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Background. In a pathological examination of pancreaticoduodenectomy for pancreatic head adenocarcinoma, a resection margin
without cancer cells in 1mm is recognized as R0; a resection margin with cancer cells in 1mm is recognized as R1. )e preoperative
identification of R0 and R1 is of great significance for surgical decision and prognosis. We conducted a preliminary radiomics study
based on preoperative CT (computer tomography) images to evaluate a resection margin which was R0 or R1. Methods. We
retrospectively analyzed 258 preoperative CT images of 86 patients (34 cases of R0 and 52 cases of R1) who were diagnosed as
pancreatic head adenocarcinoma and underwent pancreaticoduodenectomy.)e radiomics study consists of five stages: (i) delineate
and segment regions of interest (ROIs); (ii) by solving discrete Laplacian equations with Dirichlet boundary conditions, fit the ROIs
to rectangular regions; (iii) enhance the textures of the fitted ROIs combining wavelet transform and fractional differential; (iv)
extract texture features from the enhanced ROIs combining wavelet transform and statistical analysis methods; and (v) reduce
features using principal component analysis (PCA) and classify the resection margins using the support vector machine (SVM), and
then investigate the associations between texture features and histopathological characteristics using the Mann–Whitney U-test. To
reduce overfitting, the SVMclassifier embedded a linear kernel and adopted the leave-one-out cross-validation.Results. It achieved an
AUC (area under receiver operating characteristic curve) of 0.8614 and an accuracy of 84.88%. Settingp≤ 0.01 in theMann–Whitney
U-test, two features of the run-length matrix, which are derived from diagonal sub-bands in wavelet decomposition, showed
statistically significant differences between R0 and R1. Conclusions. It indicates that the radiomics study is rewarding for the aided
diagnosis of R0 and R1. Texture features can potentially enhance physicians’ diagnostic ability.

1. Background

Pancreatoduodenectomy is the main treatment for pan-
creatic head adenocarcinoma. Knowledge of preoperative
assessment of cancer resection and excision expansion will
help to choose optimal therapies for patients. )us, it is very
important to evaluate the resection margin of pan-
creaticoduodenectomy. In a pathological examination of
pancreaticoduodenectomy, a resection margin without
cancer cells in 1mm is recognized as R0; a resection margin
with cancer cells in 1mm is recognized as R1. )e preop-
erative identification of R0 and R1 is of great significance for
surgical decision and prognosis.

Intertumoral heterogeneity is generally considered as a
typical finding of malignancy. It reflects variations in tu-
mor-cell differentiation, extracellular matrix, and cellu-
larity angiogenesis [1]. Image-based texture analysis is a
noninvasive technique for quantifying tumor heterogeneity
and has been widely applied to aided diagnosis, efficacy
evaluation, and prognosis [2]. )is is termed radiomics
[3, 4]. Computer tomography (CT) is a commonly used
examination for diagnosis of pancreatic head adenocar-
cinoma. To the best of our knowledge, there are currently
no texture-based radiomics studies yet to evaluate the aided
diagnosis of R0 and R1, but there are a few similar studies of
pancreatic cancer on portal-venous phase CT images. In
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2017, Cassinotto et al. [5] used the Laplacian of Gaussian
(LoG) filter and histogram to extract texture features to
evaluate pathologic tumor aggressiveness and predict
disease-free survival in patients with resectable pancreatic
adenocarcinoma; Eilaghi et al. [6] used the method of gray-
level co-occurrence matrix (GLCM) to extract texture
features to assess whether CT-derived texture features
predict survival in patients undergoing resection for
pancreatic ductal adenocarcinoma; and Chakraborty et al.
[7] used the methods of histogram, GLCM, gray-level run-
length matrix (GLRLM), and angle co-occurrence matrix
(ACM), etc. to extract texture features to predict 2-year
survival of pancreatic ductal adenocarcinoma (PDAC). In
2018, Canellas et al. [8] used the LoG filter and histogram to
extract texture features to assess whether CT texture
analysis and CT features are predictive of pancreatic
neuroendocrine tumor grade based on the World Health
Organization classification and to identify features related
to disease progression after surgery; Qiu et al. [9] used the
methods of histogram, GLCM, wavelet transform, etc. to
extract texture features on nonenhanced CT images and
then explored the feasibility of discriminating pancreatic
cancer from normal pancreas. In 2019, Cheng et al. [10]
used the LoG filter and histogram to extract texture features
to determine if CT texture analysis measurements of the
tumor are independently associated with progression-free
survival and overall survival in patients with unresectable
PDAC.

We evaluated whether an operation was performed by
R0 resection or R1 resection based on the radiomics aided
diagnosis on its preoperative portal-venous CT images and
investigated the differences of histopathological character-
istics between R0 and R1 by using statistical significance tests
of texture features. )is study has been approved by the
Ethics Committee of West China Hospital of Sichuan
University (trial registration: NCT02928081).

2. Methods

Figure 1 illustrates the framework of our radiomics study. It
consists of five stages:

Stage 1: obtain ROIs (regions of interest) by pre-
processing patients’ CT images
Stage 2: by solving discrete Laplacian equations with
Dirichlet boundary conditions, fit the ROIs to rect-
angular regions
Stage 3: combining wavelet transform and fractional
differential, enhance the textures of the rectangular
ROIs
Stage 4: combining wavelet transform and statistical
analysis methods, extract texture features from the
enhanced ROIs
Stage 5: reduce features using principal component
analysis (PCA), perform classification using the sup-
port vector machine (SVM) (to reduce overfitting, the
SVM classifier embeds a linear kernel and adopts the
leave-one-out cross-validation), and then investigate

the associations between texture features and histo-
pathological characteristics using the Mann–Whitney
U-test

2.1. Patients. )is study retrospectively analyzed 258
preoperative CT images of 86 patients (34 cases of R0 and
52 cases of R1) who were diagnosed as pancreatic head
adenocarcinoma at West China Hospital from October
2015 to March 2018. )ese patients underwent pan-
creaticoduodenectomy. )e surgeries were pathologically
diagnosed as R0 resection or R1 resection. Patients were
screened based on NCCN guidelines for diagnostic cri-
teria and standard surgical procedures. We selected 3
portal-venous phase CT images from each case for
analysis, which are located at the top, middle, and bottom
of a tumor [11].

Abdominal scan and enhanced scan were performed
using 64-slice spiral CTof American GE. Collimator was set
to 0.625mm, FOV was set to 350mm× 350mm, tube
voltage was set to 120 kV, tube current was set to 160mAs,
and layer thickness was set to 1.250mm. In enhanced
scanning, iopamide was injected via cubital veins, and flow
rate was 3ml/s, dose was 90∼100ml, and delayed time was
25∼30 s for scanning of the portal-venous phase. A CTimage
was exported as an 8-bit grayscale image.

2.2.DelineationandSegmentation. )e steps for delineating
and segmenting are as follows: (1) choose three portal-
venous phase CT images from each case, which are located
at the top, middle, and bottom of a tumor; Figure 2 [11]
illustrates the locations; (2) delineate resection
margins around portal veins on the chosen images, and it
is shown in Figure 3; to ensure authenticity of signals, the
delineated resection margins exclude edges of stent and
metal artifacts; and (3) segment the delineated regions to
form ROIs based on a region growing segmentation
method.

Two physicians with 10 years of experience in abdominal
CT diagnosis delineated all resection margins. )e first
physician delineated the resection margins and repeated the
delineations after 2 weeks to prevent observer deviations.
)e other physician only delineated the resection margins
once to assess whether his delineations were consistent with
the delineations of the first physician.

2.3. Fitting ROIs. We fitted the strip-shaped ROIs to rect-
angular ROIs by solving discrete Laplacian equations with
Dirichlet boundary conditions. )e fitting method is ab-
breviated as LD. )e LD method has good applications in
signal fitting [121314]. Discrete Laplace equation can be
defined in the following equation:

4u(x, y) − u(x + 1, y) − u(x, y + 1) − u(x − 1, y)

− u(x, y − 1) � 0.
(1)

Equation (1) shows that a linear equation can be
established based on a 4-neighborhood of a point (x, y). )e
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Figure 1: Radiomics framework.
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Figure 3: Delineate a resection margin and segment it to form an ROI. (a) A portal-venous phase CT image located at the top of a pancreatic
head tumor that belongs to R0. (b) A portal-venous phase CT image located at the top of a pancreatic head tumor that belongs to R1.
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point (x, y) is to be fitted. A region to be fitted is named as a
mask. If the current pixel is on an edge of the mask, then at
least one of its neighbors (on the Dirichlet boundary) is
known. A set of linear equations can be established along the
Dirichlet boundary (along edges of the mask). )e pixel
values to be fitted can be obtained by solving the established
set of linear equations. )e solving procedure is then ex-
tended into the interiors of the mask. Figure 4 shows a mask
to be fitted and its boundaries.

Figure 5 illustrates two fitted examples, where the black
regions of an ROI are themask of this ROI, and the R0 ROI is
better fitted, while the fitted regions of the R1 ROI are
smoother. Actually, the fitted regions are too smooth to
express more information. Next, we would enhance the
textures of the fitted regions.

2.4. Enhancing ROIs. We designed a texture enhancement
method with reference to the Grunwald–Letnikov (G-L)
fractional differential definition and wavelet transform
[15, 16]. )e enhancement method is abbreviated as WF. It
consists of 3 steps as illustrated in Figure 6.

Step 1: decompose an ROI into 4 components using
wavelet transform [17]: H (horizontal), V (vertical), and
D (diagonal) are the high-frequency components; A
(approximate) is the low-frequency component. It is 1-
level decomposition. )e approximate component can
be decomposed again.
Step 2: convolve each high-frequency component with
a fractional differential operator M.
Step 3: perform wavelet inverse transform based on the
convolution results of Step 2 and the approximate
component in the last-level decomposition.

Wavelet inverse transform will reconstruct the ROI,
which is the enhanced ROI. )e steps for constructing a
fractional mask are as follows:

(1) Discretize G-L definition: equation (2) is the v-order
G-L definition of f(x) on [a, t], where Γ(· · ·) is a
gamma function; discretize the continuous duration
[a, t] equally by unit interval h, where n � [(t− a)/h];
and it is known that Γ(n) � (n − 1)! � Γ(n + 1)/n,
and equation (3) can be derived:

aD
v
t f(x) � lim

h⟶ 0
h

−v
􏽘

(t−a/h)

j�0
(−1)

j Γ(v +1)

j!Γ(v − j +1)
f(x − jh),

(2)

aD
v
t f(x) �

1
hv

􏽘

n−1

j�0
(−1)

j Γ(j − v)

Γ(−v)Γ(j +1)
f(x − jh).

(3)

(2) Expand equation (3): it is known that h � 1 (unit
interval), and equation (4) can be derived as follows:

dvf(x)

dx
≈ f(x) +(−v)f(x − 1) +

(−v)(−v + 1)

2
f(x − 2)

+ · · · +
Γ(−v + 1)

(n − 1)!Γ(−v + n)
f(x − n + 1).

(4)

We constructed a fractional differential operator named
M based on the expanded coefficients of equation (4).
Figure 7 demonstrates the operator M. It performs fractional
differential operations in eight symmetric directions in a
5× 5 neighborhood. c at the center point position is an
adjustable parameter and is called the compensation pa-
rameter. In experiments, the order v and the parameter c can
be appropriately adjusted. Figure 5 illustrates two enhancing
examples using the WF method.

2.5. Texture Analysis. We used rbio2.8 for wavelet trans-
form. )e steps for feature extraction are as follows:

Step 1: fit and enhance the ROIs as described in the
previous sections.
Step 2: perform wavelet transform on the fitted and
enhanced ROIs. A decomposition of a fitted and en-
hanced ROI will derive 4 components; a coefficient
matrix uniquely expresses a component.
Step 3: convert high-frequency components to gray-
scale images called sub-band images.

In the coefficient matrix of a high-frequency component,
elements with larger absolute values usually represent sin-
gular value points (meaning a fast and large change). First,
absolute values of coefficient matrices are calculated. )en,
elements of a coefficient matrix are linearly and equally
discretized into a grayscale range of [0, 255] (the range of
gray level) according to the minimum and maximum values
of the coefficient matrix. )e calculations are shown in
equations (5)(7), where C is the coefficient matrix and D is
the discretized matrix (sub-band image):

a � min(abs(C)), (5)

b � max(abs(C)), (6)

D �
abs(C) − a

b − a
× 255􏼢 􏼣. (7)

Step 4: extract features from the sub-band images using
the methods of histogram, co-occurrence matrix, and
run-length matrix. Considering that the sizes of sub-
band images are also small, the gray level is rescaled.

2.6. Feature Reduction and Classification. Reducing features
can usually improve classification performance. We used
principal component analysis (PCA) for feature reduction
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and limited the number of features to reduce overfitting.
Empirically, it is appropriate that the number of features is 1/
15 or 1/10 of the number of samples, and a linear classifier
allows for more features.

Support vector machine (SVM) [18] is widely used due
to its outstanding performance in pattern recognition
problems of small sample sizes. To reduce overfitting, we
used a linear kernel and used the leave-one-out cross-val-
idation. Linear kernel-based SVM allows more features
without easily overfitting. In the vast majority of cases,
especially in classification problems of small sample sizes,
the model evaluated in the leave-one-out cross-validation is
close to the model that expected to be evaluated using a
training set. )us, evaluation results of the leave-one-out
cross-validation are often considered more accurate [19].

3. Results

We performed other texture analysis methods that are
frequently used in pancreatic cancer-related radiomics
studies and applied the PCA-based feature reduction
method and the linear SVM classification method. Table 1
shows the texture analysis methods.

Considering the size of an ROI is small, we performed 1-
level wavelet decomposition and set the distances of the co-
occurrence matrix to 1 and 2. Feature values of 4 directions
(0, 45, 90, and 135) of a co-occurrence matrix were averaged,
so was a run-length matrix. Wavelet transform should be
performed on rows and columns. Before applying the WT
method and WT-HCR method, we filled ROIs into valid
matrices based on interpolation methods. )e linear in-
terpolation method was first applied, and then we fill the
remaining missing values using the nearest interpolation
method. )e LD-WF method used a reverse biorthogonal
wavelet and selected rbio2.8 by experiments. Figure 8 il-
lustrates two examples of decomposing ROIs using the
rbio2.8 wavelet.

A binary classification problem can use a confusion
matrix to express the results. R1 is used as the positive class,
and R0 is used as the negative class. Table 2 shows the
experimental results. )e LD-WF method achieves the best
classification performance, and its accuracy and AUC are
84.88% and 0.8641, respectively, followed by the LOG-GH
method and the CTM method. Although the accuracy of
CTM is lower than that of LOG-GH, its AUC value is higher
than LOG-GH. )e ROC (receiver operation curve) and
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Figure 4: A mask to be fitted and its boundaries. (a). A mask to be fitted: the region with values 1. (b) Boundaries of the mask, which consist
of the points with values 1.
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AUC (area under the ROC) are powerful indicators for
measuring a binary classification model.

Figure 9 illustrates the ROC curves of these methods.)e
classifier based on the LD-WF method approaches the
upper-left corner faster followed by the classifier based on
the CTM method and the classifier based on the LOG-GH
method.

4. Discussion

)is study aims to conduct a preliminary radiomics ex-
ploration to evaluate whether a surgery was performed by R0
resection or R1 resection based on its surgical margin of
portal-venous CT images. To eliminate the bias of possible
episodes of acute or chronic pancreatitis, which can occur
concomitantly with the neoplastic evolution or the pan-
creatic reaction after endoscopic biopsy sampling etc., all the

selected patients underwent pancreaticoduodenectomy
followed by pathological diagnosis, and the pathological
diagnoses were used as the gold standard. Physicians de-
lineated the resection margins around portal veins on the
chosen CT slices as the initial ROIs. It is illustrated in
Figure 3.

In an R0 or R1 resection margin, an ROI is an ir-
regular strip-shaped region, and its structure contains
complex internal details such as capillary distribution,
cancer cell tissue, and pancreatic cell tissue. Statistical
texture analysis methods are appropriate for this. Mul-
tiresolution texture analysis methods perform well in
extracting detail features. However, both statistical tex-
ture analysis methods and multiresolution texture
analysis methods are limited to irregular strip-shaped and
small ROIs. Figure 3 shows two examples of irregular
strip-shaped regions.

(a) (b) (c)

(d) (e) (f )

Figure 5: Examples of fitting and enhancing. (a) An R0 ROI. (b))e fitted ROI of R0. (c))e enhanced and fitted ROI of R0. (d) An R1 ROI.
(e) )e fitted ROI of R1. (f ) )e enhanced and fitted ROI of R1.
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An image is a two-dimensional signal based on rows and
columns, and two-dimensional relationships between in-
tensity and position usually better express texture charac-
teristics. )us, we used the LD method to fit the ROIs to
rectangular regions. Furthermore, to make the fitted regions
express more information and further improve the per-
formance of the texture analysis method, we designed the
WF method to enhance the textures of the fitted ROIs. )e
main purpose of texture enhancement is to highlight high-
frequency contour information (detailed information, that

is, portions of gray levels that change relatively more varied
or more quickly) while preserve low-frequency smoothing
information as much as possible. Traditional enhancement
methods such as histogram equalization, integer-order
differentials, and frequency enhancement filters, increase
contrast or highlight contours, but they lose lots of low-
frequency texture information and usually sharpen contour
information. In recent years, fractional differentials com-
pensate for the drawback of greatly losing low-frequency
information, making it an effective method for texture
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enhancement of medical images [20–22]. )us, we consider
the following 3 factors to enhance the textures: (1) wavelet
transform is appropriate for detail analysis of an image, and
its characteristic of perfect inverse transform enables cor-
rections of transform coefficients to be highlighted in the
reconstructed image; (2) fractional differential can enhance
contours without sharpening edges; and (3) characteristics
of the details usually well characterize lesions or tissues. We
designed the WF method based on these 3 factors.

After fitting and enhancing the ROIs, texture analysis
methods were used to extract quantitative features: texture
features. Deep learning algorithms have made significant
progress in image pattern recognition. However, these al-
gorithms are limited by the problems of small sample sizes,
small targets, and so on [23, 24]. Moreover, deep learning
algorithms lack pertinence in quantitative analysis of ROIs.
)erefore, ROI-based radiomics is still a mainstream scheme
in medical image-aided diagnoses.

In histopathology, an ROI of R1 has cancer cells, some
parts of its tissue are more compact, and its capillary dis-
tribution is less, while an ROI of R0 has no cancer cells
within 1mm, it only contains pancreatic tissue, and its
capillary distribution is more abundant [25, 26]. However,
these differences are just qualitative in details and difficult to
visually observe from CT images. Multiresolution analysis
methods are advantageous in local time-frequency analysis
and are appropriate for deriving detail characteristics. Sta-
tistical analysis methods can usually derive representative
mathematical descriptors. It can be inferred that multi-
resolution analysis methods and statistical analysis methods
are appropriate here. Based on the stated characteristic
analysis and texture analysis of the ROIs, we combined the

methods of wavelet transform, histogram, GLCM, and
GLRLM to extract texture features.

Radiomics uses computer methods such as computer
vision and machine learning to perform digital medical
image processing, which can deeply mine the heterogeneous
data at levels of tissue and molecular that contained in
medical images such as CT images [2, 27, 28]. CT imaging is
that X-rays penetrate different media with different atten-
uations to form different gray levels.)us, grayscale patterns
in CT images should be able to reflect changes of body’s
pathology. From histopathological analysis, an R1 resection
margin contains a large number of normal pancreatic tissue
and some tumor tissue, and its capillary distribution is less
than an R0 resection margin; relatively, an R0 resection
margin only contains normal pancreatic tissue, and its
capillary distribution is more abundant.)us, characteristics
of internal details can better characterize R0 and R1.
Analogous to wavelet transform, LOG-GH is also a multi-
scale analysis method. Both types of methods are suitable for
characterizing detail characteristics. From the classification
results, the multiresolution or multiscale analysis methods
behave better.

In addition, it is necessary to address some issues such as
the problem of irregular strip-shaped ROIs and the problem
of atypical manifestations of details (macroscopically diffi-
cult to distinguish). )is radiomics study used the LD-WF
method to process ROIs (fitted the ROIs and enhanced
textures) followed by combining wavelet transform and
statistical methods to extract descriptors on the sub-band
images. )e experimental results indicated that it pro-
nouncedly improved classification performance.

We expect that some texture features should be able to
reflect the differences between R0 and R1. To investigate the
discriminations of texture features between R0 and R1, we
performed Mann–Whitney U-tests on the texture features
that are extracted based on the LD-WF method. Table 3
shows the features with p≤ 0.05, which usually means that
there are statistically significant differences between the two
types of samples (R0 samples and R1 samples). It demon-
strates that the middle and bottom ROIs present more
differences on the texture features, and the diagonal sub-
band image expresses more characteristic differences in
detail. )e p values of F4 and F6 are ≤0.01, which means that
there are extremely significant differences between the two
types of samples.

)ree features were selected based on the ascending
order of p values. Table 3 shows these three features in bold:
F4, F6, and F9. To test the feature values, larger or smaller,
right-tailed hypothesis tests based on the Wilcoxon rank
sum method were performed on F4, F6, and F9, where the
alternative hypothesis states that the median of R1 samples is
greater than the median of R0 samples. Table 4 demonstrates
the results of right-tailed hypothesis tests.

Table 4 shows that F4-values of R1 are larger than F4-
values of R0 at significant level p≤ 0.001, F6-values of R1 are
larger than F6-values of R0 at significant level p≤ 0.001, and
F9-values of R1 are larger than F9-values of R0 at significant
level p≤ 0.011. In wavelet transform, every coefficient is in
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Figure 7: Fractional differential operator M.
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charge of an oscillation in certain scale and frequency. )e
discussions of these three features are as follows.

As for feature F4, (1) the sub-band image expresses the
component that gray level changes more and faster in diagonal
direction; (2) high gray-level run emphasis (HGRE) of the run-
length matrix measures the distribution of higher gray-level
values, with a higher value indicating a greater concentration of
high gray-level values in an image; (3) in the diagonal com-
ponent, higher gray level means larger oscillation; and (4) the

test result for F4 in Table 3 indicates that points with larger
oscillations appearmore continuously in ROIs of R1 than those
of in ROIs of R0; this should be associated with the fact that the
ROIs of R1 contain normal pancreatic tissue and cancer tissue,
while the ROIs of R0 only contain normal pancreatic tissue.

As for feature F6, it is similar to F4. Short run high gray-
level emphasis (SRHGE) is a supplement to HGRE, indi-
cating that points with larger oscillations (fine texture)
appear more continuously.

Table 1: Texture analysis methods.

Abbreviation Description

GH Gray-level histogram. Feature names: mean; standard deviation; smoothness; cubic moment; uniformity; entropy; fourth
moment

GLCM

Gray-level co-occurrence matrix. Feature names: autocorrelation; cluster prominence; cluster shade; contrast; correlation;
difference entropy; difference variance; dissimilarity; energy; entropy; homogeneity (inverse difference moment);

information measure of correlation1; information measure of correlation2; inverse difference (homogeneity in matlab);
maximum probability; sum average; sum entropy; sum of squares (variance); sum variance; Renyi entropy; Tsallis entropy

GLRLM
Gray-level run-length matrix. Feature names: short run emphasis; long run emphasis; gray-level nonuniformity; run length
nonuniformity; run percentage; low gray-level run emphasis; high gray-level run emphasis; short run low gray-level
emphasis; short run high gray-level emphasis; long run low gray-level emphasis; long run high gray-level emphasis;

WT Wavelet transform. Feature names: mean; variance; energy
WT-HCR Wavelet transform combining GH, GLCM, and GLRLM. Feature names: refer to GH, GLCM, and GLRLM
LOG-GH Laplacian of Gaussian filter combining histogram. Feature names: refer to GH

ACM-D Angle co-occurrence matrix: direction gradient matrix based on the Sobel operator combining the co-occurrence matrix.
Feature names: refer to GLCM

ACM-M Angle co-occurrence matrix: magnitude gradient matrix based on the Sobel operator combining the co-occurrence matrix.
Feature names: refer to GLCM

CTM Combined texture method (all texture features including GH, GLCM, GLRLM, WT, WT-HCR, LOG-GH, ACM1, and
ACM2)

LD-WF )e method designed in this study. Feature names: refer GH, GLCM (five representative features are used: contrast;
correlation; energy; homogeneity; and entropy), and GLRLM

A fitted and
enhanced ROI of R0

Diagonal
sub-band image

Vertical
sub-band image

Approximate
sub-band image

Horizontal
sub-band image

(a)

A fitted and
enhanced ROI of R1

Diagonal
sub band image

Vertical
sub band image

Approximate
sub band image

Horizontal
sub band image

(b)

Figure 8: Examples of wavelet decomposition. (a) Level-1 rbio2.8 wavelet decomposition of an ROI of R0. (b) Level-1 rbio2.8 wavelet
decomposition of an ROI of R1.
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As for feature F9, (1) the meaning of the diagonal sub-
band image has explained above; (2) the cubic moment of
the histogram measures skewness, higher skewness means

greater degree of asymmetry; and (3) the test result for F9 in
Table 3 indicates that the degree of asymmetry in R1 is
greater than that in R0; it should still be associated with the

Table 2: Classification results.

Method TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) AUC
GH 15 31 19 21 53.49 44.12 59.62 0.4842
GLCM 21 27 13 25 55.81 61.76 51.92 0.6010
GLRLM 20 24 14 28 51.16 58.82 46.15 0.4938
WT 20 35 14 17 63.95 58.82 67.31 0.6711
WT-HCR 22 31 12 21 61.63 64.71 59.62 0.6309
LOG-GH 21 41 13 11 72.09 61.76 78.85 0.6861
ACM-D 22 21 12 31 50.00 64.71 40.38 0.4531
ACM-M 21 30 13 22 59.30 61.76 57.69 0.6267
CTM 23 35 11 17 67.44 67.65 67.31 0.7130
LD-WF 26 47 8 5 84.88 76.47 90.38 0.8641
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Figure 9: ROC curves.

Table 3: Mann–Whitney U-test results.

Number Feature name Statistical name Sub-band Location
F1 Run length nonuniformity Run-length matrix Horizontal Top p≤ 0.045
F2 Energy Co-occurrence matrix (d� 1) Diagonal Middle p≤ 0.032
F3 Energy Co-occurrence matrix (d� 2) Diagonal Middle p≤ 0.032
F4 High gray-level run emphasis Run-length matrix Diagonal Middle p≤ 0.002
F5 Short run low gray-level emphasis Run-length matrix Diagonal Middle p≤ 0.045
F6 Short run high gray-level emphasis Run-length matrix Diagonal Middle p≤ 0.002
F7 Standard deviation Histogram Diagonal Bottom p≤ 0.026
F8 Smoothness Histogram Diagonal Bottom p≤ 0.026
F9 Cubic moment Histogram Diagonal Bottom p≤ 0.021
F10 Fourth moment Histogram Diagonal Bottom p≤ 0.036
F11 Correlation Co-occurrence matrix (d� 2) Diagonal Bottom p≤ 0.029
F12 Long run emphasis Run-length matrix Diagonal Bottom p≤ 0.026
F13 Long run low gray-level emphasis Run-length matrix Diagonal Bottom p≤ 0.025
F14 Long run high gray-level emphasis Run-length matrix Diagonal Bottom p≤ 0.026
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fact that the ROIs of R1 contain normal pancreatic tissue and
cancer tissue, while the ROIs of R0 only contain normal
pancreatic tissue; because R0 has only normal pancreatic
tissue, the structural changes on the diagonal component are
relatively more uniform and more symmetry.

)is study has some limitations and deficiencies. First, it
was a retrospectively study in a single institution, patients’
population and imaging methods were basically homoge-
neous, and selection bias may exist, making it difficult to
generalize the results to other institutions. Second, ROIs
were fitted to rectangles, but the pixel size of a ROI is still
small. )ird, sensitivity still needs to be improved. Finally,
no sufficient samples for the test led to some overfitting
(although the leave-one-out cross-validation is used). Next,
we will collect more samples and conduct further studies
using better fitting methods.

5. Conclusions

By analyzing the histopathological characteristics of R0 and
R1 and considering the deficiencies that ROIs are irregular
strip-shaped and small regions, we designed the LD-WF
method and conducted a preliminary radiomics study based
on portal-venous CT images to identify whether a surgery
was conducted by R0 resection or R1 resection. )e ex-
perimental results indicate that the designed method is
rewarding for discriminating R0 from R1. By analyzing
statistically significant differences on texture features, it
elucidates that the histopathological characteristics of R0
and R1 can be represented by the texture features of pre-
operative CT images. It implies that texture features can
potentially enhance physicians’ diagnostic abilities.
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