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Abstract

The reformations of the electrical power sector have resulted in very dynamic and competi-

tive market that has changed many elements of the power industry. Excessive demand of

energy, depleting the fossil fuel reserves of planet and releasing the toxic air pollutant, has

been causing harm to earth habitats. In this new situation, insufficiency of energy supplies,

rising power generating costs, high capital cost of renewable energy equipment, environ-

mental concerns of wind power turbines, and ever-increasing demand for electrical energy

need efficient economic dispatch. The objective function in practical economic dispatch

(ED) problem is nonlinear and non-convex, with restricted equality and inequality con-

straints, and traditional optimization methods are incapable of resolving such non-convex

problems. Over the recent decade, meta-heuristic optimization approaches have acquired

enormous reputation for obtaining a solution strategy for such types of ED issues. In this

paper, a novel soft computing optimization technique is proposed for solving the dynamic

economic dispatch problem (DEDP) of complex non-convex machines with several con-

straints. Our premeditated framework employs the genetic algorithm (GA) as an initial opti-

mizer and sequential quadratic programming (SQP) for the fine tuning of the pre-optimized

run of GA. The simulation analysis of GA-SQP performs well by acquiring less computa-

tional cost and finite time of execution, while providing optimal generation of powers accord-

ing to the targeted power demand and load, whereas subject to valve point loading effect

(VPLE) and multiple fueling option (MFO) constraints. The adequacy of the presented strat-

egy concerning accuracy, convergence as well as reliability is verified by employing it on ten

benchmark case studies, including non-convex IEEE bus system at the same time also con-

sidering VPLE of thermal power plants. The potency of designed optimization seems more

robust with fast convergence rate while evaluating the hard bounded DEDP. Our suggested

hybrid method GA-SQP converges to achieve the best optimal solution in a confined
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environment in a limited number of simulations. The simulation results demonstrate applica-

bility and adequacy of the given hybrid schemes over conventional methods.

Introduction

The essential purpose of the energy dispatch problem (EDP) is scheduling the electric genera-

tion of units to attain the lowest possible cost while also satisfying the constraints associated

within the system. The optimal EDP solution is one of the most important factors in achieving

the power system’s sustainability while focusing on low dispatch price, achieving demand-sup-

ply balance, and maintaining constraints such as valve-point loading (VPL) effects, prohibited

operating zones (POZ), ramp-rate limits (RRL) and power generation limits [1–3]. For the

solution of the EDP, several methods were initially developed, including lamda-iterative, gra-

dient-based, and projection techniques [4–6]. The unmeasured supply of energy system is

ceaselessly expanding and inflicting the scientists around the globe to meet challenging

demand of electricity market. More than 80 percent of world’s electricity is generated through

fossil fuels [7] so advocating advanced flexible soft computing optimization framework to con-

federate with the reduction in operation costs of large scale power plants.

It should be noted that machine-learning mechanisms are being utilized effectively in opti-

mization and detection tasks, as observed in [8–16]. Such approaches can also be applied for

the convergence analysis along with the regulation methods [17, 18]. For instance, the studies

in [16, 19–23] are successful in attaining the prescribed convergence rate with real-time appli-

cability of learning-based algorithms. Recently, a variety of literature proposed different meth-

odologies to address economic dispatch problem. Most of these approaches, however, support

convex machines with convex constraints which are easily to handle. In our work, we include

highly non-convex constraints for fuel cost optimization of large bench mark test systems. The

authors in [24] solved the EDP by determining optimal incremental cost of quadratic function

on the basis of control theory (see [25–27]). The mismatch amongst power demand as well as

active generations is handled by a feedback controller; however, this distributed optimization

scheme fails if the system contains other constraints, like valve-point loading effect (VPLE) in

addition to active system losses. Existing approaches for tackling the distributed optimization

issues published in the recent research are unsuitable for power distribution system applica-

tions. The primary disadvantage is the huge number of communication rounds necessary, i.e.,

macro-iterations among the computing agents to solve one iteration of the optimization prob-

lem. Also the practical implementation of such feedback controller schemes is still an issue.

The authors in [28] presented cooperative reinforcement learning algorithm for distributed

generation scheme and handled the traditional complexity of the problem as the system is

truly stochastic base. The computational cost and duration of the developed method are prom-

inent, but a critical issue remains since generators are geographically scattered in different

regions. Furthermore, building the communication network among the producing units is

expensive, and maintaining such a network necessitates specialised staff. Extra energy capital

cost is predicted as a result of the interplay between energy storage devices and producing

units.

The algorithm in [29] proposed a meta-heuristic approach to solve the dynamic energy dis-

patch problem (DEDP) along with emission objective function. Incorporating wind energy

into the combined objective function leads in lower generating costs to meet the system

restrictions; nevertheless, such a system is only feasible in locations with high wind profiles.
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The cost of a wind turbine system is also still prohibitively expensive and the approach has the

ecological issues. The authors in [30] addressed the heat generation scheduling and economic

generation by validating the requirements of European commission for climate and energy

policy. The efficacy of soft computing algorithms is presented in terms of cost and strict envi-

ronment policies, suggested by the regulatory authorities. The performance and robustness of

computing algorithms for thermo-economic sources is discussed in the article [31], and total

yearly cost is minimized by fixed point iterative algorithm. The work of [32] developed EDP

for nonlinear convex cost model for micro-grids to derive optimal condition for long duration

of cell’s life. The authors in [33] proposed genetic and mixed integer programming for energy

management system to derive optimal condition for generating units to handled unit commit-

ment problem. They also derived the Li-ion aging model, based on event driven approach for

solving the combined EDP problem. Similar work is reported in [34], where the U.S. National

Renewable Energy Laboratory’s REopt model is used to optimize the distributed solar energy

cost for residential buildings. While using load demand management (LDM) on 30,000 electric

vehicles (EVs) during crest shaving and valley filling (CSVF) regions, the authors proposed

orthogonal particle swarm optimization (OPSO) for multi-objective problem, namely dynamic

economic emission dispatch, and simultaneously solved it under several practical equality and

inequality operating power constraints. The method gives crucial results concerning the future

functioning of PGSs when using the LDM approach on a large-scale penetration of EVs in

smart cities into a sustainable environment [35]. The work in [36] presented schemes in order

to solve DEDP on the basis of consensus theory. The approach predicts the stability of the

designed controller on the basis of unidirectional communication among agents for a con-

nected topology. The algorithm convergence to optimal condition is derived for IEEE-30, 57

and 300 bus systems. The authors in [37] presented a heuristic dynamic relaxation approach

for dealing with the complicated constraints of the dynamic economic emission dispatch

model for the wind-solar-hydro generation under trade-able green certificates. To model the

random behaviour of wind, solar, and hydro power, Weibull, Beta, and Gumbel distributions

are employed. Reduced carbon emissions are an essential global objective, therefore, DEDP

along with renewable energy resources is studied in [38–41].

The performance of evolutionary algorithms for EDP is surveyed in the article [42]. The

enactment of artificial bee colony algorithm for less computational time and also optimal cost

for EDP is studied in article [43]. The losses constraint is included to show the potency of the

presented approach. The algorithm in [44] handled the uncertainty constraint in EDP by

using firefly and point estimate methods. The cost is minimized by incorporating energy mar-

ket prices, supply demand and inclusion of renewable energy sources. Nelder–Mead algorithm

is presented in [45] to address the EDP with generator constraints and transmission losses. In

electrical networks, different plants feed multiple loads, and this scenario is tackled in [46]

through evolutionary particle swarm optimization to determine the optimal dispatch problem

by including spinning reserve constraints and failure of any generating unit. The authors in

[47] presented genetic algorithm (GA) and sequential quadratic programming (SQP) optimi-

zation techniques for DELTA design configuration of haptic devices. The work of [48] used

TLBO optimization for renewable sources to ensure a hybrid economic design that includes

the objective function of all sources and optimized them as a single unit. The optimal condi-

tion from TLBO shows dominance among other listed techniques but the overall complexity

of the algorithm is increased, and it depicts longer convergence time to obtain a reasonable

solution. The suitability and practicability of meta-heuristic techniques to solve complex engi-

neering optimization problems with multiplex restriction can be perceived in [49–55].

The primary concern of authors in this paper is to address the DEDP of non-convex

machines for delivering a substitute solution by considering modern meta-heuristic
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techniques. The proposed approach considers GA as an initial search, followed by SQP for the

fine tinning, by considering several system constraints. Comparing to the previous literature,

our contribution is to deal with the complex problem based on soft computing framework

while including several real-world constraints. The selection of machine is both convex and

non-convex, and the designed algorithm provides confrontation for both systems. The out-

comes of designed algorithm is faster convergence with finite time, best optimal conditions via

handling hard bounded constraints, and less computational time and cost. The performance

indexes of the designed approach addressed the generation cost considering practical con-

straints such as line losses, generation capacity, and valve-point loading effect, prohibited

zones and multi-fueling option on standard IEEE bus systems. The major contributions in this

work are outlined as follow:

1. For the above listed literature research gap, a convex and non-convex cost model along

with complex constraints in the form of single objective function is reformulated to attain

an optimal solution of the cost and power.

2. A GA-SQP approach is presented for DEPD through which the optimal selection of output

powers of convex and non-convex machines reduce the total variable production cost thus

improving the efficiency of plant and its life span.

3. The approach considers several constraints, like VPL effects, POZ, RRL and power generation

limits. To ensure the system security and to avoid system contingencies, the power demand of

network is fulfilled efficiently by the proposed GA-SQP computing framework. The efficacy

of presented methodology is tested for both type of machines by including all constraints.

4. The selection of fuel type (MFO) with respect to its market price improves the unit cost of

generating machines, which has been considered in the presented study compared to the

existing studies.

5. The optimal generation and less consumption of fuel also play role in environmental

aspects and regulatory institutions of emission as a result protecting environment.

6. The proposed GA-SQP approach has been compared with the existing studies of [49, 56–

59]. It was observed that the proposed approach for convex and non-convex machines pro-

vides better optimal cost in a small time, compared with these methods.

The rest of article consists of problem formulation of DEDP in Section 2. Section 3 provides

the proposed GA-SQP framework of optimization and parameter settings for the listed prob-

lem. Simulation results, optimizer analysis, and machines details are listed in Section 4. Finally,

Section 5 provides brief discussion and conclusions.

Problem formulation of DEDP

The aim of DEDP is to allocate or assign optimal real generated powers to generators such that

the cost involving in generation will be finest while satisfying the system associated

constraints.

Convex fuel cost objective function

The convex fuel cost objective function of n generating units on the basis of fuel cost is given

as (see for instance [60])

FCost ¼
Xn

i¼1

FiðPGiÞ ¼
Xn

i¼1

aiP2
Gi þ biPGi þ ci; ð1Þ
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where Fi(PGi) is the cost of fuel of ith generating unit. ai, bi, and ci are the coefficients of fuel

cost of thermal plant. PGi is the total active power generation in MW.

Non-convex fuel cost objective function

The objective function mentioned in Eq (1) becomes non-convex due to VPLE of generating

units. Addition of VPLE results into highly nonlinear accumulating ripple effects in the fuel-

cost curve. Fig 1 shows the fuel-cost curve of three-valves non-convex machines. Due to

VPLE, the cost function of a generating unit becomes highly non-convex, with several local

sub-optimal solutions, which cannot be handled with conventional methods. The cost function

due to VPLE can be expressed as in Eq (2).

FCost ¼
Xn

i¼1

FiðPGiÞ ¼
Xn

i¼1

aiP2
Gi þ biPGi þ ci þ jei sinðfiðP

min
Gi � PGiÞj; ð2Þ

where Pmin
Gi is the lower limit of generating capacity of ith unit. fi and ei are the VPLE

coefficients.

Power demand and losses constraints

Usually, the loads are connected far from generation sites by means of transmission lines. The

committed units’ active power should be equivalent to the demand and the power losses due

Fig 1. Cost function with VPLE. The figure represents curve of fuel-cost for non-convex machine.

https://doi.org/10.1371/journal.pone.0261709.g001
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to transmission system. The power demand loss constraint can be written as follow.

Xn

i¼1

PGi ¼ Pdemand þ PTLL; ð3Þ

where power losses in transmission lines are represented by PTLL and can be expressed as fol-

low.

PTLL ¼
Xn

i¼1

Xn

j¼1

PiBijPj; ð4Þ

where Pi is the total active power, Pj is the total reactive power and B represents the loss coeffi-

cient matrix. The elements βij of matrix

Pi ¼ PGi � Pdemand � PTLL; ð5Þ

bij ¼
Wij cos ðyi � yjÞ

jWijjWjj cos yi cos yj
: ð6Þ

where |Wi| and |Wj| represents the active and reactive voltages of ith and jth buses and θi,θj indi-

cates the phase angles between ith and jth buses, respectively.

Inequality constraints

Inequality constraints are machine hardware limitations such as generation capacity and the

ramp limits. Based on the generation capacities, the expression for capacity limits and ramp

limits are as follow.

Pmin
Gi � PGi � P

max
Gi ; ð7Þ

maxfPmin
Gi ; P

o
Gi � DRig � PGi � minfPmax

Gi ; P
o
Gi � URig: ð8Þ

In the above expression PoGi is the previous generating point, DRi the down ramp limit, and

URi represents the upper ramp limit of committed generating units.

Prohibited generating zones

Generation machines have some practical limitation, and they must be operated under these

hardware thresholds, for instance, due to boiler pumps and rotor assembly mechanical govern-

ing systems. These threshold regions are referred as prohibited or forbidden regions. The

mathematical model of these machines can be written as

PGi ¼

Pmin
Gi � PGi � P

NoLoad
Gi ;

PUGiK� 1
� PGi � PNoLoadGiK ;

PUGiZI � PGi � P
MAX
Gi ;

8
>>><

>>>:

ð9Þ

where PNoLoadGi is power generated at no load, PGiK is power generated at zone K.

Objective function with multiple fueling option

One of the significant consideration for DEDP is multiple fueling option (MFO). The cost

curve of thermal plants is based on type of fuel used in operation. Thermal units with MFO

consist of different cost curves proportional to the price of fuel used. In economic operation,

the lowest possible curve should be selected for optimal operations of units. Mathematically,
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convex fuel cost objective function with MFO of diesel and gas can be represented as follow:

FCost ¼

XN

i¼1

FijðPGiÞ ¼
XN

i¼1

aijPGi
2 þ bijPGi þ cij;

‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥

‥ ‥ ‥ ‥ ‥
XN

i¼1

FikðPGiÞ ¼
XN

i¼1

aikPGi
2 þ bikPGi þ cik;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð10Þ

where j and k represents type of fuels used by thermal plants.

Proposed optimizer framework

The perfunctory introduction of soft computing framework for DEDP is described along with

procedural steps and flowcharts.

Genetic algorithm (GA)

It is a population-based stochastic algorithm used by scientists to solve optimization problems

with hard constraints [61]. GA is considered as a family of computational models that encodes

a specific problem on a data based on chromosomes alike data structures and recombination

operators are applied to perceive critical information of the problem [62]. GAs are efficient

approaches for dealing with large-scale design optimization problems. It has undergone vari-

ous changes to allow them to solve challenges more quickly, easily, and consistently. GA is a

robust algorithm which is advantageous to solve complex design problems related to optimiza-

tion in a number of applications. Design optimization issues can be classified in a variety of

ways. One way to categorize them is into two groups that are functional and combinatorial

optimization. The objective function in functional optimization is typically expressed as a con-

tinuous or piece-wise continuous function of the design parameters [63]. It is basically a search

engine and a technique for optimizing designs. It was first used to model natural evolutionary

development in a computing environment. GA is a set of different solutions (populations).

Each population solution contains a variety of entities, vectors, and chromosomes. Individuals

are then chosen using GA’s selection operator depending on their degree of conformity or use-

fulness, as well as objective feature [64].

The crossover and mutation processes are repeated before the stopping conditions are met.

Since new chromosomes produced after crossover is subject to mutation, the likelihood of

being trapped on a local minimum is reduced [65]. GA is a population-based strategy with

extremely successful results in deciding the universal best since it generates many optimal

solutions. In addition to populations, researchers have developed GA forms with variations in

generating new individuals [66, 67]. For problems involving single-objective and multi-objec-

tive optimization, this approach, as well as variants of it, tends to produce excellent results. In

the fields of industry, research, and engineering, it is widely used. GA is a stochastic model

that is also robust to local maxim and minim. The only limitation this GA has is the high com-

putation cost and time.

Sequential quadratic programming (SQP)

Solving quadratic sub-problems is among the major powerful techniques for non-linearity

constrained optimization. Sequential quadratic programming (SQP) also known as the
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successive quadratic programming has been used for the solution of nonlinear problems. It is

an iterative method for constrained nonlinear optimization. SQP works in both trust-region

frameworks as well as line search. It is also used on the complex mathematical problems in

which the constraints and objective functions are twice differentials. Seeking a step away from

the current point by minimising, a quadratic model of the problem makes SQP a generalisa-

tion of Newton’s method for unconstrained optimization. SQP methods illustrate their

strength while solving issues with large non-linearity in constraints, as opposed to linearly con-

strained Lagrangian methods, which are efficient when the majority of the constraints are lin-

ear [68].

Proposed GA-SQP approach for DEDP

Now the aim of study is to design the formulation and procedure of soft computing frame-

works for DEDP. In comparison to the closely related work [47], there are vibrant differences

of proposed methodology. Firstly, we have different selection of parameters for GA and SQP

as provided in Table 1. It can be seen that selection of fitness and tolerance limits are set to an

adequate level for attaining best outputs weights to ensure genuine convergence of solution.

Secondly, these selections of parameters also empower the framework to use over large scale

complex optimization problems consisting hard bounds limits of VPLE, POZ and MFO.

Thirdly, the fitness evaluation limits of objective function is increased to demonstrate the prac-

ticability and convergence to best optimum candidate solutions. Possessing these distinct fea-

ture, the presented framework design acquires best optimum cost of DEDP with faster

convergence rate while satisfying the all associated complex constraints.

The proposed scheme is shown in Fig 2, including the DEEP along with constraints equa-

tions. Modeling is performed for two type of machines, namely convex and non-convex sce-

narios, and the associated constraints are also shown. For our framework, we choose GA as

global optimizer with non-linear iterative programming as a local optimizer. It is efficient in

terms of accuracy, convergence to provide successful solutions for complex practical world

problems, for example ten systems with 100 machines.

The designed computing frame work is divided into three sections, as seen in Fig 2. First

one is modeling, here we reformulate both convex and non-convex models of DEDP along

with system constraints equations from (3) to (10). The fitness function for the framework is

also modeled to check the convergence and diversity of the given objective function and con-

straints. This fitness function is used by the optimizer framework to obtain the best candidate

solution for DEDP problem. The framework is composed of into two segments GA as global

search technique and SQP for local search technique. First of all, the objective function

Table 1. Parameter setting/values using GA and SQP.

GA SQP

Parameters Settings Parameters Settings

Generations 500 Max Iteration 1000

Population Size 360 Max Function Evaluation 50000

Tolerance Function 1e-30 TolFun 1e-18

Stall Generation Limit 200 TolCon 1e-18

Fitness Limit 1e-30 TolX 1e-12

Population Initialization Range [-1;1] Others Default

Table 1 consists of parameters and setting values for GA and SQP both.

https://doi.org/10.1371/journal.pone.0261709.t001
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through the fitness function is evaluated by GA and results are stored. Again the SQP evaluates

the provided problem up to a certain level as defined in algorithm (Section 3). These results

from the two frameworks are then loaded into hybrid optimization scheme. The hybrid algo-

rithm has edge in terms of its reliability and effectiveness. The best optimal results are then

obtained to show the efficacy and computational efficiency of the proposed scheme. The fol-

lowing is the structure of algorithm for optimising DEDP in the form of logical steps using a

hybrid computational technique.

Logical steps of framework. Step 1: M random populations are generated which are equal

to the total committed units in DEEP operation. Generally, the representation of ith agent is

narrated by Ji = [Ji1, Ji2, . . .JiN],Jij 2 <: Lb� Jij� Ub where Ub is upper bound and Lb is lower

bound of both convex and non-convex machines.

Fig 2. Soft computing optimizer framework. It represents three sections of flowcharts. The first flow chart describes the representation of dynamic EDP, its modeling

and optimization which provides optimal generation of units. The second flow chart of Fig 2. elaborates GA based global optimizer, toll initialization, the evaluation of

fitness value and finally getting the best chromosomes by GA. The third flow chart of Fig 2. represents the program initialization, toll initialization of assigning

optimum parameters, SQP algorithm and then saving final weights and the execution time.

https://doi.org/10.1371/journal.pone.0261709.g002
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Step 2: This step involves the assignment of the general parameter setting of GA algorithm

used in optimization framework as shown in Table 1.

Step 3: This step involves evaluating fitness function by acquiring the fitness of each agent

in the form of mean square error as given below.

I ¼

XN

j¼1

ðjFjop � F
�
j
op

j
2
Þ

N ;

ð11Þ

where F
�
j
op

is the operating cost of jth committed units.

Step 4: It is the termination criterion step, and algorithm is terminated on the following

criterion.

• Fitness value is achieved as per definition.

• All defined generations are executed.

• Tolerance function value achieved.

• All optimization functions are evaluated.

If all above conditions are achieved, stop otherwise run again.

Step 5: The best generated solutions are provided as input to the final design of SQP for fur-

ther refinement, random assignments with problem bounds according to parameter setting

provided in Table 1.

Step 6: This step involves the assignment of optimist parameter known as toll initialization,

and step size is also monitored in this step.

Step 7: In this step the fitness function is evaluated according to the problem bounds with

tuned tolerances setting.

Step 8: If convergence is achieved and termination criterion is attained then final weights

with execution time are saved, otherwise run again.

Simulations and results

In this section, MATLAB simulations for convex and non-convex objective functions for

DEDP have been performed. All constraints such as transmission losses, power balance con-

straint, capacity constraint, and ramp limits were employed. The VPLE and MFO are also

taken into account to demonstrate the efficacy of our designed soft computing framework.

The parameter settings for the framework is shown in Table 1. The procedure sequence is

defined as a series of logical steps. Ten case studies composed of 100 machines with highly

hard constraints are selected as test systems. Required time analysis for this work is carried on

Intel celeron (R) N2940 CPU @ 1.83GHz, 4.0 GB of RAM with MATLAB version R2017b.

It is actually noticeable that for a hybrid framework that the level of accuracy is dominated

as compared to separate local and global techniques. The computational budget for the hybrid

approach can be significantly high as compared to the local search methodologies; however,

this factor can be over-shed as the accuracy and constraint handling of hybrid schemes is more

versatile as compared to the local ones. GA-SQP has a better likelihood of finding a global opti-

mum than other algorithms. In practice, GA-SQP may reach a global optimum in a limited

computational time in the nonlinear or multi-constrained situations that can be enhanced by

hybridising with other methods. Another reason for the lower computational cost for the

hybrid method can be the operational architecture of GA-SQP, which provides many options

and allows the method to quickly converge on a single viable solution.
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The investigated problem may be divided into different groups, based on the nature of the

fuel cost functions and constraints. In one category, DEDP problems with non-smooth cost

functions as a result of taking VPL and MFO into account can be accounted. For such non-

convex machines, the characteristics data of units has been provided in [59, 60, 69]. The opti-

mal cost obtained with computational time is provided. The second category includes convex

constraints and fuel cost coefficient, and data is provided in [50, 59, 60, 69, 70].

We cannot relay on the value of local search methods because they often stuck on local min-

ima due to poor initial guess. Another point to consider is that our designed framework pro-

vides consistency and stability with finer convergence rate with increase in number of

machines and constraints of DEDP.

Case Study-I

This case study is composed of three non-convex machines with total load demand 850MW.

The reference data along with fuel cost and VPLE coefficients are shown in Table 2, and opti-

mal results shown in Table 3.

The top fittest designed parameters that are actually the machine power generation values

and are depicted in Fig 3A at semi-log scale in order to increase the size of the small effects in

power values. The heights of bars indicate the generations. The axis with variable color for bars

is used demonstrate different generators. The remaining axis is used to demonstrate results of

GA, SQP and GA-SQP using labels 1, 2, and 3, respectively. The designed framework is based

on heuristic computation so the single optimal result cannot justify the accuracy of scheme. The

effectiveness of fitness, provided in Eq (11), is depicted in Fig 3B, representing the result of 100

independent run of iteration rather than single best result. The colouring scheme used by fitness

level is brown, blue and golden for GA, SQP and GA-SQP respectively throughout the manu-

script. The optimal cost obtained by GA-SQP for Case Study-I is 8221.1 which is better as com-

pared to the other heuristic technique [56] which was 8231.5. By comparing the fuel cost, it is

evident that our design scheme obtains the optimal result while satisfying all constraints

appropriately.

Case Study-II

Now we consider the application of the proposed method over convex machines and consider

three convex machines with total load demand 850MW (please see Table 4). The obtained

optimal results by using the GA, SQP and the proposed GA-SQP methods are shown in

Table 2. Three unit system for Case Study-I.

Unit No. a b c e f Pmin Pmax

CU-1 0.0016 7.9200 561 300 0.0315 100 600

CU-2 0.0019 7.8500 310 200 0.0420 100 400

CU-3 0.0048 7.9700 78 150 0.0630 50 200

https://doi.org/10.1371/journal.pone.0261709.t002

Table 3. Optimal generations, cost, and time for Case Study-I.

Computing Framework CU-1 CU-2 CU-3 Total Generation Best Cost Best Time

GA 337.0318 326.2318 186.7363 850MW 8431.4 64.6

SQP 415.7894 289.4736 144.7368 850MW 8596.6 0.077

GA-SQP 299.77 350.22 200 850MW 8421.1 0.0520

https://doi.org/10.1371/journal.pone.0261709.t003
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Table 5. Fig 4A shows the generations of three machines for three algorithms at semi-log scale.

Table 5 summarizes the results of the proposed GA-SQP approach for solving the fuel cost

minimization problem independently. In comparison to [57], where the cost of fuel was

8232.93, the GA-SQP approach reduces the cost to 8219.5. The effectiveness and performance

Fig 3. Optimizer response against three non-convex machine. A. Power output B. Fitness level.

https://doi.org/10.1371/journal.pone.0261709.g003
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of iterative procedure of fitness is plotted in Fig 4B. Hence, the proposed method is applicable

to small-scale convex and non-convex machines.

Case Study-III

A more complex system with convex machines (please see Table 6) is considered herein,

which consists of six convex machines with total load demand of 283.4MW. The reference

data is available at [57] along with fuel cost coefficients. Results for solving the fuel cost mini-

mization independently using the GA-SQP approach are shown in Table 7. GA-SQP reduces

the fuel cost minimization costs to 171132.9 when compared to [58], which was 191739.7.

It is observed that the proposed GA-SQP approach performs well in optimizing the total

generation cost. Fig 5 at semi-log scale demonstrates the power values for all generators. The

effectiveness and performance of iterative procedure of fitness is plotted in Fig 6.

Case Study-IV

Now we check the validity over six non-convex machines with total load demand 1800MW.

The reference data along with fuel cost and VPLE coefficients is shown in Table 8 and is pro-

vided in [58], and the optimal results using our approach are shown in Table 9. Again, our

approach performs well with a small time for computation to reduce the total generation cost.

As shown in Table 9, the GA-SQP approach is capable of generating better solutions for the

single objective function of fuel cost when compared to the conventional approach. When

compared to [58], the GA-SQP reduces fuel cost minimization costs to 42442, for a total reduc-

tion of 661.16 when compared to [58, 69].

Fig 7 demonstrates the corresponding power values, and the performance of iterative pro-

cedure of fitness is plotted in Fig 8. By comparing cost from [58], our design scheme obtains

optimal result while satisfying all constraints appropriately.

Case Study-V

In Case Study-V, we consider a large system of eleven convex machines with total load

demand 2500MW, the reference data of fuel cost coefficients is shown in Table 10. The optimal

results are shown in Table 11. by application of the proposed method. The fuel cost savings

obtained for this test system using the proposed GA-SQP are 551850, as shown in Table 11.

On the other hand, the fuel cost of [59] is 570120, demonstrating the efficacy of the suggested

method in achieving the lower possible cost.

Table 4. Three unit system for Case Study-II.

Unit No. a b c Pmin Pmax

CU-1 0.0014 7.2000 561 100 600

CU-2 0.0019 7.8500 310 100 400

CU-3 0.0048 7.8500 78 50 200

https://doi.org/10.1371/journal.pone.0261709.t004

Table 5. Optimal generations, cost, and time for Case Study-II.

Computing Framework CU-1 CU-2 CU-3 Total Generation Best Cost Best Time

GA 404.02 257.27 188.69 850MW 8219.5 73.4

SQP 415.78 289.47 144.73 850MW 8201.5 0.122

GA-SQP 299.77 350.22 200 850MW 8219.5 0.233

https://doi.org/10.1371/journal.pone.0261709.t005
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The corresponding power values and fitness plots are demonstrated in Figs 9 and 10,

respectively. By comparing the cost from [59], our design scheme obtains better (optimal)

result with validation of all machine constraints.

Fig 4. Optimizer response against three convex machines. A. Power Output B. Fitness Level.

https://doi.org/10.1371/journal.pone.0261709.g004
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Case Study-VI

This case study is composed of twelve convex machines with total load demand 1600MW with

fuel coefficients data as shown in Table 12. The optimal results are shown in Table 13, which

Table 6. Six unit system for Case Study-III.

a b c e f

0.0076 192.6990 387.8500 0 0

0.0084 211.9690 441.6200 0 0

0.0052 219.1960 422.5700 0 0

0.0014 201.9830 552.5000 0 0

0.0015 212.1810 557.7500 0 0

0.0018 191.5280 562.1800 0 0

0.0019 210.6810 568.3900 0 0

0.0011 199.1380 682.9300 0 0

0.0012 199.8020 741.2200 0 0

0.0009 212.3520 617.8300 0 0

0.0010 210.4870 674.6100 0 0

https://doi.org/10.1371/journal.pone.0261709.t006

Table 7. Optimal generations, cost, and time for Case Study-III.

Computing Framework CU-1 CU-2 CU-3 CU-4 CU-5 CU-6 Total Generation Best Cost Best Time

GA 78.68 66.56 44.23 34.75 28.99 30.16 280MW 353004.5 99.6

SQP 128.49 51.39 33.31 23.08 20.46 26.65 280MW 307729.3 0.0143

GA-SQP 71.24 65.59 46.26 33.43 29.45 37.39 280MW 171132.9 22.003

https://doi.org/10.1371/journal.pone.0261709.t007

Fig 5. Optimizer power output response against six convex machines.

https://doi.org/10.1371/journal.pone.0261709.g005
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shows superiority of the proposed method in terms of computational time and total cost over

GA and SQP. GA-SQP returns an optimal cost of 4240100 for Case Study-VI, which is better

than the heuristic technique [59], which returns a cost of 43401000. Fig 11 shows the power

values in the semi-log scale for increasing the size of the small effects, and the corresponding

fitness plots are provided in Fig 12.

Fig 6. Optimizer fitness level response against six convex machines.

https://doi.org/10.1371/journal.pone.0261709.g006

Table 8. Six units system for Case Study-IV.

a b c e f

0.0016 2.0000 150 50 0.0630

0.0100 2.5000 25 40 0.0980

0.0625 1.0000 0 0 0

0.0083 3.2500 0 0 0

0.0250 3.0000 0 0 0

0.0250 3.0000 0 0 0

https://doi.org/10.1371/journal.pone.0261709.t008

Table 9. Optimal generations, cost and time for Case Study-IV.

Computing Framework CU-1 CU-2 CU-3 CU-4 CU-5 CU-6 Total Generation Best Cost Best Time

GA 314.71 317.76 294.85 282.49 294.28 295.89 1800 MW 41438 77.65

SQP 299.99 299.99 299.99 299.99 299.99 299.99 1800 MW 48162 0.061

GA-SQP 265.93 302.07 319.19 313.43 316.61 282.74 1800 MW 42442 0.062

https://doi.org/10.1371/journal.pone.0261709.t009
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Fig 7. Optimizer power output response against six non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g007

Fig 8. Optimizer fitness level response against six non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g008
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Table 10. Eleven unit system for Case Study-V.

a b c e f

0.0076 192.6990 387.8500 0 0

0.0084 211.9690 441.6200 0 0

0.0052 219.1960 422.5700 0 0

0.0014 201.9830 552.5000 0 0

0.0015 212.1810 557.7500 0 0

0.0018 191.5280 562.1800 0 0

0.0019 210.6810 568.3900 0 0

0.0011 199.1380 682.9300 0 0

0.0012 199.8020 741.2200 0 0

0.0009 212.3520 617.8300 0 0

0.0010 210.4870 674.6100 0 0

https://doi.org/10.1371/journal.pone.0261709.t010

Table 11. Optimal generations, cost, and time for Case Study-V.

Computing Framework GA SQP GA-SQP

CU-1 177.8 166.0 182.5

CU-2 208.9 140.6 203.1

CU-3 205.4 166.0 169.0

CU-4 244.7 212.3 224.2

CU-5 162.1 140.6 187.4

CU-6 192.9 212.3 249.2

CU-7 185.1 143.7 164.4

CU-8 245.8 325.3 290.3

CU-9 299.0 325.3 235.0

CU-10 343.5 332.1 277.4

CU-11 234.2 335.3 317.1

Total Generation 2500MW 2500MW 2500MW

Best Cost 760350 576660 551850

Best Time 13.8 0.0901 0.0605

https://doi.org/10.1371/journal.pone.0261709.t011

Fig 9. Optimizer power output response against eleven convex machines.

https://doi.org/10.1371/journal.pone.0261709.g009
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Case Study-VII

The previous cases have not considered the VPLE for a large-scale system; therefore, we con-

sider a thirteen non-convex machines based system with total load demand of 1800MW. For

this system, the reference data along with fuel cost and VPLE coefficients can be seen in [70].

By application of the proposed approach, the optimal results are shown in Table 14. Fig 13

shows the power values, and the performance of iterative procedure of fitness is plotted in Fig

14. Our design scheme obtains optimal result while satisfying all constraints appropriately.

Note that the results are attained in a small time (0.063s) for the proposed GA-SQP method

Fig 10. Optimizer fitness level response against eleven convex machines.

https://doi.org/10.1371/journal.pone.0261709.g010

Table 12. Twelve unit for Case Study-VI.

a b c

3.3829 3871.2 117970

35.780 3930.4 38040

2.063 1300.8 21840

0.5492 1364.9 121270

10.606 1143.7 27980

3.034 3073.07 117850

3.230 1631.2 21930

5.062 964.2 88180

1.641 1920.7 59530

1.805 1701.8 65180

0.0078 2212.3 42800

35.780 3930.4 38040

https://doi.org/10.1371/journal.pone.0261709.t012
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with optimal results, while validating the total demand and all other constraints. It should be

noted that the use of combined approach is interesting due to reduction in computational time

and for obtaining better total generation cost.

Case Study-VIII

It composed of fifteen convex machines with total load demand 2630MW. The reference data

along with fuel cost and optimal results using the proposed method are shown in [71] and

Table 15, respectively.

Table 13. Optimal generations, cost, and time for Case Study-VI.

Computing Framework GA SQP GA-SQP

CU-1 203.5 188.6 207.9

CU-2 46.6 43.6 28.37

CU-3 278.3 262.5 274.6

CU-4 97.4 67.9 93.3

CU-5 73.1 77.2 78.7

CU-6 166.3 183.1 135.4

CU-7 106.7 88.6 109

CU-8 58.8 59.8 82.7

CU-9 128.7 151.1 116.1

CU-10 136 156.51 146.8

CU-11 264.4 277.2 269.9

CU-12 39.7 43.6 56.8

Total Generation 1600 MW 1600 MW 1600 MW

Best Cost 4321300 4240100 11884000

Best Time 26.6 0.110 0.063

https://doi.org/10.1371/journal.pone.0261709.t013

Fig 11. Optimizer power output response against twelve convex machines.

https://doi.org/10.1371/journal.pone.0261709.g011
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Fig 15 demonstrates the power values. The fitness curves are plotted in Fig 16. It is worth

mentioning that our design scheme provides the optimal results in addition to satisfying all the

constraints. Hence the proposed method can be used for large-scale problem.

Fig 12. Optimizer fitness level response against twelve convex machine.

https://doi.org/10.1371/journal.pone.0261709.g012

Table 14. Optimal generations, cost, and time for Case Study-VII.

Computing Framework GA SQP GA-SQP

CU-1 31 352.8 120.2

CU-2 36 186.9 102.0

CU-3 57 186.6 83.1

CU-4 169 122.1 168.3

CU-5 157 122.1 179.9

CU-6 178 122.1 172.7

CU-7 201 122.1 179.9

CU-8 188 122.1 167

CU-9 166 122.1 146.4

CU-10 142 81.4 119.9

CU-11 132 81.4 119.9

CU-12 165 88.6 119.9

CU-13 171.727527830706 88.6 119.9

Total Generation 1800 MW 1800 MW 1800 MW

Best Cost 27656000 62393 54785

Best Time 95.3 0.14 0.063

https://doi.org/10.1371/journal.pone.0261709.t014
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Case Study-IX

To consider a further large-scale system, we take twenty convex machines [72] with total load

demand 2500MW. The results obtained via GA, SQP, and the proposed GA-SQP approach are

provided in Table 16. Figs 17 and 18 demonstrate the corresponding values of generations (in

Fig 13. Optimizer power output response against thirteen non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g013

Fig 14. Optimizer fitness level response against thirteen non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g014
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semi-log scale) and fitness function, respectively. It is revealed that our design scheme can be

used for large-scale problem such has twenty machines.

Case Study-X

As a final simulation, we consider a very-large scale and complicated system to demonstrate

the effectiveness and to show the applicability of the proposed method. This system consists of

forty non-convex machines with a total load demand of 1800MW. The reference data along

with fuel cost and VPLE coefficients is taken from [59]. Table 17 shows the results of the

approaches of GA, SQP, and GA-SQP (proposed method).

The corresponding power value are shown by Fig 19 at semi-log scale. The resultant fitness

curves are also plotted in Fig 20. By comparing cost from [59] our design scheme obtain opti-

mal result while satisfying all constraints appropriately.

Statistical analysis is the process of determining trends, patterns, and relationships through

the use of quantitative data, and it is a critical research tool that scientists employ on con-

strained based objective function. A comprehensive statistical analysis is used to determine the

stochastic algorithms’ reliability in terms of the minimum cost (Min cost), the maximum cost

Table 15. Optimal generations, cost, and time for Case Study-VIII.

Computing Framework GA SQP GA-SQP Computing Framework GA SQP GA-SQP

CU-1 258.8 347.2 314.8 CU-11 118.6 58.7 79.9

CU-2 251.4 347.2 309.2 CU-12 124.2 58.7 79.9

CU-3 157.1 91.1 130 CU-13 135.9 63.7 84.9

CU-4 155.2 91.1 129.9 CU-14 97.3 40.8 54.9

CU-5 293.2 356.9 326.7 CU-15 94.2 40.8 54.9

CU-6 233.9 345.1 309.5 Total Generation 2630MW 2630MW 2630MW

CU-7 210.8 348.3 292.3 Best Cost 69582000 127680 103900

CU-8 165.4 215.1 198.0 Best Time 134.2 0.1389 0.1435

CU-9 179.5 112.2 114.6 - - - -

CU-10 153.9 112.2 149.5 - - - -

https://doi.org/10.1371/journal.pone.0261709.t015

Fig 15. Optimizer power output response against fifteen convex machines.

https://doi.org/10.1371/journal.pone.0261709.g015
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(Max cost), the mean cost (Mean cost), and the standard deviation of the cost (STD cost). Not

only is the cost value analysed, but also the computational time required for optimization in

terms of mean CPU time is also observed. Table 18 demonstrates that the proposed schemes’

results are highly comparable in terms of reliability, effectiveness, economic cost, and compu-

tational budget.

The hundred independent iterations were performed for each case study and the optimal

generated powers of committed units along with best computational budget and cost are tabu-

lated in each case study via tables. The hundred independent iteration runs in simulations

Fig 16. Optimizer fitness level response against fifteen convex machines.

https://doi.org/10.1371/journal.pone.0261709.g016

Table 16. Optimal generations, cost, and time for Case Study-IX.

Computing Framework GA SQP GA-SQP Computing Framework GA SQP GA-SQP

CU-1 193.1 384.8 314.8 CU-13 145.8 102.6 292.3

CU-2 150.4 128.2 309.2 CU-14 127.9 77.4 198.0

CU-3 182.3 128.2 130 CU-15 136.4 108.5 114.6

CU-4 135.2 128.2 129 CU-16 75.5 51.3 149.5

CU-5 121.2 107.4 326.7 CU-17 81.5 58.7 79.94

CU-6 80.6 61.7 309.5 CU-18 92.6 76.9 79.9

CU-7 90.6 77.1 292.3 CU-19 85.5 81.7 84.9

CU-8 125.4 102.1 198 CU-20 77.1 66.5 54.9

CU-9 127 128.2 114.6 Total Generations 2500 MW 2500 MW 2500 MW

CU-10 80.7 92.6 149.5 Best Time 77.2 0.0872 0.1433

CU-11 197 204.3 326.705773 Best Cost 26768000 124630 86492

CU-12 193.2 332.6 309.5 - - - -

https://doi.org/10.1371/journal.pone.0261709.t016
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demonstrate that the output comes closer and closer to the optimal cost while maintaining the

threshold criteria stated in Eq (11) which further depicts the quality convergence of proposed

scheme. Test systems with six-convex machines show how soft restrictions on the objective

function enhance the multiple constraints in the structural solution. We tested the proposed

soft computing approach viability by using it to various EDP problems. The obtained charac-

teristics costs and time are compared with other state of the art met-heuristic techniques. The

optimizer response for handling both categories of test systems are shown in the form of fitness

level responses. Its quite evident from tabular data that our proposed soft framework handled

all non-convex and contagious constraints efficiently.

Fig 17. Optimizer power output response against twenty convex machines.

https://doi.org/10.1371/journal.pone.0261709.g017

Fig 18. Optimize fitness level response against twenty convex machines.

https://doi.org/10.1371/journal.pone.0261709.g018
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There are some recent studies which have considered the convergence rate investigation by

considering the rate of change of a factitious energy function [73–75] and [76]. These methods

consider the decreasing rate of change of energy based on Lyapunov approach. In future, such

methods can be applied for investigating convergence and its rate for an optimization.

Conclusions

This article discussed the key aspects and concerns of the DEDP problem. Two alternative for-

mulations for the DEDP problem that are convex and non-convex cost functions were studied,

Table 17. Optimal generations, cost, and time for Case Study-X.

Computing Framework GA SQP GA-SQP Computing Framework GA SQP GA-SQP

CU-1 134.1 92 105.9 CU-21 336.7 466.7 437.8

CU-2 107.7 92 113.9 CU-22 350.4 466.7 459

CU-3 97.7 103.1 118 CU-23 294.4 466.7 447.6

CU-4 146.9 159 174.6 CU-24 312.8 466.7 455.3

CU-5 78.4 82.9 96.9 CU-25 350.3 466.7 461.7

CU-6 170.1 119.7 139.9 CU-26 359 466.7 451.5

CU-7 202.5 246.5 248.4 CU-27 108 110.6 131

CU-8 213.7 253.6 255.8 CU-28 62.5 110.6 132.9

CU-9 215 253.6 267.7 CU-29 103.7 110.6 124.6

CU-10 207.3 252.1 272.4 CU-30 113.8 82.9 96.9

CU-11 141 295.9 267.5 CU-31 161 153.4 158.5

CU-12 209.5 296.7 277.8 CU-32 143.5 153.4 176.77

CU-13 159.2 394.5 351.3 CU-33 161.3 153.4 177.1

CU-14 199.4 394.5 357.7 CU-34 198.9 169 180.6

CU-15 229.3 394.5 371.1 CU-35 124.5 169 173.4

CU-16 202.4 394.5 358.4 CU-36 168.1 169 176.2

CU-17 325.6 421.2 405.7 CU-37 76.9 86 109.9

CU-18 326.9 421.2 409.1 CU-38 104 86 109.9

CU-19 304.6 463.3 454.1 CU-39 94.8 86 108

CU-20 344.8 463.3 442.9 CU-40 284.4 463.3 440.1

Total Generation - - - Total Generation 10500MW 10500MW 10500MW

Best Cost - - - Best Cost 8039422.9 3213079 4913442

Best Time - - - Best Time 844.8 0.797 39.8

https://doi.org/10.1371/journal.pone.0261709.t017

Fig 19. Optimizer power output response against forty non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g019
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and then a novel hybrid GA-SQP was presented to solve the DEDP. The presented scheme can

be classified as an artificial intelligence technique, based on the hybrid GA-SQP approach.

Due to the capacity of GA-SQP to seek the global optimal solution, the proposed method has

been effectively utilized for solving DEDP with non-smooth or non-convex cost functions. It

has been observed that hybrid approaches that integrate two or more optimization techniques

are more successful in finding the global optimal solution for the DEDP with non-smooth or

non-convex cost functions associated with nonlinear constrains. The aim behind the study is

to solve the complex optimization problem with constraints for DEDP by considering MFO,

RRL, and VPLE. The framework accomplished by coalesce heuristic ability of GA as a global

Fig 20. Optimizer fitness level response against forty non-convex machines.

https://doi.org/10.1371/journal.pone.0261709.g020

Table 18. Statistical analysis of different approaches.

Method Min(cost) Max (cost) STD (cost) Mean (cost) Min(cost) Max (cost) STD (cost) Mean (cost) Min(cost) Max (cost) STD (cost) Mean (cost)

Proposed CASE STUDY-I CASE STUDY-II CASE STUDY-III

GA 8.431e+03 8.871e+03 109.55 8.623e+03 8.219e+03 8.385e+03 32.92 8.274e+03 3.530e+05 5.073e+05 2.854e+04 4.120e+05

SQP 8.596e+03 8.596e+03 3.656e-12 8.596e+03 8.201e+03 8.201e+03 1.096e-11 8.201e+03 3.077e+03 4.578e+03 176.36 3.316e+03

GA-SQP 8.421e+03 8.726e+03 103.18 8.547e+03 8.219e+03 8.249e+03 4.739 8.231e+03 1.711e+03 3.242e+03 427.9 2.402e+03

Proposed CASE STUDY-IV CASE STUDY-V CASE STUDY-VI

GA 4.143e+07 5.298e+07 2.482e+06 4.696e+07 7.603e+07 1.078e+08 5.318e+06 8.481e+07 1.188e+07 1.596e+07 8.101e+05 1.403e+07

SQP 4.816e+04 7.409e+04 2.912e+03 5.228e+04 5.766e+05 6.160e+05 4.521e+03 5.832e+05 4.321e+06 4.342e+06 2.552e+03 4.326e+06

GA-SQP 4.244e+04 6.678e+04 2.743e+03 4.649e+04 5.518e+05 7.160e+05 2.674e+04 5.701e+05 4.240e+06 4.470e+06 4.877e+04 4.350e+06

Proposed CASE STUDY-VII CASE STUDY-VIII CASE STUDY-IX

GA 2.765e+07 4.229e+07 2.840e+06 3.594e+07 6.958e+07 8.790e+07 3.871e+06 7.782e+07 2.676e+07 3.778e+07 2.343e+06 3.261e+07

SQP 6.239e+04 1.371e+05 1.911e+04 8.233e+04 1.276e+05 1.723e+05 7.638e+03 1.386e+05 1.246e+05 1.532e+05 4.150e+03 1.310e+05

GA-SQP 5.478e+04 1.288e+05 1.710e+04 7.580e+04 1.039e+05 5.482e+05 5.577e+04 1.558e+05 8.649e+04 2.867e+05 3.415e+04 1.363e+05

https://doi.org/10.1371/journal.pone.0261709.t018
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search approach; and then results of that are refined through SQP. Ten highly nonlinear case

studies with complex non-convex contiguous constraints were tested. The performance-based

indices like computational cost, stability and handling of contiguous constraints validated the

precision, dependability and unwavering quality of the proposed framework. While the sensi-

ble precision of framework is attained furthermore by acquiring optimal generations with sat-

isfactory cost values. It is recommended to apply these tools to investigate multi-objective

DEDP with environmental constraints. By comparing cost from existing papers mentioned in

the case studies, our design scheme obtains optimal result while satisfying all constraints

appropriately. In future, we can integrate conventional DEDP with environmental cost func-

tion along with the renewable energy resources to eliminate the dependency of fossil fuels.
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