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Abstract

Background: Large difference in cerebrum size exist between avian species and populations of the same species
and is believed to reflect differences in processing power, i.e. in the speed and efficiency of processing information
in this brain region. During domestication chickens developed a larger cerebrum compared to their wild
progenitor, the Red jungle fowl. The underlying mechanisms that control cerebrum size and the extent to which
genetic regulation is similar across brain regions is not well understood. In this study, we combine measurement of
cerebrum size with genome-wide genetical genomics analysis to identify the genetic architecture of the cerebrum,
as well as compare the regulation of gene expression in this brain region with gene expression in other regions of
the brain (the hypothalamus) and somatic tissue (liver).

Results: We identify one candidate gene that putatively regulates cerebrum size (MTF2) as well as a large number
of eQTL that regulate the transcriptome in cerebrum tissue, with the majority of these eQTL being trans-acting. The
overall regulation of gene expression variation in the cerebrum was markedly different to the hypothalamus, with
relatively few eQTL in common. In comparison, the cerebrum tissue shared more eQTL with a distant tissue (liver)
than with a neighboring tissue (hypothalamus).

Conclusion: The candidate gene for cerebrum size (MTF2) has previously been linked to brain development
making it a good candidate for further investigation as a regulator of inter-population variation in cerebrum size.
The lack of shared eQTL between the two brain regions implies that genetic regulation of gene expression appears
to be relatively independent between the two brain regions and suggest that coevolution between these two
brain regions might be more functionally driven than developmental. These findings have relevance for current
brain size evolution theories.
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Background

The cerebrum plays a pivotal role in voluntary behavior
and cognition [1, 2]. Birds, as well as mammals, have a
much larger cerebrum compared to reptiles and other
vertebrates of similar size, indicating that selection for
increased size of this brain region has played an import-
ant role during avian brain evolution [3]. The avian
cerebrum varies in size between species and populations
both in terms of absolute size and proportional size
within the brain [4-6]. These size differences are
believed to reflect differences in functionality with
increased size providing more processing power [7, 8].

The underlying mechanisms that control cerebrum
size and the extent to which the cerebrum can expand
in size irrespectively of expansion of other brain regions
and the brain itself, is not well understood. Comparative
studies have identified consistent patterns of covariance
between brain regions indicating the presence of signifi-
cant constraint on independent brain regions size evolu-
tion [9], and two main theories have attempted to
explain these evolutionary patterns; (1) the developmen-
tal constraints hypothesis (concerted brain evolution
hypothesis) suggests that individual brain regions tend
to evolve together because they are limited by the same
underlying developmental and genetic mechanisms
during neurogenesis, while (2) the functional constraints
hypothesis (mosaic brain evolution hypothesis) suggests
more complex underlying mechanisms that allow inde-
pendent development and growth of discrete brains
regions and where correlated evolution of brain regions
reflects functional constrains. These hypotheses are not
mutually exclusive, and previous correlative studies
suggest a combination of both mosaic and concerted
evolution [10-12], but they make different predictions
about brain evolution [9].

We still know very little about the underlying genetic
mechanism that control cerebrum size, and in particular
about how quantitative variation in cerebrum size is
regulated.

To date studies have mainly focused on the genetic
programs involved in determining the basic architecture
of the cerebrum [13], but the identification of genes
regulating differences in cerebrum size and how they
differ from gene expression in other brains regions could
provide a more direct assessment of the underlying
causes of covariance and coevolution between brain
regions. During domestication chickens (Gallus gallus)
developed a significantly larger cerebrum (both absolute
and proportional to the rest of the brain) compared to
their wild progenitor, the Red junglefowl. Overall brain
size also increased during domestication in chickens,
with the loci responsible for increasing brain size being
distinct from those increasing body size during domestica-
tion [5, 14]. We have previously shown that the genomic
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regions underlying cerebrum size in chickens are separate
to the genetic regions underlying other major brain re-
gions in the chicken brain [5] suggesting less common
constrain on size evolution between brain regions. The
fast alteration to brain size and composition occurring
during the reversion from a domestic to a wild state (fera-
lization) also support the notion that alterations in the size
of individual brain regions is less constrained by other
brain regions than previously thought [15, 16].

In this study, we combine measurement of total as well
as proportional (to the rest of the brain) cerebrum with
genome-wide genomics analysis to identify the genetic
architecture of the transcriptome in the cerebrum using
an advanced intercross based on Red junglefowl and do-
mestic White leghorn chickens. These birds have been
previously demonstrated to be an excellent model for
the genetic regulation of brain size variation due to the
large differences in brain size and composition generated
via domestication [5]. By combining these results with
previous analyses of the genetic regulation of the hypo-
thalamus [17] and liver transcriptomes [18] in the same
chicken intercross, we can compare the regulation of
gene expression in both brain regions, as well as between
the brain and distant somatic tissue. This allows a com-
parison of the transcriptomic regulation of these differ-
ent tissues and the relative similarity between them, that
can help shed light on the evolutionary pattern of brain
evolution. The use of expression quantitative trait locus
(eQTL) rather than simply gene expression, is important
as we are now identifying actual loci that vary between
the two genotypes (i.e. the loci responsible for between-
population variation [19]), rather than simply high or
low overall gene expression. By combining previously
identified phenotypic quantitative trait locus (QTL) for
brain size and composition with gene expression QTL
(eQTL) analyses [5], we can attempt to identify putative
genes underlying the phenotypic differences in overall
cerebrum size that separate wild and domestic chickens.

Results

The genetic regulation of the cerebrum transcriptome -
eQTL mapping

eQTL mapping of cerebrum identified a total of 1315
eQTL. The majority of eQTL were trans acting (1011
trans and 304 cis). An equal distribution of QTL effect
was observed, around half of the eQTL had a greater
increase in gene expression from the Red junglefowl
allele (613) and half had a greater effect from the White
Leghorn allele (702), see Table 1 for a summary. Figure 1
shows the eQTL positions and the QTL effects. A total
of 840 eQTL had a probeset with an annotated gene, the
remaining were expressed sequence tags (EST). For the
full list of eQTL see supplementary Table S1.
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Table 1 eQTL mapping summary
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Tissue eQTL Type (cis | trans) QTL direction (RJF | WL) Sex interaction (sex | non-sex) Probesets Annotated genes
Cerebrum 1315 3041011 613702 437878 1286 840
Hypothalamus 1123 1064 | 59 520 | 603 635 | 488 M 645

Fig. 1 Circular overview of the chicken genome. Track A and B shows cis and trans eQTL respectively. Where each point corresponds to a
suggestive eQTL with the QTL effect indicated by white for White Leghorn and red for Red junglefow! allele. Track C shows eQTL hotspot
confidence interval with the fan representing the gene location associated with the eQTL
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Cerebrum trans eQTL hotspots

A total of 20 eQTL hotspots were identified located on 14
of the autosomal chromosomes, see supplementary Table
S2. These eQTL hotspots encompassed 319 genes with
the largest hotspot located on chromosome 2 with inter-
vals between 1040 and 1067 cM interacting with 54 genes
dispersed over 18 chromosomes and with the majority of
QTL effects increasing in the Red Junglefowl genotype (45
RJF and 9 WL QTL), see supplementary Table S2. Fur-
thermore, every eQTL and the corresponding genes
present in a hotspot was checked for enrichment using
the DAVID database. These enrichments showed that
these hotspots were enriched for serine/threonine protein
kinase activity (chromosome 1 - with such serine-
threonine kinases known to affect behavior), neurogenesis
(chromosome 3), and g-protein signaling (chromosome
3), epidermal growth factor signaling (chromosome 4),
RNA polyadenylation (chromosome 5), amongst a num-
ber of other GO terms (see supplementary Table S2).

Table 2 Cerebrum eQTL Cl overlapping with phenotypic QTL Cl
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Candidate genes for the regulation of cerebrum size

From a previous study using the advanced intercross, we
identified QTL for cerebrum size (absolute and propor-
tional), as well as for body mass, brain mass and for the
mass of all other major brain-regions (Optic tectum,
Cerebellum and Midbrain [5]). To attempt to identify
candidate genes underlying cerebrum size and potential
link to the size of other brain regions, brain size or over-
all body size, we first assessed the number of cerebrum
eQTL that overlapped with these phenotypic QTL, with
a total of 175 eQTL being present (112 between brain
mass and 63 between body mass), see supplementary
Table S3. Fifteen of the overlaps were significant on a
5% nominal level (2 for cerebrum size, 1 for optic tec-
tum size and 12 for body mass) and therefore considered
suggestive, whilst 5 were significant after undergoing
multiple testing and therefore considered significant (all
for body mass), see supplementary Table S4. The three
suggestive overlaps found for brain-mass-phenotypes

Gene Name Gene location Trait P-value NEO
Threshold Edge leo.nb.oca leonb.cpa Model Overlap
PCBD2 chr13:16352132-16368162 Body mass 0.005 Distal probeset 0421 0.947 0.138 chr4@269-286 |
- > trait chr6@195-214
603848039F 1 EST Body mass 0.04 Distal probeset 0.756 0.706 0.0254 chrd@265-332 |
- > trait chr24@6-18
MTF2 @ chr8:12939656-12962759  Absolute 0018 Local probeset 0.331 0.366 0.00000278 chr8@79-123 |
cerebrum size - > trait chr8@42-89
603231821F1 EST Body mass 0.001*** NS probeset 0.216 0.593 1.18E-09 chr12@43-65 |
- > trait chr1i2@45-79
603231821F1 EST Body mass 0.004*** NS probeset —1.84 0.149 1.32E-09 chr4@270-285 |
- > trait chrd@254-274
GIP chr27:6090482-6098133  Body mass 0.005*** NS probeset —1.62 -1.62 0.0175 chr27@60-86 |
- > trait chr27@56-80
ENSGALG00000034065 chr4:83916252-83928157  Body mass 0.005*** NS probeset 0.00701 0.0012 84E-42 chr1@480-534 |
- > trait chri@507-516
SCFD2 chr4:65762016-65941747  Body mass 0.011%** NS trait->  —-327 -0.0137  1.09E-12 chr4@250-290 |
probeset chrd@254-274
EPAST chr3:26671415-26746226  Relative optic  0.014 NS trait ->  -2.86 —-0.0183 00000187  chr4@219-252 |
tectum size probeset chr4@201-223
NDUFAF2 chrZ:18970571-19017369  Body mass 0.015 NS probeset —2.37 0.287 144E-22 chr4@245-274 |
- > trait chrd@254-274
PNPLA8 chr1:28651041-28685420  Relative 0.017 NS probeset 0.673 0.11 1.04E-28 chr21@4-35 |
cerebrum - > trait chr21@0-19
size
FAM161B chr5:37899536-37906784  Body mass 0.022 NS probeset —0.7 -0.7 0.0899 chr4@251-274 |
- > trait chrd@254-274
HDACT1 chr12:6100521-6125075  Body mass 0.025 NS probeset 0.368 0.269 8.15E-09 chr12@24-72 |
- > trait chr12@45-79
HMCES chr12:9520459-9523459 Body mass 0.037 NS probeset 0.01 0.16 0.371 chr2@77-181 |
- > trait chri2@45-79
C120rf43 chr15:9385682-9389695  Body mass 0.04 NS probeset —1.03 0.107 1.15E-10 chr4@265-284 |
- > trait chrd@254-274

@ Gene retired in galgal6. gene name and location found in galgal4 *** P-values significant after multiple testing correction. In the neo-threshold:
distal - the loci of the phenotypic QTL are all tested against the single loci of the eQTL when at least one of the phenotypic QTL loci is overlapping

with the eQTL
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were for total and relative size of the cerebrum, and the
relative size of the optic tectum. To further test putative
causality, the suggestive and significant overlaps were
tested with the Network Edge Orientation (NEO) soft-
ware that assesses causality based on correlations be-
tween the traits and the SNP genotypes that anchor
them (see methods). Some phenotypic QTL had multiple
loci that were associated with the trait, epistatic interac-
tions, and thus all these loci were tested for causality.
Three overlaps survived the NEO analysis and were
significant; for cerebrum mass the gene MTF2 (on
chromosome 8, leo.nb =0.33) and for adult body mass
the genes PCBD2 (on chromosome 13, leo.nb =0.42)
and an EST (603848039F1 on chromosome 4, leo.nb =
0.76), see Table 2.

Genetic overlap between cerebrum, hypothalamus and
liver tissue

Previous studies on this advanced intercross have identi-
fied eQTL present in hypothalamus and liver. Therefore,
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to compare the relationship between the gene expression
profiles in these different tissues the eQTL identified in
each tissue type were analysed. Out of a total of 18,499
probesets, shared between all arrays, 3035 probesets had
an eQTL in either of the tissues and 284 probesets had
an eQTL in at least two of the tissues. Between cerebrum
and hypothalamus 40 genes had an eQTL and between
cerebrum and liver 97 genes had an eQTL. Between liver
and hypothalamus, 49 genes had an eQTL and between all
three tissues 19 genes had an eQTL, see Fig. 2. Therefore,
both brain regions shared more eQTL in common with liver
tissue than with one another. A GO enrichment analysis
was performed on the different eQTL genes present in each
of the comparisons (see supplementary Tables S5 and S6).
None of these passed an experiment-wide significance
threshold (Benjamini-corrected p-value < 0.05, corrected for
multiple testing), however several passed a suggestive
threshold (nominal p-value < 0.05, uncorrected for multiple
testing). The eQTL genes present in both hypothalamus and
cerebrum tissue were suggestively enriched for iron-

-

Cerebrum

Proteins with iron—dependency

Chaperone activity
Cytoplasm activity
Aldo/keto reductase
Mitochondrion inner

activity
embrane activity

overlapping genes between the tissues

Liver

Fig. 2 Venn diagram of genes with eQTL found in cerebrum, hypothalamus and liver. Also contains gene ontology terms found for the

Hypothalamus

Extracellular exosome activity
Homodimerization actiyity
Metallopeptidase activi

Nucleotide excision repair activity
A replication activity
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dependent proteins (nominal p-value <0.027, Benjamini-
corrected p-value = 0.75), while the eQTL genes shared be-
tween hypothalamus and liver tissue were enriched for
extracellular exosome activity (p-value <0.029, Benjamini-
corrected p-value = 0.76), protein homodimerization activity
(p-value <0.033, Benjamini-corrected p-value =0.84) and
metallopeptidase activity (p-value <0.035, Benjamini-
corrected p-value =0.62). The eQTL genes shared
between liver and cerebrum tissue were enriched for
chaperone activity (p-value < 0.028, Benjamini-corrected p-
value =0.83), cytoplasm activity (p-value <0.034,
Benjamini-corrected p-value =0.95), aldo/keto reductase
activity (p-value <0.038, Benjamini-corrected p-value =
0.99) and mitochondrion inner membrane activity (p-value
<0.039, Benjamini-corrected p-value =0.72). Finally, the
eQTL genes shared between all three tissue types were
suggestively enriched for P-loop containing nucleoside
triphiosphate hydrolase activity (nominal p-value <0.017,
Benjamini-corrected p-value = 0.38).

Overlap between eQTL hotspots between cerebrum and
hypothalamus tissue

As well as assessing the overlap of eQTL between hypo-
thalamus and cerebrum, the potential overlap between
eQTL hotspots present in both tissues was investigated.
In total four eQTL hotspot regions overlapped, on
chromosome 1 with intervals between 775 and 784 cM,
on chromosome 5 with intervals between 243 and 245
cM, on chromosome 10 with intervals between 91 and
97 cM and on chromosome 28 with intervals between 18
and 19 cM. Of these, only the hotspot on chromosome 5
had two genes that shared eQTL in both tissues, GEMI
N2 and C5HI5orf41. C5H150rf41 had similar allelic
effect in both tissues (i.e. the Red junglefowl allele had
the greatest effect in both tissues). For GEMIN2 the
allelic effect was stronger for the White Leghorn allele in
cerebrum tissue, while the Red junglefowl allele had the
stronger effect in hypothalamus tissue.

Discussion
In this study we have identified a large number of eQTL
that regulate the transcriptome in cerebrum tissue, with
the majority of these eQTL being trans-acting. The over-
all regulation of gene expression variation in the cere-
brum was markedly different to the hypothalamus, with
relatively few eQTL in common between these two brain
regions. In comparison, we find that cerebrum tissue
shared more eQTL with a distant tissue (liver) than with
the hypothalamus. Furthermore, we also identify one
candidate gene that putatively regulates cerebrum size
(MTF2) and two that potentially regulate overall body
mass.

To date, relatively few genes responsible for brain size
variation have been identified (chiefly in humans [20-22],
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mice [23] and chickens [5]). Research into the genes
underlying variation in human brain size has identified
two loci [24], whilst a large-scale GWAS for intra-cranial
volume (maximum brain size) discovered a further five
loci [25]. These five loci were identified using extremely
large sample sizes (32,438 individuals) to identify associ-
ation signals in several genes, with these genes involved in
neural stem cell proliferation (FOX03) and neurodegener-
ation (MAPT) amongst others. The larger sample size here
is somewhat offset by the relatively small variation present
in humans compared to the extreme variation generated
by comparing wild and domestic birds [5]. Here we have
combined this genetics approach, using the loci detected
previously, with transcriptomic eQTL to combine actual
gene expression with brain size parameters to detect a sin-
gle candidate for cerebrum size. This is a large advantage
over studies that solely rely on association with no gene
expression data, as these are unable to distinguish trans-
acting effects over local cis-acting effects when determin-
ing the actual causal genes. The candidate gene identified,
MTF?2 (also known as Pcl2), is a metal response element
binding transcription factor that selectively binds to
unmethylated DNA [26] and has been found to control
development of the anterior central nervous system [27].
Therefore, this demonstrates a previous role in brain
development, making it a good candidate for further in-
vestigation as a regulator of inter-population variation in
cerebrum size. The candidate genes identified for regula-
tions of overall body mass were PCBD2 and an EST
(603848039F1). PCBD?2 is a target of the microRNA miR-
3174, with this miRNA potentially having a role in rectal
cancer through its action on PCB2 [28]. The EST mapped
to an exon on the gene RCHY (ring finger and CHY zinc
finger domain containing 1) that has been shown to have
DNA damage response and cell cycle activity [29].
Additionally, evidence show that HOXA2 induces RCHY1
degradation [30], indicating that RCHY1 might play a role
in brain development as the HOX-genes are involved in
embryonic development for both the axial skeleton and
the hindbrain [31].

Although we did identify one candidate gene for cere-
brum size (and two for body size), certainly many more
were invariably failed to be identified. The fact that only
one gene responsible for the variation in cerebrum size
was identified could be due to the fact that the cerebrum
is a large brain structure that consist of several substruc-
tures [13]. The functional constraints hypothesis (the
mosaic hypothesis) predicts a more independent genetic
basis for brain substructures than the concerted hypoth-
esis and suggests that the correlated coevolution of brain
regions sizes reflects the action of selection on func-
tional systems connecting the different sub-components.
The fact that we find very few correlations between the
transcriptome of the cerebrum and the regulation of
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inter-population variation in size might therefore be due
to the fact that the size of different sub-regions in the
cerebrum is controlled by different genes and separate
genetic architectures. Similarly, the effect size of these
genes regulating this variation may also be too small to
be detectable in our study. However, the link we do find
between body-size and gene expression in the cerebrum
suggest a link to the regulation of an individual’s overall
size is partially regulated by the cerebrum. It was outside
the scope of this study to do more detailed dissections
on the cerebrum to measure size and gene expression in
the smaller substructures, and our discussion on this
matter therefore remains speculative.

To test the two different brain evolution hypotheses, a
comparison between cerebrum and hypothalamus tissue
was conducted. Relatively little overlap was identified be-
tween the two brain regions in terms of shared eQTL
identified. In fact, both brain regions had more in com-
mon with the liver tissue, respectively, than each other.
Similarly, when looking at shared eQTL hotspots, only
two eQTL were present in hotspots in both types of brain
tissue, with only one of those genes (RHCY1 - EST
603848039F1) actually having a similar genotypic effect
(i.e. the Red junglefowl allele increasing expression) in
both tissues. These results would seem to give greater evi-
dence to the mosaic evolution hypothesis. In particular,
the lack of shared eQTL between the two brain regions
implies that genetic regulation of gene expression appears
to be relatively independent between the two brain re-
gions. Given the large differences in both overall brain size
and composition between wild and domestic chickens,
this large variation appears to share distinct regulatory
patterns. However, there are several caveats to this inter-
pretation. eQTL analysis, and indeed any gene expression
analysis is of course dependent not only on the tissue but
also on the time-point of sampling. As such it is possible
that earlier sampling (for example immediately pre-hatch
or early post-hatch) may have revealed a different genetic
architecture of gene regulation, with more shared eQTL.
In particular we know that brain composition changes
from hatch to early adolescence to adulthood in chickens
[5]. Similarly, an inherent problem with QTL mapping is
that eQTL of small effect may well be missed, and as such
some overlaps may be missed as a result.

The lack of shared eQTL hotspots between hypothal-
amus and cerebrum tissue also has some bearing on the
Neural Crest Cell (NCC) hypothesis of domestication [32].
The NCC hypothesis conjectures that the migration and
distribution of neural crest cells control a whole range of
domestication-related traits, therefore pleiotropy is to be
expected for multiple domestication-related QTL traits
where they are all underpinned by loci controlling neural
crest cell parameters. However, we find that rather few
eQTL overlap between multiple tissue types (especially
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when we consider overlap between all three tissues). When
we consider shared eQTL hotspots between the different
brain tissues, there is some overlap, however only two ac-
tual eQTL are shared between the hotspots present in these
two tissues. Interestingly, one of these genes, GEMIN2 (also
known as SIPI) has been associated to neural crest activity
[33, 34] and motor neuron activity [35]. The other gene,
C5HI150rf41, has an unknown cellular function, though the
open reading frame in C5H150rf41 is highly conserved in
vertebrates and has orthologs in human (Cl5o0rf41), rats
(RGD1563680), mouse (BC052040), dog (C30H150rf41)
and zebrafish (zgc:154061). Therefore, although the eQTL
evidence overall does not appear to support neural crest
cells as a mechanism of domestication, the presence of one
gene does warrant further investigation in the future for a
potential pleiotropic role.

Conclusion

Overall our findings show greater support for the mosaic
brain hypothesis (greater overlap in gene expression be-
tween liver and brain than between brain regions), how-
ever there are some results that could also indicate a
role for the concerted brain evolution hypothesis (the
identification of two candidate genes for body size
detected in cerebrum tissue). Similarly, we also find less
support for the neural crest cell hypothesis of domestica-
tion, with low replication of eQTL between multiple tis-
sue types. Once again though, one shared eQTL was
related to neural crest activity, and the identification of
this gene’s exact role in domestication would be enlight-
ening as regards the neural crest hypothesis. Finally, we
also identify a candidate gene that is worthy of further
investigation for regulating variation in cerebrum size.
Given the paucity of genes responsible for regulating
brain size variation that have been identified to date, the
role of this gene is relevant to further our understanding
of the molecular basis of avian brain evolution.

Methods

Study population and cross design

The chicken population used in this study was an
eight-generation intercross started in the 1990s by
crossing a Red Junglefowl rooster of Thai origin to
three White Leghorn layer hens to generate 41 F;
individuals. The F; were crossed to generate 811 F,
individuals, while F3 through F, were kept at around
100 individuals. A total of 59 (26 females and 33
males) Fg individuals were used in this study, with
the cerebrum (and hypothalamus [17]) dissected out
at 212 days of age and snap frozen in liquid nitrogen
and stored at minus 80 °C until further analysis. The
Fg-cross used in this study was reared at the research
station of Linkoping University, Sweden and
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maintained on standardized conditions and fed ad
libitum, under a 12 :12h light/dark regime. Housing
pens measured 2.5m x 2.5m and where comprised of
three separate levels equipped with perches [36, 37].
All individuals were culled by cervical neck disloca-
tion followed by decapitation (as per the ethical per-
mit). Animal handling was as per the ethical permit
for the project. The study was approved by the local
Ethical Committee of the Swedish National Board for
Laboratory Animals, ethical permit Dnr 50-13.

Phenotyping - brain measurements and dissections
Animals were weighed at hatch, 8 days, 42days, 112
days, and 212 days. Immediately after culling at age 212
days, the brains were removed from the birds, and a
four-piece dissection was performed. This involved div-
iding the brain into the cerebrum, optic tectum, cerebel-
lum and a “midbrain” region (which included thalamus,
the rest of the midbrain and the hindbrain; for more in-
formation on the dissected brain regions see [5]. After
weighing each brain region separately to its nearest
0.001 g right after dissection, using a high precision
balance (Sagitta 210 g/1 mg) the hypothalamus was dis-
sected out of the “midbrain” regions.

Genotyping

RNA isolation and gene expression microarrays

RNA was extracted from the cerebrum following a
standard TRIzol-protocol with the quality assessed
using a Bioanalyzer 2100 (Agilent). Samples with RIN
values above 9 were used. RNA was converted to cDNA
with Agilent one-color Low Input Quick Amp Labeling
Kit using Cyanine 3-CTP. The labeled samples were
hybridized on Agilent 8x60K custom gene expression
microarrays following the manufacturer’s protocol and
subsequently scanned on a NimbleGen MS200 (Roche
NimbleGen) scanner. The microarray probesets were
based on Ensembl transcripts and RefSeq mRNA se-
quences, with a total of 20,771 probesets representing
11,776 annotated genes. For further details about the
microarray design see Johnsson et al. (2018) [18]. 2-3
probes were used for each probeset and summarised to
one value per probeset using the R-package ‘preproces-
sCore’ [38]. Agilent Feature Extraction software v 12.0
was used to normalize and remove background noise
from the microarray. To remove any slide batch effects,
which can potentially occur when running multiple
samples on the same slide, the R-package ‘sva’ was used
[39]. A final clean up step was performed for the gene
expression values where outliers were removed using
the R-package ‘outliers’ with the chisq.out.test-function
(p-value <le-6, max 2 values were removed per probe-
set). All microarrays used in this study are available on
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ArrayExpress (http://www.ebi.ac.uk/arrayexpress) under
the accession number E-MTAB-9313 (cerebrum), E-
MTAB-3154 (hypothalamus) and E-MTAB-5572 (liver).

QTL and eQTL mapping

All chickens (n=59) were genotyped. The DNA from
each individual was prepared by Agowa (Berlin,
Germany), using a standard salt DNA extraction [40]. A
total of 612 informative SNP markers for genotyping
were selected generating a 9667 cM genetic map and
averaging 16 cM between each marker. Of these 551
markers were fully informative of parental origin, with
the remainder being partially informative. Only genetic
markers on the autosomes were used for QTL mapping.
Note that this study presented here is a classical linkage
study (using linkage between markers to map recombi-
nations that occur between two intercrossed populations
in a fixed series of inter-cross generations) [19], as
opposed to a Genome Wide Association Mapping study
(that uses the linkage disequilibrium that exists in a
single natural population which has a built-up historical
recombinations over a long period of time). The advan-
tage of a linkage study means that the genome is covered
using relatively few markers, and in fact very little is
gained from having a density of markers less than 10
cM, whilst the recommended marker density for standard
QTL mapping is 20-30 cM [41]. In the study presented
here the average marker density is ~ 16 cM, meaning we
have excellent genomic coverage to detect QTL with the
number of SNPs that were used. The R-package ‘R/qtl’
was used for interval mapping with Haley-Knott regres-
sion [42]. Batch and sex were included in the models as
fixed additive covariates and sex-interaction as interactive
covariate. Any eQTL located near a target gene were
considered as cis if the closest flanking markers was
located at least 50 cM upstream and downstream of the
gene. Determining whether a cis eQTL is acting on the
target gene rather than an enhancer affecting the target
gene is problematic and strictly should be called ‘local’
eQTL. However, this is a common problem in eQTL map-
ping [17] and any eQTL found within 100 cM of the target
gene will hereafter be referred to as ‘cis’. Genome-wide
trans eQTL were any eQTL outside the cis boundaries.
Genes located on the Z chromosomes were included in
the eQTL mapping. The power of the study (as calculated
using the r/qtlDesign package [43]) was sufficient to give
an 80% chance to detect a QTL of 27% effect size.
Although these effects sizes are quite large, the nature of
eQTL mapping means that the phenotypes used (gene
expression) often have a higher r-squared in general in
QTL mapping. Of course, these thresholds means that
eQTL of small effect may well be missed. Phenotype
and genotype data for the eQTL analysis is available as
three data files in the supplementary information for
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this article (Supplementary Datasets: gene_expression_
phenotypes.txt, genotypes.txt, and phenotypes.txt).

Significance thresholds for eQTL mapping

Logarithm of odds (LOD) thresholds were calculated
using permutation tests [44], with 1000 permutations
choosing 1000 probesets randomly over 10 iterations.
The top 95th percentile was used as significant and the
top 80th percentile as suggestive. Sex-interaction was
taken into account. This generated a trams suggestive
threshold of 4.55 and 6.52, nonsex and sex-interaction
respectively, and significant threshold of 7.26 and 9.42,
nonsex and sex-interaction respectively. The cis permu-
tation was done on the immediate region of the SNP
marker stretching to the closest flanking marker at least
50 cM upstream and downstream. This generated a cis
suggestive threshold of 3.44 and 5.42, nonsex and sex-
interaction respectively, and significant threshold of 3.75
and 5.96, nonsex and sex-interaction respectively. Confi-
dence intervals (CI) for eQTL were calculated with a 1.8
LOD drop using the lodint-function (R/qtl) from the
QTL peak to the closest marker and measured in genetic
distance. This interval gives a 95% confidence interval in
an intercross population [45].

Analysis of candidate genes for cerebrum size

From a previous study phenotypic QTL for body and brain
size were identified [5] and were overlapped with cere-
brum eQTL identified in this study. These overlaps were
tested on the confidence intervals between the eQTL and
QTL. A linear regression was modelled between the over-
lapping trait as the response variable and gene expression
as the predictor, with batch and sex as covariates. The p-
values for the regression coefficient were Bonferroni cor-
rected for the number of uncorrelated eQTL (gene expres-
sion values) within a trait QTL confidence interval.

Network edge orientation analysis

To test for causality between gene expression and cere-
brum size the software NEO was used [46]. The NEO
software implements structural equation models (SEM)
to fit multi-trait causal models in a trait network to find
directionality between the traits. The genotype at each
QTL peak was used as edges for the trait network and a
causal model in which the genotype affects the trait
using changing gene expression was compared to four
alternative models, with these being the causal, reactive,
confounded and collider models. For more information
about the different models see [47, 48]. The best-fitting
model is selected based on the ratio of the x* p-value to
the p-value of the next best-fitting model and referred to
as local edge orienting against the next best model
(leo.nb) scores. A positive leo.nb score indicates that the
causal model fits better than any competing model. Aten
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et al. [46] use a single-marker leo.nb score of 1, corre-
sponding to a 10-fold higher p-value of the causal
model, and a multiple genetic marker leo.nb.oca of 0.3
as their threshold.

Cerebrum gene profile compared to neuronal-and non-
neuronal tissue

From previous studies done on the same intercross 1123
eQTL have been identified for the hypothalamus [17] and
1462 eQTL for liver [18]. These eQTL were used to com-
pare gene expression profiles between the tissues (Cerebrum
vs Hypothalamus, Cerebrum vs Liver, Hypothalamus vs.
Liver and finally between all three tissues at once). Only
eQTL found on the autosomes were used. As the studies
were made on different custom expression arrays probesets
found on both arrays were used in the analysis, in total 18,
499. The resulting gene lists found to overlap between the
tissues were tested for enrichment using the DAVID data-
base v6.8 (https://david.ncifcrf.gov/) [49]. A custom back-
ground gene list was used composed of the genes present
and expressed in the microarray (see supplementary Table
S7) to avoid sampling bias [50]. Any functional aggregation
of genes with a nominal p-values < 0.05 were reported, with
genes that passed this threshold considered to be sug-
gestive. Additionally, the more stringent Benjamini-
Hockberg p-values <0.05 (experiment-wide threshold)
were also reported, with these considered significant.

eQTL hotspots

Regions on the genome were sought after where the ob-
served number of eQTL was higher than expected. These
regions, termed hotspots, indicate transcriptionally active re-
gions specific for our study population. eQTL hotspots were
assigned by overlapping the eQTL confidence intervals
throughout each autosomal chromosome. Chromosomes
with at least 10 eQTL were considered. A permutation test
was used to set the significance threshold, this was done for
each chromosome individually. The average confidence
interval for the eQTL was randomly assigned a position on
the chromosome equal to the number of eQTL found on
the chromosome. The highest number of overlaps was
saved. This was repeated 1000 times and the 95th percentile
used as threshold. Additionally, the eQTL hotspots and their
corresponding genes were tested for enrichment using the
DAVID database v6.8 (https://david.ncifcrf.gov/) [49], using
the same custom background gene list as above.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512864-020-06908-0.

Additional file 1: Table S1. All eQTL present in the cerebrum tissue.
For each eQTL, the chromosome, position (in cM), LOD score, confidence
interval, direction of effect (whether the allele with the greater effect
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derived from the RJF or WL genotype), % of variance explained by the
eQTL, the additive and dominance effects of each eQTL, plus the additive
and dominance effects if a sex-interaction was also present, as well as in-
formation on the gene underlying each eQTL (whether it represented an
annotated gene and the bp position of the gene).

Additional file 2: Table S2. GO analysis for each of the eQTL hotspots.
GO categories and terms are presented, along with the counts for each
term, the nominal p-value (with this considered suggestive if P < 0.05),
and the Benjamini-corrected p-value (with this considered significant if
P <0.05).

Additional file 3: Table S3. Overlaps between eQTL and phenotypic
QTL. For each overlap, the phenotypic trait QTL, the eQTL probeset, the
confidence intervals for the two QTL, and the eQTL type (whether it was
a cis or trans eQTL) are shown.

Additional file 4: Table S4. Significant and suggestive overlaps
between phenotypic QTL and eQTL. For each overlap, as well as the trait
type and eQTL probeset, the % of variation in the phenotype explained
by the probeset (adjusted R-squared), the correlation p-value (p-value of
probeset expression in the model) and t-value, as well as the gene ID
(ensgalg ID) are provided.

Additional file 5: Table S5. GO analysis for each of the tissue
comparisons (pairwise overlaps between eQTL shared between cerebrum
and liver, cerebrum and hypothalamus, hypothalamus and liver, and all
three tissues. GO categories and terms are presented, along with the
counts for each term, the nominal p-value (with this considered
suggestive if P < 0.05), and the Benjamini-corrected p-value (with this
considered significant if P < 0.05).

Additional file 6: Table S6. Shared genes possessing an eQTL
expressed in multiple tissues. For each gene, the tissue comparison (i.e if
the gene is shared between cerebrum and hypothalamus, cerebrum and
liver, liver and hypothalamus, or all three tissues), Gal4 and Gal6é gene
location, Gal4 and Gal6 annotation number and the probeset itself are
given.

Additional file 7: Table S7. Gene lists used to generate the DAVID GO
results.

Additional file 8. Gene_expression_phenotypes.
Additional file 9. Genotypes.
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is available as three data files in the supplementary information for this
article (gene_expression_phenotypes.txt, genotypes.txt, and phenotypes.txt).
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