground truth w∗, β = 0.1.

The accuracy of the estimate clearly relies on the chosen recovery
algorithm1 as well-stochastic uncertainties in the data.

3.4. Iterative Error Localization of a
2-Sparse Model Error
As another example, let us again consider the same N = 30
model as before. Now, we add two artificial model errors affecting
state variables x6 and x30. Again, these nodes are not chosen with
any preference and the same procedure will work comparably
for other choices. However, with more input nodes, the high
coherence and indistinguishability will diminish the ability to
localize and reconstruct the model errors. In this example of two
model errors, we will see that the number of sensor nodes is
too small to obtain an accurate estimate. Still, we will be able to
narrow down the set of potential inputs to a much smaller set
using the same number of sensors.

3.4.1. Direct Recovery Attempt
Without prior knowledge, each of theN = 30 nodes is considered
a potential input node, hence the input ground set is again L0 : =

{1, . . . , 30}. The sensors are placed at the output node set Z =

{7, 13, 20, 21, 26}. Figure 5A shows the ground truth as well as the
result of the direct error reconstruction. Due to thigh coherence
of input nodes (compare Figures 3B,C) the input estimates do
not approximate the ground truth.

3.4.2. Detection of the Erroneous Clusters
Figure 5B shows the input cluster strength (7) for each of the five
input clusters C1, . . . , C5. Cluster C1 plays the dominant role so
that we chose the new input ground set to be L1 : = C1.

3.4.3. The Need for Sensor Replacement
Let us first see what happens, if we are not able to replace the
sensors. Figure 5C shows the input estimates with the unchanged
output set Z′ = Z = {7, 13, 20, 21, 26}. A clustering of the
adjusted input ground set leads to three clusters C′1, C

′
2, and

C′3. Figure 5D shows the total input strength for each cluster.
Clearly, the input estimates do not describe the ground truth
appropriately and the input strength of each cluster is also not
informative about the true location of the error.

As the new input ground set L1 has already been identified as
the target of the perturbations, it is not surprising that the input
estimation for the large input ground set L0 (see Figure 5A) and
for the reduced ground setL1 (see Figure 5C) produce nearly the
same result. Since the sensor set is the same as before, Z′ = Z,
the measurements suffer from the high coherence of the input
nodes and Figure 5D shows that we are unable to improve the
localization of the inputs.

3.4.4. Localization With Sensor Replacement
As seen in the previous example, the sensor set Z is not a good
choice, because the observables monitoring x20 and x26 yield
redundant information. We exchange the sensor on x20 with a
sensor measuring x2. Again, choosing the new sensor is subject
to practical issues, e.g., in an experiment. From the theoretical
point of view, we should just try to place the sensors such that
they cover different input clusters. We change the output set to
Z′′ = {2, 7, 13, 21, 26}. The new input estimates can be found
in Figure 5E. One will see that the estimates shown there come
closer to the ground truth but are not accurate. The new output
set Z′′ implies a new clustering of the input ground set L1 into
C′′1 , . . . , C

′′
4 as presented in Figure 5F. The input strength for each

of the clusters indicates that the two clusters C′′2 and C′′3 have the
largest total input strength. Indeed, these two clusters contain the
nodes 6 and 30, which are targeted by the added perturbations.

Though we were unable to accurately reconstruct the true
model errors, we have still succeeded to narrow down the
list of potentially perturbed states. With an initial ground set
L0 of 30 nodes and only five sensors, the system is highly
under-determined. With an iterative input estimation and
sensor replacement we have found that the perturbations
lie within the much smaller clusters C′′2 of size two and
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FIGURE 5 | Iterative error reconstruction for the same system as in Figure 3, but now with two unknown inputs. (A) The true model errors w∗
6 and w∗

30 and the input

estimates ŵ1, . . . , ŵ30 for the sensor as described by the set Z (see B), β = 0.1. Each node was considered a potential input node. (B) The total input strength for

each of the input clusters C1, . . . ,C5 w.r.t. the output set Z. (C) The true and estimated inputs, where only nodes from L1 = C1 were considered as potential input

nodes, again β = 0.1. The output set remained the same, i.e., Z′ = Z. (D) The total input strength for each of the new clusters C
′
1,C

′
2,C

′
3, when the ground set is

restricted to L1 = C1, but the sensor locations Z′ = Z remain the same. (E) The true and estimated inputs, where only nodes from L1 = C1 were considered as

potential input nodes, but the new output set Z′′ was chosen to cover distinct clusters, again β = 0.1. (F) The total input strength derived from (E) for the new input

clusters C
′′
1 , . . . ,C

′′
6 w.r.t. the less coherent output set Z′′.

C′′3 of size four. Thus, we can exclude the remaining 24
nodes and declare them as non-perturbed. A further
reduction would only be possible with a higher number of
output sensors.

4. DISCUSSION

Developing sufficiently accurate models for large and complex
dynamic networks is often difficult because we neither know
all the details about the endogenous interactions in the system
nor can we be sure that the system acts in isolation. This
limited information inevitably causes structural model errors
which include misspecified couplings, system faults as well as
unknown inputs from the exterior. Localizing and identifying
these errors is a crucial step toward better estimates for
the current and future behavior of a system and to reliable
mathematical models.

We have presented a coherence measure for dynamic
networks, which indicates how difficult it is to decide for
two different nodes, whether an error targets the one or the
other node. This coherence is based on a weighted gammoid
representation of the dynamic system and can efficiently be

computed even for very large dynamic systems. The coherence
can be used to cluster network nodes into groups of state
variables which can not be distinguished as potential sources of
error. By combining this clustering with an optimization based
inference of cluster inputs, we are able to localize structural model
errors and unknown inputs down to the level of these input
clusters. We demonstrated for the C. elegans neural network that
this approach can identify meaningful input clusters which we
predict to correspond to the four different movements previously
reported (Stephens et al., 2008). We would like to emphasize, that
our coherence measure can be used for any directed weighted
network with known output nodes.

By using the dual approach for sensor nodes, we can
identify non-redundant sensors which can be used to further
narrow down the exact position of the error. This motivates an
algorithm iterating between input clustering, output clustering
and sensor node selection. We demonstrated that this procedure
can efficiently select non-redundant measurements. If there are
enough sensors, it can even be possible to finally pinpoint the
exact location of an unknown input. In other cases, when the
number of outputs is not sufficient, it might be only possible to
reduce the possible nodes to a smaller set. Please note, however,
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that one limitation of our work is the lack of an exact proof for the
convergence of this iterative procedure. This is left as a direction
for future research.

The localization and reconstruction of errors and unknown
inputs in a model of a dynamic system is a crucial step to
systematically extend models. If we know, where a model is
incorrect, we can systematically improve it. An interesting
question is, how to best combine model error analysis
with data driven model discovery (Brunton et al., 2016).
Despite the recent progress (Brunton et al., 2016) in model
discovery, it is likely that the data sets required for a
de novo reconstruction of the governing equations of a
model will not always be available in biology, medicine,
or physiology. Thus, we believe that a combination of
modeling, data driven model error reconstruction, and data
driven model extension will be the most promising approach
toward an understanding of complex dynamic systems in the
biomedical field.
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