
genes
G C A T

T A C G

G C A T

Article

Genome-Wide Small RNA Sequencing Identifies
MicroRNAs Deregulated in Non-Small Cell Lung
Carcinoma Harboring Gain-of-Function Mutant p53

Arindam Datta 1,†, Pijush Das 1,†, Sanjib Dey 1, Sangeeta Ghuwalewala 1, Dishari Ghatak 1,
Sk. Kayum Alam 1, Raghunath Chatterjee 2,* and Susanta Roychoudhury 3,*

1 Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4,
Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; hereisarindam@gmail.com (A.D.);
topijush@gmail.com (P.D.); sanby19@gmail.com (S.D.); sangeetaghuwalewala@gmail.com (S.G.);
dishari18@gmail.com (D.G.); kayumalam86@gmail.com (S.K.A.)

2 Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
3 Saroj Gupta Cancer Centre and Research Institute, Mahatma Gandhi Road, Thakurpukur,

Kolkata 700063, India
* Correspondence: raghuchatterjee@gmail.com (R.C.); susantarc@gmail.com (S.R.);

Tel.: +91-33-25753243 (R.C.); +91-033-2453-2781/82/83 (S.R.)
† These authors contributed equally to this work.

Received: 24 August 2019; Accepted: 12 October 2019; Published: 28 October 2019
����������
�������

Abstract: Mutations in the TP53 gene are one of the most frequent events in cancers. Certain
missense mutant p53 proteins gain oncogenic functions (gain-of-functions) and drive tumorigenesis.
Apart from the coding genes, a few non-coding microRNAs (miRNAs) are implicated in mediating
mutant p53-driven cancer phenotypes. Here, we identified miRNAs in mutant p53R273H bearing
non-small cell lung carcinoma (NSCLC) cells while using small RNA deep sequencing. Differentially
regulated miRNAs were validated in the TCGA lung adenocarcinoma patients with p53 mutations
and, subsequently, we identified specific miRNA signatures that are associated with lymph node
metastasis and poor survival of the patients. Pathway analyses with integrated miRNA-mRNA
expressions further revealed potential regulatory molecular networks in mutant p53 cancer cells.
A possible contribution of putative mutant p53-regulated miRNAs in epithelial-to-mesenchymal
transition (EMT) is also predicted. Most importantly, we identified a novel miRNA from the
unmapped sequencing reads through a systematic computational approach. The newly identified
miRNA promotes proliferation, colony-forming ability, and migration of NSCLC cells. Overall,
the present study provides an altered miRNA expression profile that might be useful in biomarker
discovery for non-small cell lung cancers with TP53 mutations and discovers a hitherto unknown
miRNA with oncogenic potential.

Keywords: microRNA; non-small cell lung carcinoma; mutant p53; gain of function; small RNA
sequencing; TCGA; novel miRNA; node metastasis; survival

1. Introduction

Mutations in the tumor suppressor TP53 gene influence cancer progression and clinical outcomes
of human cancers [1,2]. Most of these mutations are monoallelic missense point mutations that
result in the synthesis of full length mutant p53 proteins with altered functions [3]. These mutations
generally occur at high frequencies in six “hot spot” amino acid residues [3] of the central DNA-binding
domain of p53, which causes a loss of its sequence-specific DNA-binding activity. In addition to the
loss of wild-type tumor suppressor properties, mutant p53 gains new functions (GOFs) to promote
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various oncogenic phenotypes, including cancer cell proliferation, increased DNA replication, genomic
instability, invasion, metastasis, and increased chemo-resistance [4–8]. GOF mutant p53, designated
as an oncogenic transcription factor, can modulate the expression of several genes that are involved
in oncogenic processes [9]. By cooperating with other transcription factors, such as NF-Y and Sp1,
mutant p53 is recruited to target promoters and it facilitates the transcription of the respective genes [9].
Physical interactions of mutant p53 with tumor suppressors p63 and p73 sequesters these proteins and
inhibits the transactivation of their respective target genes [5,10,11]. Moreover, in response to DNA
damage, GOF mutant p53 transactivates cellular genes by recruiting histone modifiers [12].

Lung cancer is one of the leading causes of cancer-related deaths across the world [13].
Approximately 80% of all primary lung cancer cases are classified as non-small cell lung cancer
(NSCLC) [14,15] and more than 50% of NSCLC patients generally carry TP53 mutations that predict
poor prognosis [14–16]. These findings suggest that TP53 mutation determines malignant progression
in NSCLC. Among the six “hot spot” missense point mutations, R273 is one of the most frequently
mutated (6.7%) residues in human cancers [12], particularly in the NSCLC (~5%) (IARC database,
http://www-p53.iarc.fr). Mutant p53R273H has been reported to confer enhanced chemo-resistance
and increased cell migration in NSCLC cell line H1299 [17,18]. Moreover, several in vitro and in vivo
studies demonstrated the ability of this p53 mutant to induce GOF properties, such as cancer cell
invasion, survival, and proliferation; increased migration; drug resistance; anchorage-independent
growth; and, genomic instability [19].

The pivotal role of miRNAs in human cancer is well established. Several oncogenic and
tumor-suppressive miRNAs have already been identified [20]. The role of miRNAs in mediating
tumor suppressor functions of wild-type p53 is also well documented [21]. Genome-wide studies
have identified wild-type p53-regulated miRNAs that contribute to tumor suppression and stress
responses [22,23]. Although the link between wild type p53 and miRNA is well established, the role
of mutant p53 in regulating cellular miRNAs is still emerging. Donzelli et al. first reported that
miR-128b is transcriptionally regulated by mutant p53 and it confers chemo-resistance to lung cancer
cells [24]. Another report demonstrated that, upon DNA damage, down-regulation of miR-223 by GOF
p53R175H via ZEB-1 (a transcriptional repressor) contributes to chemo-resistance of cultured tumor
cells [25]. A few other cellular miRNAs (e.g., let-7i, miR-130b, -27a, and -155) is also implicated in
mutant p53-driven cancer cell invasion, metastasis, epithelial-to-mesenchymal transition (EMT), and
proliferation [26–29]. These evidences suggest that miRNA is a critical mediator of mutant p53 GOF
properties in cancer cells. Therefore, identification of mutant p53-regulated miRNAs on a genome-wide
scale is of paramount importance in mutant p53 gain-of-function research.

In this study, using small RNA deep sequencing, we identified GOF mutant p53R273H regulated
miRNAs in NSCLC cells. We subsequently explored mutant p53R273H-regulated miRNA-mRNA
molecular networks and their functions through systematic computational analyses. miRNAs that
were obtained from our sequencing experiment were further validated in The Cancer Genome Atlas
(TCGA) lung adenocarcinoma patient dataset. Moreover, our analyses identified mutant p53-regulated
miRNAs that are associated with lymph node metastasis and poor clinical outcome in lung cancer
patients. Most importantly, we discovered a novel miRNA that appeared to be involved in augmenting
oncogenic phenotypes in cancer cells. Collectively, the findings of the present study further enrich the
evolving knowledge of GOF mutant p53-regulated miRNAs and present a potential novel miRNA
with oncogenic functions.

2. Materials and Methods

2.1. Cell Culture

To generate mutant p53R273H expressing stable H1299 cell line, the cells were first transfected
with pCMV-p53R273H expression plasmid (pCMV-Neo-Bam-p53 R273H, kindly provided by Bert
Vogelstein, Johns Hopkins Kimmel Cancer Center, Baltimore, MD, USA) while using Lipofectamine 2000
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(Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA, USA). Forty-eight hours post-transfection, the
cells were sub-cultured at a ratio of 1:6 density in media supplemented with G418 (Life Technologies,
Thermo Fisher Scientific Inc., Waltham, MA, USA) at a final concentration of 800 µg/mL. After
15–20 days, G418 resistant colonies were selected and propagated in G418 containing (400 µg/mL)
medium to generate mutant p53R273H expressing stable cell lines. H1299 cells that were infected with
an empty vector were kindly provided by Varda Rotter (Weizmann Institute of Science, Rehovot,
Israel). A549 cell line was purchased from ATCC. All cell lines were cultured in RPMI 1640 medium
(Life Technologies, Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented with 10% fetal
calf serum, 1% Pen-Strep, and 0.006% Gentamicin (Life Technologies, Thermo Fisher Scientific Inc.,
Waltham, MA, USA). STR profiling confirmed the isogeneity of H1299/EV and H1299/ mutant p53R273H

cell lines, as described previously [6].

2.2. Western Blotting

Cells that were grown in 35 mm dish were lysed in NP-40 cell lysis buffer (Life Technologies,
Thermo Fisher Scientific Inc., Waltham, MA, USA) supplemented with protease inhibitor cocktail
(Sigma Aldrich, St. Louis, USA) and 30 µg of total protein was immunoblotted with antibodies
against p53 (DO-1 (SC-126), Santa Cruz Biotechnology, CA, USA), and β-actin (# A5316, Sigma Aldrich,
St. Louis, MO, USA).

2.3. RNA Isolation, Small RNA Library Preparation, and Deep Sequencing

Small RNA fractions from cells were isolated while using PureLink miRNA Isolation kit (Ambion,
Austin, TX, USA) according to the manufacturer’s protocol. Briefly, in a two-column based purification
method, the cells were first resuspended in binding buffer containing guanidine isothiocyanate and
then mixed with ethanol (final concentration 35%). It was then passed through a spin column and
the flow through containing the small RNAs was collected. Ethanol (final concentration 70%) was
added to the flow, followed by extraction though silica-based columns, where the small RNAs bind to
the silica membrane. The impurities were subsequently removed by washing the columns with wash
buffer and small RNAs were eluted in RNase free water. The enrichment of miRNAs in small RNA
samples was assessed by Qubit®2.0 Fluorometer (Life Technologies, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) and Agilent®2100 Bioanalyzer using Small RNA kit (Agilent Technologies, Santa
Clara, CA, USA) (Supplemental Figure S1A). Total RNA-Seq kit V2.0 (Life Technologies, Thermo Fisher
Scientific Inc., Waltham, MA, USA) was used to prepare small RNA cDNA libraries. Briefly, small
RNAs (~150–250 ng) were first mixed with Hybridization Solution and Ion Adaptor Mix v2, followed
by hybridization in a thermal cycler. Ligation enzyme mix was added to the hybridization reactions
and then incubated in a thermal cycler at 16 ◦C for 16 h. Adapter-ligated small RNA samples were
subsequently reverse transcribed with Ion RT Primer v2 and SuperScript®III Enzyme Mix to make
cDNAs. The cDNA products were purified and size-selected while using the magnetic bead clean-up
module and PCR amplified with Ion 5′ and 3′ PCR Primers. The amplified DNAs were quantified and
assessed for size distribution using Agilent®DNA 1000 Kit in Agilent®2100 Bioanalyzer. The cDNA
libraries were clonally amplified on Ion Sphere™ Particles (ISPs) by emulsion PCR in Ion OneTouch™
System using Ion OneTouch™ 200 Template Kit v2 DL (Life Technologies, Thermo Fisher Scientific
Inc., Waltham, MA, USA). The enrichment of the template positive ion spheres was carried out in Ion
OneTouch™ Enrichment System. Template enriched ion sphere particles were subsequently sequenced
in Ion PGM™ sequencer (Model No. 508-U001, Life Technologies, Thermo Fisher Scientific Inc.,
Waltham, MA, USA) using Ion 316™ Chip and Ion PGM™ 200 Sequencing Kit (Life Technologies,
Thermo Fisher Scientific Inc., Waltham, MA, USA). The Torrent Suite Software (Life Technologies,
Thermo Fisher Scientific Inc., Waltham, MA, USA) analysis pipeline was used to process raw data that
were acquired from the Ion PGM™ sequencer to generate read files containing high-quality bases and
output base calls in FASTQ file formats.
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Raw sequence reads, as FASTQ format, were pre-processed using FASTX-toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/) to generate high-quality reads. Reads were trimmed at 3′ end and the base
quality value was calculated while using the Phred quality score (Q ≥ 20). We only considered
sequencing reads of length between 17 bp to 35 bp (Supplemental Figure S1B). High-quality raw reads
were aligned to the reference miRBase (miRBase20; http://www.mirbase.org/) while using SHRiMP
aligner (http://compbio.cs.toronto.edu/shrimp/). After alignment, an in-house Perl script was used
for counting the reads that were aligned to miRNA, tRNA, rRNA, and adapter sequences. Reads
not aligned in SHRiMP aligner were used for further mapping to the human genome (GRCh37/hg19;
https://genome.ucsc.edu/) while using Novoalign with miRNA mode (http://www.novocraft.com/).
The miRNA read counts were adjusted according to the aligned reads from both SHRiMP and
Novoalign. miRNAs with three or more reads were used for differential expression analysis in R
package DESeq. The remaining reads that were mapped to the genome beyond the annotated miRNAs
were further used for novel miRNA prediction.

2.4. Quantitative Real Time PCR

Total RNA from cell lines was isolated using TRIZOL (Invitrogen, Thermo Fisher Scientific Inc.,
Waltham, MA, USA), according to the manufacturer’s protocol. Around 250 ng of total RNA was
reverse transcribed to prepare cDNAs using either miRNA specific stem-loop primers [30] or miScript
II RT Kit (Qiagen, Hilden, Germany). Real time PCR reactions of cDNAs were carried out with forward
primers specific to each miRNA in 7500 Fast and StepOnePlus Real-Time PCR Systems (Applied
Biosystems, Foster City, CA, USA) while using Fast start universal SYBR Green master mix (Roche,
Penzberg, Germany). U6 snRNA was used as endogenous reference control. Fold change values
(2−∆∆C

T) were calculated from the mean of three independent experiments. Two-tailed student’s
t test was used to compute statistical significance. Primer sequences for mature miRNAs are listed in
Supplemental Table S7.

2.5. Prediction of Novel MiRNAs

Quality processed reads that were not mapped to miRBase 20 using SHRiMP aligner were further
used for novel miRNA prediction. Reads were aligned to the human genome assembly (GRCh37/hg19)
while using a Novoalign aligner in miRNA mode to predict the potential miRNA hairpin loci in the
genome. The identified loci were subsequently mapped to the miRNA precursor sequences present
in miRBase 20. Reads that mapped to known miRNA loci were used to adjust the read count in
SHRiMP predicted miRNAs. The remaining reads were used for subsequent analyses in novel miRNA
prediction. Candidate sequences that had minimum four read counts across the samples and aligned to
loci not reported in miRBase 20 were considered for further analyses. The predicted hairpin sequences
were analyzed in mfold 3.2 for secondary structure prediction. Candidate sequences that showed
characteristic precursor stem-loop structure with minimum free energy (MFE) ∆G ≤ −20 kcal/mol and
formed the stem region of the mature miRNA were considered as potential novel miRNAs.

2.6. miRNA Target Prediction and Pathway Analysis in IPA

Differentially regulated miRNAs by mutant p53R273H were analyzed while using the Ingenuity
Pathway Analysis (IPA; https://analysis.ingenuity.com) tool to identify their target genes, pathways,
and molecular networks. The selected miRNAs were uploaded in IPA and miRNA target filter was
used to identify their predicted and experimentally validated targets. Significantly enriched cellular
pathways, biological functions, and genetic networks by a given set of miRNAs were generated in
IPA. Integrated miRNA-mRNA expression analyses of the differentially regulated miRNAs and target
mRNAs in H1299/EV and H1299/mutant p53R273H cells were carried out while using the expression
pairing tool in IPA. Target genes of novel miRNA were predicted using miRanda [31]. The “seed”
sequence of the novel miRNA (2–8 bases at the 5′ end) was aligned to the 3′ UTRs of transcripts

http://hannonlab.cshl.edu/fastx_toolkit/
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downloaded from the UCSC GRCh37/hg19 for 100% complementarily with miRanda score ≥ 150 and
MFE ≤ −20 kcal/mol. The predicted targets were further analyzed in IPA for pathway enrichment.

2.7. Analysis of Publicly Available MiRNA Datasets

The TCGA miRNA sequencing dataset of lung adenocarcinoma patients was downloaded from
the TCGA data portal. The dataset contained miRNA seq data (level 3) of 230 lung adenocarcinoma
patients that were sequenced on Illumina GA and Illumina Hiseq platforms (https://tcga-data.nci.
nih.gov/docs/publications/luad_2014/) [32]. The clinical and genetic information of 230 patients
were obtained from the article describing the study and cBioPortal (http://cbioportal.org) [32–34].
Lung adenocarcinoma patients were classified based on their TP53 mutation status for validation
of the mutant p53R273H-regulated miRNAs in TCGA dataset. The types of TP53 mutation present
in 230 patients were identified using TP53 somatic mutation dataset in the IARC TP53 Database [2]
(version R17, November 2013). Patients harboring truncated p53 were not considered in our analysis
because only p53 missense mutants are known to confer GOF properties [35]. Out of 47 differentially
regulated miRNAs in H1299/mutant p53R273H cells, we only considered 34 miRNAs that showed read
coverage ≥ 2 in the TCGA dataset. Unsupervised hierarchical clustering of TCGA patient samples was
done with complete linkage using Euclidean distance as a distance metrics based on their normalized
miRNA read counts to remove the outliers. After outlier elimination, differential expression analysis
of miRNAs was carried out between patients with wild-type and missense mutant p53 applying the
empirical Bayes, moderated t-statistics in Bioconductor package LIMMA.

Patients were divided into node-positive (N+, n = 85) and node-negative (N0, n = 138) groups
based on their N stage status to identify the mutant p53R273H regulated miRNAs that are involved
in lymph node metastasis. Patients without N stage information (n = 7) were excluded from the
analysis. The Mann–Whitney test was applied to determine the statistical significance of the difference
between the relative expression of seven mutant p53-regulated miRNAs in N+ and N0 group of
patients. Receiver operating characteristic (ROC) analyses were done in GraphPad Prism version
5.03. Survival analysis for seven mutant p53 regulated miRNAs was done using the Kaplan–Meier
estimate in GraphPad Prism version 5.03. For survival analysis, we only considered those patients
whose survival data was available in the TCGA clinical dataset (n = 195) obtained from the cBioPortal
and were classified based on high (≥75th percentile) and low (≤25th percentile) expression of the
respective miRNA.

NCI-60 miRNA expression dataset (GEO accession number GSE26375) was analyzed to obtain the
expression values of the mutant p53-regulated miRNAs. The NCI-60 cell lines were further classified
as mesenchymal and epithelial cell types that are based on E-Cadherin/Vimentin expression ratio,
as reported by Sun-Mi Park et al [36]. Subsequently, bioconductor package LIMMA was applied to
compare the relative expression of these miRNAs between epithelial and mesenchymal groups of
NCI-60 cell lines [36].

Small RNA sequencing data of 20 lung adenocarcinoma tissues and 10 squamous cell carcinoma,
and 30 corresponding paired noncancerous lung tissues from the same patients were downloaded from
the GEO database (GSE33858). Read alignment files (BAM) for these samples were used to identify
the expression profile of newly identified miRNA. htseq-count within the HTSeq Python library were
used to determine the count of known as well as newly identified miRNAs from both tumor and
corresponding noncancerous tissues [37]. Differential expression analysis of miRNAs was performed
while using DESeq [38].

2.8. Cloning of Novel MiRNA

The newly identified miRNA (miR-X) precursor sequence was amplified from genomic DNA
using specific primers having KpnI and HindIII restriction enzyme sites at 5′ and 3′ ends, respectively.
Following digestion with KpnI and HindIII, PCR amplified product was cloned into the pRNA-U6.1
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miRNA expression vector. The ligated products were transformed in E.coli DH5α and positive clones
were selected by restriction digestion and sequencing.

2.9. Cell Proliferation Assay

Cells that were transfected with pRNA-U6.1-miR-X or control empty vector were seeded at 4000
cells/well of 96 well plate and cultured in complete medium up to seven days. Cell proliferation was
measured on individual days while using WST1 cell proliferation reagent (Roche, Penzberg, Germany)
according to the manufacturer’s protocol. Relative viability index was calculated in MS-Excel from the
average absorbance values that were obtained from three biological replicates.

2.10. Intracellular Ki-67 Staining

Cells that were transfected with pRNA-U6.1 vector or pRNA-U6.1-miR-X plasmid were trypsinized
and resuspended in wash buffer (1X PBS containing 1% FBS and 0.02% sodium azide) 48 h
post-transfection. Cells were fixed in 1% paraformaldehyde for 15 min. and then washed with
wash buffer followed by permeabilization with 1X Perm 2 solution (BD, Franklin Lakes, New Jersey,
USA). The cells were washed with saponin wash buffer and resuspended in saponin wash buffer
containing Ki-67 antibody (1:50, D2H10, Rabbit mAB, Cell signaling technology, Danvers, MA, USA)
or isotype control (Rabbit mAb IgG (DA1E) XPR, Cell signaling technology) and incubated for 40 min
at room temperature. The cells were washed and incubated with goat anti-rabbit Alexa Fluor 488
secondary antibody (1:100, Molecular Probes, Invitrogen, Carlsbad, CA, USA) for 30 min in the
dark. The cells were washed three times with saponin wash buffer and finally resuspended in 1%
paraformaldehyde solution. The stained cells were analyzed by FACS in BD LSRFortessa while using
BD FACSDiva 6.2 software.

2.11. Colony Formation Assay

Around 1500 cells were seeded on 6 cm dishes and allowed to grow in complete medium for
10–15 days until the appearance of visible colonies. The colonies were stained with 0.1% methylene blue
for 30 min at room temperature, followed by washing with 1X PBS. Stained colonies were photographed
and counted while using ImageJ software (http://rsb.info.nih.gov/ij/). The average number of colonies
from three independent biological experiments were plotted in GraphPad Prism version 5.03.

2.12. Monolayer Wound Healing Assay

Approximately 1 × 106 cells plated on a six-well plate were transfected with control pRNA-U6.1
vector or pRNA-U6.1-miR-X and they were grown for 30 h before the scratch was introduced.
Photographs were taken at 0 h and 16–18 h after the scratch was introduced using a microscope
(Olympus 1 × 51, camera Jenoptik). The relative distance that was migrated by the cells over time
was measured in order to compare the wound healing capability of control and miR-X overexpressing
cells. The percentage of average distance migrated by the cells was calculated from the data that were
obtained from three independent experiments.

2.13. Availability of Data and Materials

Small RNA sequencing data have been submitted to the GEO database with the accession
number GSE68353

3. Results

3.1. Small RNA Sequencing Identifies MiRNAs Deregulated in GOF Mutant p53 Cancer Cells

We carried out small RNA sequencing in NSCLC cell line H1299 either harboring a control empty
vector (H1299/EV) or stably expressing mutant p53R273H (H1299/mutant p53R273H) to identify GOF
mutant p53-regulated miRNAs on a genome-wide scale (Figure 1A). Normalized read counts of each
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group showed a good correlation between biological replicates with an average Pearson correlation
coefficient > 0.9 (Figure 1B, Table 1). Approximately 72 to 80% reads were mapped to the reference
miRBase (miRBase20; http://www.mirbase.org/) in both H1299/EV and H1299/mutant p53R273H cells
(Table 1). Differential expression analysis of the mapped miRNAs yielded forty-seven differentially
regulated miRNAs between the control and mutant p53R273H expressing cells (p-value < 0.05; fold
change ≥ 2) (Figure 1C). Among these, 21 miRNAs were found to be up-regulated and 26 were
down-regulated in H1299/mutant p53R273H cells. Subsequent qRT-PCR-based validation of seven
randomly selected miRNAs in the control and mutant p53R273H cells showed concordant results with
the genome-wide sequencing data (Figure 1D). The differentially regulated miRNAs were subjected to
pathway analysis while using the Ingenuity Pathway Analysis tool (IPA; https://analysis.ingenuity.com)
to gain further insight into the biological changes that they could impart in mutant p53 cells. Crucial
cellular functions, such as the regulation of cell cycle, cellular development, growth and proliferation,
movement, and DNA replication, recombination, and repair were significantly enriched in our analyses
(Table 2). Notably, most of the pathways enriched are generally found to be altered in cancer and
affected by GOF mutant p53 [4,5]. Three miRNA-mRNA networks (IPA score ≥ 25) were significantly
enriched by these miRNAs (Figure 2 and Supplemental Table S1). Among the significantly enriched
networks, TP53 was found to either be targeted by, or regulate many, miRNAs that were deregulated in
GOF mutant p53 cells (Figure 2). Downregulated miRNAs, like mir-194 and mir-296, were the targets
of p53 and possibly works in a positive feedback loop with wildtype p53, while upregulated miRNAs,
mir-132, mir-140, and mir-17 were either directly or indirectly regulated by mutant p53. Apart from
TP53, ephrin-B family receptor EPHB6, transforming growth factor β (TGFBI), and Insulin were also
enriched as major focal nodes in the miRNA-mRNA networks (Figure 2). Interactions with EphB6,
TGFβ1, and Insulin suggest the possible contribution of these crucial signaling factors in mutant p53
oncogenic gain-of-functions.

Table 1. Sequencing summary of the small RNA libraries. Raw reads were quality processed and
aligned to the reference human genome (GRCh37/hg19) and miRBase (miRBase20). Total number
and the percentage of processed reads mapped to miRNA, tRNA, rRNA, and adaptors are shown.
The number of miRNAs identified in each sample with ≥1 or ≥3 read counts are indicated.

Samples H1299/EV
Replicate 1

H1299/EV
Replicate 2

H1299/R273H
Replicate 1

H1299/R273H
Replicate 2

Total Raw Reads 1,442,378 751,538 1,292,998 874,753

Reads after pre-processing 753,866 340,244 566,961 500,523

Mapping to References (miRBase,
rRNA, tRNA & Adaptor)

Total Reads 582,481 261,368 462,283 420,018

Percentage 77.27 76.82 81.54 83.92

Reads mapped to miRNA
Total Reads 540,145 251,022 453,934 408,055

Percentage 71.65 73.78 80.06 81.53

Reads mapped to tRNA
Total Reads 40,071 9763 7932 11,191

Percentage 5.32 2.87 1.40 2.24

Reads mapped to rRNA
Total Reads 2235 575 406 767

Percentage 0.30 0.17 0.07 0.15

Reads mapped to adaptor
Total Reads 30 8 11 5

Percentage 0.0040 0.0024 0.0019 0.0010

Total expressed miRNA (1 or
more reads) 692 512 507 518

miRNA (3 or more reads) 363 245 299 306

The expression of miRNAs is anti-correlated with that of their target mRNAs. Therefore, we carried
out an integrated miRNA-mRNA expression analysis to identify potential miRNA-mRNA modules
through which GOF mutant p53 could impart its oncogenic functions (Figure 3). We determined the
anti-correlated miRNA-mRNA modules by integrated analysis of miRNA and mRNA expression in
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H1299 cells expressing mutant p53R273H. For this we first analyzed the transcriptome data in H1299
cells with or without R273H mutant p53 [39]. Next, using the miRNA-mRNA expression pairing tool
in IPA, we identified anti-correlated miRNA-target mRNA pairs in H1299 cells expressing mutant
p53R273H (Figure 3). Twelve up-regulated and eight down-regulated miRNAs showed an inverse
correlation with the expression patterns of their target genes in presence of mutant p53R273H (Figure 3
and Supplemental Table S2). Genes, like TGFB1, SERPINA1, FOSL1, and SRGAP1, were targeted by
more than one miRNA, suggesting their regulation by multiple miRNAs in mutant p53 cancer cells.Genes 2019, 10, x FOR PEER REVIEW 8 of 24 

 

 
Figure 1. miRNA expression profiling in H1299 cells expressing mutant p53R273H using small RNA 
sequencing. (A) Immunoblot showing mutant p53R273H level in H1299/ mutant p53R273H stable cells. (B) 
Scatter plots showing a correlation of normalized read counts between biological replicates of 
individual samples. (C) Heat map showing normalized read counts of miRNAs differentially 
expressed (p-value ≤ 0.05) between H1299/mutant p53R273H and H1299/EV cells. Hierarchical 
clustering of samples is shown. Color bar indicates Z- scores of normalized read counts. Red color 
indicates high expression, green color indicates low expression. (D) Validation of the selected 
differentially expressed miRNAs in H1299/mutant p53R273H cells using qRT-PCR. Bar graphs represent 
mean ± s.d.; n≥ 2; two-tailed Student’s t-test: * p < 0.05. A relative comparison of qRT-PCR data with 
the deep sequencing results is shown. 

Notably, the analyses showed that most of the target genes of mutant p53R273H-regulated 
miRNAs were down-regulated in the mutant p53 cells, which thereby suggests an important role of 
cellular miRNAs in mediating GOF mutant p53-mediated regulation of cellular gene expression.  

Figure 1. miRNA expression profiling in H1299 cells expressing mutant p53R273H using small RNA
sequencing. (A) Immunoblot showing mutant p53R273H level in H1299/ mutant p53R273H stable cells.
(B) Scatter plots showing a correlation of normalized read counts between biological replicates of
individual samples. (C) Heat map showing normalized read counts of miRNAs differentially expressed
(p-value ≤ 0.05) between H1299/mutant p53R273H and H1299/EV cells. Hierarchical clustering of
samples is shown. Color bar indicates Z- scores of normalized read counts. Red color indicates high
expression, green color indicates low expression. (D) Validation of the selected differentially expressed
miRNAs in H1299/mutant p53R273H cells using qRT-PCR. Bar graphs represent mean ± s.d.; n≥ 2;
two-tailed Student’s t-test: * p < 0.05. A relative comparison of qRT-PCR data with the deep sequencing
results is shown.
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Figure 2. Molecular networks enriched by miRNAs differentially expressed in H1299/mutant p53R273H 
cells. Ingenuity Pathway Analysis (IPA) generated top three significantly enriched regulatory 

Figure 2. Molecular networks enriched by miRNAs differentially expressed in H1299/mutant p53R273H

cells. Ingenuity Pathway Analysis (IPA) generated top three significantly enriched regulatory networks
of mutant p53R273H regulated miRNAs. The networks illustrate direct or indirect interactions between
altered miRNAs and their target genes. Only the highlighted (green/red) miRNAs were present in our
dataset. Green and red represent down-regulated and up-regulated miRNAs, respectively.
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Figure 3. Molecular networks of anti-correlated miRNA-mRNA pairs in H1299/mutant p53R273H cells 
derived from the integrated miRNA-mRNA expression analysis. Target genes of the up-regulated 
miRNAs (Red) were down-regulated (Green) [upper panel] and those of down-regulated miRNAs 

Figure 3. Molecular networks of anti-correlated miRNA-mRNA pairs in H1299/mutant p53R273H cells
derived from the integrated miRNA-mRNA expression analysis. Target genes of the up-regulated
miRNAs (Red) were down-regulated (Green) [upper panel] and those of down-regulated miRNAs
(Green) were up-regulated (Red) [lower panel] in the presence of mutant p53R273H. The color intensity
of the nodes indicates relative miRNA or mRNA expression levels in presence of mutant p53R273H.
The types of interaction between miRNAs and their respective target mRNAs are represented by
arrows in dark red (experimentally validated), bright orange (highly predicted), and light blue
(moderately predicted).



Genes 2019, 10, 852 11 of 23

Notably, the analyses showed that most of the target genes of mutant p53R273H-regulated miRNAs
were down-regulated in the mutant p53 cells, which thereby suggests an important role of cellular
miRNAs in mediating GOF mutant p53-mediated regulation of cellular gene expression.

Table 2. Molecular and cellular functions enriched in H1299/mutant p53R273H cells.

H1299/EV vs H1299/mutant p53R273H

Molecular and Cellular Functions

Name p-Value # Molecules

Cell Cycle 7.36E-06-4.52E-02 8

Cellular Development 7.50E-05-4.82E-02 13

Cellular Growth and Proliferation 7.50E-05-4.82E-02 12

Cellular Movement 2.72E-04-3.14E-02 10

DNA Replication, Recombination and Repair 3.67E-04-4.82E-02 5

3.2. Validation of GOF Mutant p53-Regulated MiRNAs in Lung Adenocarcinoma (LUAD) Patients

Next, the mutant p53R273H-regulated miRNAs that were obtained from our sequencing study
were validated in lung adenocarcinoma patients having wild-type or missense mutant p53 from the
TCGA LUAD dataset (https://tcga-data.nci.nih.gov/docs/publications/luad_2014/). Seven miRNAs
were found to be significantly (p-value < 0.05) altered in patients with p53 mutations and showed
expression patterns that were similar to that observed in our cell line experiments (Figure 4A). Two
miRNAs (miR-132 and -147b) were significantly up-regulated, whereas five (miR-99a, -218, -30d, -24,
and -625) were found to be significantly down-regulated (Figure 4A,B). The association observed
between the expression patterns of these miRNA with p53 mutation status in lung cancer patients
might point towards their potential role in mediating mutant p53-driven cancer phenotypes. It is
notable, however, that only seven of the mutant p53R273H regulated miRNAs could be successfully
validated in TCGA patient dataset. This might be attributed to genetic heterogeneity as well as cell
type compositions amongst the patients, a phenomenon that is not generally observed in cell lines.
Additionally, the differential effects of various p53 mutants upon miRNAs or target genes cannot
be overruled.

The association of p53 mutations with tumor aggressiveness and metastasis, including that in
NSCLC, is well demonstrated [15,40,41]. Therefore, we sought to determine the possible contribution
of these seven mutant p53R273H-regulated miRNAs in predicting lymph node metastasis (LNM) in
lung adenocarcinoma patients. To this end, the relative expression levels of individual miRNAs
were compared between lymph node positive (N+) and lymph node negative (N0) group of patients
(Figure 5A and Supplemental Table S3). The up-regulated miRNAs (miR-132 and miR-147b) showed
significantly (p-value ≤ 0.05) higher expression in N+ patients when compared to the N0 group
(Figure 5A), thereby suggesting a possible role of these miRNAs in driving lymph node metastasis in
lung cancer.

https://tcga-data.nci.nih.gov/docs/publications/luad_2014/
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respectively. miRNAs shown in red are significantly (p < 0.05) altered between wild-type and mutant 
p53 patients with a pattern similar to that of our small RNA sequencing results. Heat map scale bar 
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normalized read counts of two up-regulated and five down-regulated miRNAs in patients with 
mutant p53. p-values are indicated. 
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Figure 4. Validation of mutant p53R273H-regulated miRNAs in the TCGA lung adenocarcinoma patient
dataset. (A) Heat map showing normalized read counts of mutant p53R273H-regulated miRNAs across
TCGA lung adenocarcinoma patients bearing wild type and mutant p53. Based on TP53 mutation status,
TCGA patients were categorized into two groups, wild type and mutant p53 patients. The relative
expression levels of mutant p53-regulated miRNAs obtained in the present study were subsequently
validated by comparing their normalized read counts between these two groups of patients. Patients
with wild type p53 and mutant p53 are shown in black and red color letters respectively. miRNAs
shown in red are significantly (p < 0.05) altered between wild-type and mutant p53 patients with a
pattern similar to that of our small RNA sequencing results. Heat map scale bar indicates Z-scores
of normalized read count values. (B) Box-Whisker plots showing log2 transformed normalized read
counts of two up-regulated and five down-regulated miRNAs in patients with mutant p53. p-values
are indicated.
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Figure 5. Mutant p53R273H-regulated miRNAs predict lymph node metastasis (LNM) in lung 
adenocarcinoma patients. (A) Relative expression of seven mutant p53-regulated miRNAs in lymph 
node positive (N+, n = 85) and lymph node negative (N0, n = 138) patients. Scatter plots showing 
normalized expression (RPM) of individual miRNAs in N+ and N0 group of patients. p-values are 
indicated. (B) Receiver operating characteristic (ROC) curve analyses for LNM prediction in lung 
adenocarcinoma patients using relative expression of miR-132, miR-147b, and miR-30d. Area under 
the receiver operating characteristic curve (AUC) is shown. p -values are indicated. 

Figure 5. Mutant p53R273H-regulated miRNAs predict lymph node metastasis (LNM) in lung
adenocarcinoma patients. (A) Relative expression of seven mutant p53-regulated miRNAs in lymph
node positive (N+, n = 85) and lymph node negative (N0, n = 138) patients. Scatter plots showing
normalized expression (RPM) of individual miRNAs in N+ and N0 group of patients. p-values are
indicated. (B) Receiver operating characteristic (ROC) curve analyses for LNM prediction in lung
adenocarcinoma patients using relative expression of miR-132, miR-147b, and miR-30d. Area under the
receiver operating characteristic curve (AUC) is shown. p -values are indicated.
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indicates the number of patients in respective miRNA low and high groups. 

Among the five down-regulated miRNAs, the expression of only miR-30d was found to be 
significantly (p-value ≤ 0.05) low in N+ patients when compared to those without lymph node 
involvement (Figure 5A). The observation suggests a negative role of miR-30d in lymphatic 

Figure 6. Mutant p53R273H-regulated miRNAs determine poor survival in lung adenocarcinoma
patients. Kaplan–Meier analyses showing relative survival probabilities of lung adenocarcinoma
patients with high (≥75th percentile) and low (≤25th percentile) expression of the individual mutant
p53-regulated miRNAs. Log-rank p-value, hazard ratio, and median survival time are indicated. n
indicates the number of patients in respective miRNA low and high groups.
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Among the five down-regulated miRNAs, the expression of only miR-30d was found to be
significantly (p-value ≤ 0.05) low in N+ patients when compared to those without lymph node
involvement (Figure 5A). The observation suggests a negative role of miR-30d in lymphatic metastasis
during lung cancer progression. We validated these three miRNAs (miR-132, miR-147b, and miR-30d)
in predicting lung cancer lymph node metastasis while using ROC (Receiver operating characteristic)
curve analysis to further strengthen these results. For all three miRNAs, the LNM prediction accuracy
was found to be statistically significant (p-value ≤ 0.05) with an area under the curve (AUC) >

0.5 (95% CI) (Figure 5B), thereby suggesting these miRNAs as significant predictors of LNM in
lung adenocarcinoma. To further investigate the prognostic significance of mutant p53-regulated
miRNAs in lung adenocarcinoma, we assessed their correlation with patients’ overall survival using
Kaplan–Meier survival analysis. Among the seven miRNAs, expression of miR-132 and miR-99a were
found to be significantly (Log-rank p-value ≤ 0.05) associated with patients’ survival (Figure 6 and
Supplemental Table S4). The analysis showed poor overall survival in patients with high miR-132
expression (Median survival, 35.52 months; Hazard ratio, 2.679), as well as in those with low miR-99a
expression (Median survival, 32.82 months; Hazard ratio, 2.113). Taken together, our analyses suggest
a significant contribution of mutant p53-regulated miRNAs in determining the clinical outcome in
lung adenocarcinoma patients.

3.3. Mutant p53-Regulated MiR-194 and MiR-378a Predict EMT Phenotype in Cancer Cells

GOF mutant p53 promotes EMT by modulating the expression of genes that are involved in cell
adhesion, invasion, and migration [42–44]. Moreover, miRNAs are implicated in mutant p53-driven
EMT process [26,45]. Hence, we investigated whether mutant p53R273H-regulated miRNAs that were
obtained in our study could also predict EMT in cancer cells. To this end, we conducted an integrated
analysis using the NCI-60 miRNA expression dataset [46]. Among the 47 differentially regulated
miRNAs identified in the present study, information on 37 were available in the NCI-60 dataset
(GSE26375). Based on the E-Cadherin/Vimentin expression ratio [36], the NCI-60 cell lines were
first divided into epithelial and mesenchymal cell types and differential expression analysis for the
37 miRNAs was subsequently carried out between these two groups. Two miRNAs, miR-194 and
miR-378a, were found to be significantly (p-value ≤ 0.05) down-regulated in the mesenchymal group
as compared to that of epithelial cells (Figure 7). Previous reports also suggested the involvement of
these two miRNAs in EMT and cancer metastasis [47,48]. Furthermore, negative regulation of miR-194
by mutant p53 has also been shown in endometrial cancer cells [26]. In view of these previous reports,
the results of our analyses point towards an important role of mir-194 and miR-378a in mediating the
GOF mutant p53-driven EMT process in cancer cells.
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lines with mesenchymal phenotype. Box-Whisker plots showing relative expression of miR-194 and
miR-378a in mesenchymal and epithelial groups of NCI-60 cell lines. p-values are indicated.
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3.4. Discovery of a Novel MiRNA

Next-generation deep sequencing coupled with high throughput bioinformatic analyses enables
researchers to discover novel miRNAs with high sensitivity and specificity [49]. Here, while using
the sequencing reads that did not align to the miRbase (miRBase20; http://www.mirbase.org/), we
tried to identify candidate sequences that have potential precursor miRNA hairpin structures around
their genomic coordinates. We identified three putative hairpin precursor miRNAs. One of them is
in the intergenic region of chromosome 1 (chr1:168239822-168239840), while the other two overlaps
with the tRNA-Ile-ATT (chr6:27,636,363-27,636,381) and tRNA-Asp-GAY (chr12:96,429,800-96,429,817).
These two candidates might have been falsely determined and they could be part of the degraded
tRNA. However tRNA-derived RNA fragments [50] and miRNAs [51] are also being reported in the
literature. The sequence that was mapped to the intergenic region of the genome was considered for
further validation. The secondary structure of its precursor miRNA showed a characteristic stem-loop
structure (Figure 8A) with ∆G = −27.40 kcal/mol and the mature sequence mainly lies on the stem region.
Interestingly, the novel miRNA, designated as “miR-X” was found to be homologous to the efu-miR-9277
of bat, which suggests its possible existence. Furthermore, we have used the publicly available dataset
(GSE33858) of lung adenocarcinoma, squamous cell carcinoma, and corresponding noncancerous tissue
samples, and evaluated the expression profile of miR-X. Integrative Genomics Viewer of the primary
aligned reads across the miR-X region showed the expression of miR-X in some of lung adenocarcinoma,
squamous cell carcinoma, and adjacent noncancerous tissues (Supplemental Figure S3). miR-X was found
to be upregulated in some of the adenocarcinoma and squamous cell carcinoma tissues as compared
to the corresponding adjacent noncancerous tissues of the same patients but was not significant at the
level of p = 0.05 (Figure 8B). To explore the biological functions of miR-X, we predicted its downstream
targets while using miRanda [31] and identified several putative target genes (Supplemental Table S5).
Subsequent pathway analysis of the predicted target genes showed significant enrichment of important
biological pathways (Supplemental Table S6). Moreover, network analyses of the target genes indicated
the possible involvement of miR-X in crucial cellular processes that are commonly deregulated in
cancer, including cell growth and proliferation; cellular assembly and organization, DNA replication,
recombination and repair, and cell-to-cell signaling (Supplemental Table S6).

3.5. Novel miR-X Promotes Oncogenic Properties in Lung Adenocarcinoma Cells

Next, we aimed to investigate the expression levels of the newly identified miRNA in cancer
cells harboring GOF mutant p53. To this aim, we compared the relative expression of miR-X between
H1299/EV and H1299/mutant p53R273H stable cell lines while using qRT-PCR. We found significant
up-regulation of miR-X in H1299 cells harboring mutant p53R273H when compared to the control cells
(Figure 9A). To further asses its possible biological functions, we investigated the cellular effect of
miR-X overexpression in different cell-based assays. For this, we cloned the newly identified miRNA
into pRNA.U6 miRNA expression vector and subsequently overexpressed in H1299 cells (Figure 9B).
The ectopic expression of miR-X led to a marked increase in the proliferation rate of H1299 cells,
as measured by WST-1 cell proliferation assay (Figure 9C), which was one of the most significantly
enriched networks for the miR-X target genes (Supplemental Table S6). We overexpressed miR-X in
another lung cancer cell line A549 to further validate this observation. A549 cells overexpressing miR-X
also showed significantly enhanced proliferation as compared to the control empty vector transfected
cells (Figure 9C). Consistent with these results, we observed significantly higher percentage of Ki67
positive cells in both H1299 and A549 cells upon miR-X overexpression, thereby confirming its role in
promoting lung cancer cell proliferation (Figure 9D,E). The growth promoting effect of miR-X was
further recapitulated in subsequent colony formation assay, where ectopic expression of the miRNA
clearly promoted the colony forming ability in H1299 cells (Figure 9F). We performed a monolayer
wound healing assay to determine whether miR-X could also promote cancer cells migration. When
compared to the empty vector-transfected H1299 cells, cells overexpressing miR-X was found to
migrate significantly faster, as measured by the relative distance that is covered by the cells after the

http://www.mirbase.org/
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scratch was introduced (Figure 9G). Together, these results suggest a potential role of miR-X in driving
oncogenic phenotypes.
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Figure 8. Discovery of the novel miRNA. (A) Stem-loop structure of the novel miRNA (miR-X)
precursor predicted by mfold version 3.6. The mature miRNA sequence is shown in red. The minimum
free energy (MFE; ∆G) of hairpin structure and the genomic coordinate of the mature sequence are
indicated. (B) Symbols and line graphs showing relative expression (counts per million) levels of miR-X
in paired tumor and non-tumor lung adenocarcinoma (left panel) or squamous cell carcinoma (right
panel) tissues. p-values are indicated.
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Figure 9. miR-X promotes oncogenic properties in lung cancer cells. (A) QRT-PCR data showing relative
expression levels of miR-X in H1299/EV and H1299/mutant p53R273H stable cell lines (B) QRT-PCR
data showing ectopic expression of miR-X in H1299 cells transfected with pRNAU6.1-miR-X. H1299
cells were transfected with either empty pRNAU6.1 vector or with 250 ng of pRNAU6.1-miR-X. Forty
eight hours post-transfection relative miR-X expression was evaluated using qRT-PCR. (C) Bar graphs
showing relative proliferation of H1299 (left panel) and A549 (right panel) cells upon ectopic expression
of miR-X as measured by WST-1 cell proliferation assay. Cells were transfected with either empty
vector or miR-X expression plasmid and 16 h post-transfection WST-1 assay was performed for the day
1 and for the days indicated. Data represents average absorbance values at 450 nm of three independent
experiments. (D,E) (Left panels) Histogram showing mean fluorescent intensities of empty vector and
miR-X transfected H1299 (D) and A549 (E) cells stained with anti-Ki-67 antibody as measured by FACS
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analyses. (Right panels) Bar graphs showing relative percentages of Ki-67 positive H1299 (D) and A549
(E) cells transfected with control empty vector or with miR-X expression plasmid. (F) (Upper panel)
Representative images of colonies formed by H1299 cells upon miR-X overexpression in clonogenic
assay. (Lower panel) Quantification of the data that were obtained from the clonogenic assay. (G) (Left
panel) Representative images of wound healing assay performed in H1299 cells transfected with either
empty vector or miR-X expression plasmid. Images were captured at 0 h, 18 h, and 22 h after the scratch
was introduced. (Right panel) Bar graph showing relative percentage of distance covered by the cells
through 18 h post-scratch. Data represent mean ± s.d.; n = 3; two-tailed Student’s t-test: * p <0.05,
** p <0.01, *** p <0.001.

4. Discussion

GOF mutant p53, an oncogenic transcription factor, transactivates or represses a diverse set
of genes to promote tumorigenesis [3,5,9,35,52,53]. Beside this, the regulation of cellular miRNAs
is also implicated in different oncogenic phenotypes conferred by mutant p53 [24–29]. Therefore,
identification of miRNAs regulated by mutant p53 on a global scale would provide further insights
into the cellular pathways and biological functions that are governed by GOF mutant p53 in the
context of tumorigenesis. In this study, we explored GOF mutant p53R273H-regulated miRnome in lung
adenocarcinoma cells while using small RNA deep sequencing. Subsequent target gene prediction and
network enrichment analyses revealed that mutant p53R273H-regulated miRNAs interact with several
crucial genes and molecular pathways that are implicated in tumorigenesis. Enrichment of p53 in the
miRNA regulatory network indicates that specific miRNAs (miR-99a, -132, -140, -17, -194, and -296) are
most likely to be regulated by both wild-type and mutant forms of p53, as also suggested by previous
studies [23,54–56]. Our analyses also predicted molecular interactions between mutant p53-regulated
miRNAs and cancer metastasis-associated genes TGFBI, EPHB6, and insulin signaling, a pathway
that is commonly deregulated in cancer [57,58]. Integrated analysis of miRNA and mRNA expression
profiles further identified potential miRNA-mRNA modules that might be critical in mediating mutant
p53 gain-of-functions in cancer cells.

We validated our cell-based data in the TCGA lung adenocarcinoma patient dataset to further
investigate the prognostic value of the mutant p53R273H-regulated miRNAs. Approximately 30% of
patients in the TCGA dataset had missense mutations in TP53, whereas 16% carried the truncated
version of the protein. High TP53 mutation frequencies in lung cancer patients clearly indicate the
importance of studying the mutant p53-specific regulation of miRNAs. Eighteen miRNAs that were
detected in our cell line study showed similar expression patterns in the patient samples, however,
only seven of them were statistically significant. It is quite reasonable to consider that different mutant
p53 proteins might differentially regulate miRNAs that were obtained from our cell line study since
the dataset contains patients with different types of TP53 mutation. Genetic heterogeneity among
patients might also account for the limited agreement of our cell line data with the TCGA dataset.
Several studies evidenced the association of tumor metastasis with TP53 mutations in different types of
cancers [40,41]. Here, we investigated the possible contribution of mutant p53R273H-regulated miRNAs
in predicting lymph node metastasis in lung adenocarcinoma patients by systematic bioinformatics
analyses of the TCGA LUAD dataset. Among the seven mutant p53R273H-regulated miRNAs, the
expression of miR-132, -147b, and -30d was found to be significantly correlated with the LNM status
of the patients. ROC curve analysis further confirmed that these miRNAs are significant predictors
of LNM in NSCLC. We hypothesize that mutant p53 modulates the expression of these miRNAs to
drive lymph node metastasis in NSCLC, as TP53 mutations generally precede node metastasis in lung
cancer [15]. However, further studies are required to ascertain the contribution of these miRNAs in
node metastasis. This has been suggested that miRNAs are potential contributors to mutant p53-driven
EMT phenotype [26]. In agreement with this, our integrated analyses of the NCI-60 miRNA expression
dataset identified mutant p53R273H-regulated miR-194 and miR-378a as potential determinants of EMT
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in cancer cell lines. Taken together, our analyses clearly indicate an important role of cellular miRNAs
in mediating diverse oncogenic properties of GOF mutant p53 in human cancer.

It is anticipated that many more miRNAs are yet to be discovered than presently annotated in
public repositories [59]. In this study, we discovered a novel miRNA from the unmapped sequence
reads of the genome-wide small RNA sequencing data. Further analyses using publicly available small
RNA sequencing dataset of lung cancer tissues showed enough primary reads to be precisely aligned to
the genomic region of the newly identified miRNA. This suggests that miR-X, although not identified
earlier, was present in lung cancer and adjacent benign lung tissues. The precursor miR-X overlaps
with two LTRs of ERVL family (HERVL18-int and LTR18A), while 13 bases of the mature miR-X overlap
with one of the LTRs and remaining five bases are in the non-LTR region. However, it should be noted
that ~20% of the human miRNAs are reported to have complete or partial overlap with transposable
elements, and many of them are proposed to be derived from transposable elements, including LTR,
LINE, and SINE [60–62]. Target prediction and pathway analyses revealed that the novel miRNA
targets a wide array of genes that are involved in different signaling pathways. Subsequent cell-based
assays further indicated that the newly identified miRNA could promote oncogenic phenotypes,
including cancer cell proliferation, clonogenicity, and migration, which suggests its potential role
in oncogenesis. Increased expression of the novel miRNA in GOF mutant p53 expressing cancer
cells further suggests a plausible role of this miRNA in mediating mutant p53-driven tumorigenesis.
However, we could not see any significant difference in miR-X expression between adjacent normal and
lung tumor tissues, at least in the publicly available small RNA sequencing dataset that we analyzed
in the present study. This might be attributed to the tumor heterogeneity or insufficient number of
tumor samples analyzed. Although further functional studies are required to fully characterize the
novel miRNA, it holds the potential to be included in the growing list of cellular miRNAs. Collectively,
our study provides an important framework for further research on understanding the molecular
mechanism of GOF mutant p53-driven tumorigenesis and identified a specific miRNA signature that
might be useful in predicting NSCLC prognosis.
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