Research Paper

Exploring the gender gap: A nationwide comparative analysis of general surgery residency program leadership ${ }^{*}$

Xinfei Miao, BS *, Reem Sarsour, BS, Madeleine Givant, BS, Helena Spartz, MD, PhD, FCAP
California University of Science and Medicine, 1501 Violet St, Colton, CA, United States of America

HIGHLIGHTS

- Women remain underrepresented in leadership in general surgery residency programs.
- A greater gender disparity exists in community-based programs.
- More resources are needed in community-based programs to promote gender diversity.

ARTICLE INFO

Keywords:

Surgery education
Women in surgery
General surgery
Gender diversity

Abstract

Background: The gender disparity in surgery leadership roles is well-reported. However, the effect of program type and region on mean number of men or women occupying a particular leadership role has yet to be explored. This study aims to investigate the gender disparity of leadership positions in different types of General Surgery Residency Programs (GSRPs). Methods: Leadership roles of the general surgery departments were collected from the Fellowship and Residency Electronic Interactive Database Access System (FREIDA) database. Each GSRP was categorized by region and program type using FRIEDA. Analysis of the mean number of men and women holding various leadership positions by program type and region was conducted using one-way ANOVA with post-hoc tests. Results: A total of 345 GSRPs were analyzed. The mean number of women occupying various leadership roles was significantly higher at university-based programs when compared to community-based programs. No significant difference in mean number of women leaders was observed by region. Conclusions: Women consistently occupy a lower number of GSRP leadership positions when compared to men, regardless of program type or region. University-based GSRP leadership positions have significantly greater gender inclusion compared to community-based GSRPs. Key messages: University-based general surgery residency programs had a higher mean number of women in all leadership roles compared to other program types. In comparison, region did not appear to be a significant factor impacting the leadership gender disparity. Improvement is needed in community-based general surgery residency programs to bridge the gender gap in leadership roles.

Introduction

In recent years, progress has been made in promoting gender equality in medicine and surgery. Despite an increase in women matches into General Surgery Residency Programs (GSRPs), there is great gender disparity of current practicing surgeons [1,2]. According to the AAMC 2021 Physician Specialty Data Report, 22.6 \% of active general surgeons, 17.6% of plastic surgeons, 9.6% of neurosurgeons, and 5.9% of
orthopedic surgeons are women [3]. Addressing the gender gap within surgical residency programs appears challenging, as past studies have indicated that bridging the disparities observed in fields such as neurosurgery, orthopedic surgery, and urology may take three or more decades [4].

The representation of women at various leadership levels appears to be heavily impacted by this gender gap. With increasing numbers of women trainees, one would expect this to increase women

[^0]Table 1
Gender representation in the role of PD, APD, and DC by program types.
$\left.\begin{array}{llllr}\hline & \begin{array}{l}\text { University- } \\ \text { based }\end{array} & \begin{array}{l}\text { Community- } \\ \text { based }\end{array} & \begin{array}{l}\text { Community- } \\ \text { based; } \\ \text { University- } \\ \text { Affiliated }\end{array} & \text { Other }\end{array}\right]$

Table 2
Gender representation in the role of PD, APD, and DC across four regions in U.S.

	West	South	Midwest	Northeast
PD	$12(24.0 \%)$	$28(24.8 \%)$	$29(35.4 \%)$	$29(28.7 \%)$
Women	$38(76.0 \%)$	$85(75.2 \%)$	$53(64.6 \%)$	$72(71.3 \%)$
Men				
APD	$26(46.4 \%)$	$37(37.8 \%)$	$30(37.5 \%)$	$42(39.6 \%)$
Women	$30(53.6 \%)$	$61(62.2 \%)$	$50(62.5 \%)$	$64(60.4 \%)$
Men	$32(17.1 \%)$	$38(11.9 \%)$	$20(10.9 \%)$	$52(13.6 \%)$
DC	$155(82.9 \%)$	$280(88.1 \%)$	$164(89.1 \%)$	$329(86.4 \%)$
Women				
Men				

representation along the general surgery pipeline. However, studies have demonstrated that despite a rise in women general surgery trainees to 46.1% in 2021, women leaders have yet to achieve a comparable increase [3,5-8]. Prior research has found a low women representation in surgical societies and conferences along with a higher likelihood for women to rank in lower leadership positions within these societies $[9,10]$. A recent study conducted by Battaglia et al. has shown that in the surgical academia, men surgeons are twice as likely to be department chairs when compared to women [7].

Previous literature has shown that women leadership positively affects mentorship and patient outcomes [11,12]. Programs with a greater number of women leaders are more likely to have a higher number of women trainees, where women leaders serve as role models for future generations of residents and medical students [13]. In comparison to their men counterparts, women surgeons that are faculty in medical schools are more likely to spend over 50% of time in clinical responsibility [14]. In a retrospective cohort study comparing patients treated by men and women surgeons, patients that were treated by women surgeons had lower rates of adverse postoperative outcome [15].

Numerous studies have investigated the role of women leadership and gender disparity within the academic GSRPs. However, research has yet to elucidate the association between gender representation in
various leadership positions, program type, and region. Therefore, this study aims to assess if program type and region influence the number of men and women occupying the position of program director (PD), associate/assistant program director (APD), or departmental/divisional chief/chair (DC) with the goal of providing potential areas for improving women representation in general surgery.

Material and methods

A review of leadership roles in GSRPs was performed using the American Medical Association Fellowship and Residency Electronic Interactive Database Access [16] (AMA FREIDA), an online database that lists all GSRPs in the U.S. and its territories. Military-based programs were excluded due to lack of leadership role information listed on program websites. Additional information collected from AMA FREIDA included program type and location. Program type included universitybased, community-based, community-based university-affiliated, and others. Through the Census Bureau Regions and Divisions with State FIPS Codes [17], program location was categorized into four regions: West, Midwest, South, and Northeast [17]. The number and gender of individuals occupying the role of PD, APD, and DC were collected from various GSRP websites. DCs from all divisions and departments within General Surgery were collected. DCs from divisions and departments offering an integrated sub-surgical specialty were excluded. The gender of individuals occupying a particular leadership position was identified through pronouns listed on GSRP websites. When pronouns were not available, associated images and names of individuals listed on GSRPs were evaluated by two independent reviewers.

Descriptive statistics were used to describe percentages of men and women occupying various leadership roles by program type and region. Continuous variables were reported as means with standard deviation and 95% confidence intervals. Analysis of the mean number of men and women holding various leadership positions by program type and region was conducted using one-way ANOVA with post-hoc tests. Statistical significance was set at $\alpha=0.05$. All statistical analysis was conducted using SPSS Statistics software, version 23 (IBM Corporation). This study is considered exempt from Institutional Review Board approval at California University of Science and Medicine, School of Medicine due to the public nature of the data collected.

Results

Program characteristics

A total of 345 Accreditation Council for Graduate Medical Educationapproved U.S. GSRPs were identified using AMA FREIDA. Of the 345 programs, 50 (14.5%) programs were located in the West, 82 (23.8 \%) in the Midwest, 112 (32.5 \%) in the South, and 101 (29.3 \%) in the Northeast. Programs were further classified by program type, with 121 (35.1%) being university-based, 82 (23.8 \%) being community-based,

Table 3
Descriptive one way ANOVA of gender representation of leaders by program regions.

	University-based				Community-based				C/U			
	N	Mean	Std deviation	$\begin{aligned} & 95 \% \mathrm{CI} \\ & \text { [LB, UB] } \end{aligned}$	N	Mean	Std deviation	$\begin{aligned} & 95 \% \text { CI } \\ & \text { [LB, UB] } \end{aligned}$	N	Mean	Std deviation	$\begin{aligned} & 95 \text { \% CI } \\ & \text { [LB, UB] } \end{aligned}$
PD												
Women	121	0.3802	0.48745	[0.2924,0.4679]	82	0.1829	0.38899	[0.0978,0.2684]	138	0.2609	0.44071	[0.1867,0.3351]
Men	121	0.6198	0.48745	[0.5321,0.7076]	82	0.8171	0.38899	[0.7316,0.9025]	138	0.7464	0.45308	[0.6701,0.8226]
APD												
Women	121	0.6777	0.88708	[0.5180,0.8374]	82	0.1829	0.41952	[0.0907,0.2751]	138	0.2754	0.49476	[0.1921,0.3586]
Men	121	0.6694	1.01971	[0.4859,0.8530]	82	0.6707	0.94353	[0.4634,0.8780]	138	0.4855	0.73728	[0.3614,0.6096]
DC												
Women	121	0.8926	1.26360	[0.6651,1.1200]	82	0.1463	0.41935	[0.0542,0.2385]	138	0.1377	0.43884	[0.0638,0.2116]
Men	121	4.9917	4.11399	[4.2512,5.7322]	82	1.1707	1.92325	[0.7481,1.5933]	138	1.6159	2.48594	[1.1975,2.0344]

* $P \leq 0.05$.

138 (40.0 \%) being a community-based university-affiliated, and 4 (1.2 \%) not falling into any previous category.

Gender representation by program type

Among examined leadership roles, 248 (71.7 \%) men were PDs, 205 (60.3%) men were APDs, and 928 (86.7%) men were DCs. In comparison, 98 (28.3 \%) women were PDs, 135 (39.7 \%) were APDs, and 142 (13.3 \%) were DCs (Table 1, Table 2).

One-way ANOVA was performed to compare the effect of program type on number of men or women occupying a particular leadership role. A statistically significant difference in mean number of women occupying the role of PD between program types was observed ($\mathrm{F}(3$, $341)=[3.40], p=0.02$) (Table 3). Tukey’s HSD Test for multiple comparisons found that the mean number of women occupying the role of PD ($\mathrm{p}=[0.01], 95 \%$ C.I. $=[0.03,0.36]$) was significantly different between university-based and community-based programs. Our analysis also revealed a statistically significant difference in mean number of women occupying the role of $\operatorname{APD}(\mathrm{F}(3,341)=[12.75], p<0.01)$ and $\mathrm{DC}(\mathrm{F}(3,341)=[21.56], \mathrm{p}<0.01)$ between program types. The mean number of women occupying the role of APD and DC was significantly different between university-based and community-based programs (p $<$ [0.01], 95 \% C.I. $=[0.26,0.73]),(\mathrm{p}<$ [0.01], 95% C.I. $=[0.44$, 1.05]), respectively, as well as university-based and university-affiliated community-based programs ($\mathrm{p}<$ [0.01], 95% C.I. $=[0.19,0.61]$), $(\mathrm{p}<$ [0.01], 95 \% C.I. $=[0.49,1.02]$), respectively (Table 4).

A statistically significant difference in mean number of men occupying the role of $\mathrm{PD}(\mathrm{F}(3,341)=[3.40], p=0.02)$ and $\mathrm{DC}(\mathrm{F}(3,341)=$ [35.49], $p<0.01$) was observed between program types (Table 3). The mean number of men occupying the role of $\mathrm{PD}(\mathrm{p}=[0.01], 95 \%$ C.I. $=$ $[-0.36,-0.03])$ and DC (p $<[0.01], 95 \%$ C.I. $=[2.69,4.95])$ was

Table 4
Multiple comparisons of post hoc test (Tukey HSD) of gender representation of leadership roles by program type.

	Program type (I)	Program type (J)	Mean difference	Std error	Sig.
PD					
Women	Universitybased	Communitybased	0.19724	0.06393	0.012
		C/U	0.11930	0.05567	0.142
	Communitybased	C/U	-0.7794	0.06232	0.595
Men	Universitybased	Communitybased	-0.19724	0.06464	0.013
		C/U	-0.12654	0.05628	0.113
	Communitybased	C/U	0.07070	0.06301	0.676
APD					
Women	Universitybased	Communitybased	0.49476	0.09238	<0.001
		C/U	0.40232	0.08043	<0.001
	Communitybased	C/U	-0.09244	0.09005	0.734
Men	Universitybased	Communitybased	-0.00131*	0.12783	1.000
		C/U	0.18391	0.11130	0.351
	Communitybased	C/U	0.18522	0.12461	0.447
DC					
Women	Universitybased	Communitybased	0.74622	0.11874	<0.001
		C/U	0.75488	0.10338	<0.001
	Communitybased	C/U	0.00866*	0.11575	1.000
Men	Universitybased	Communitybased	3.82100	0.43790	<0.001
		C/U	3.37579	0.38128	<0.001
	Communitybased	C/U	-0.44521	0.42687	0.724

[^1]significantly different between university-based and community-based programs. In addition, the mean number of men occupying the role of DC was statistically different between university-based and universityaffiliated community-based programs ($\mathrm{p}<$ [0.01], 95% C.I. $=[2.39$, 4.36]). No statistically significant difference was observed in mean number of men occupying the APD role between groups $(\mathrm{F}(3,341)=$ [1.18], $p=0.32$) (Table 4).

Gender representation by program region

When comparing the effect of program region on number of men or women occupying a particular leadership role, no statistically significant difference in mean number of women occupying the role of $\mathrm{PD}(\mathrm{F}(3$, $341)=[1.02], p=0.38)$ or $\operatorname{APD}(\mathrm{F}(3,341)=[0.98], p=0.40)$ by region was observed (Table 5). We observed no statistically significant difference in mean number of men occupying the role of $\operatorname{PD}(F(3,341)=$ $[1.12], p=0.34)$, $\operatorname{APD}(\mathrm{F}(3,341)=[0.19], p=0.91)$, or $\operatorname{DC}(\mathrm{F}(3,341)$ $=[2.32], p=0.08)$ by region. A weakly statistically significant difference in mean number of women occupying the role of $D C$ between regions $(\mathrm{F}(3,341)=[2.74], p<0.04)$ was observed but this result was not strong enough to yield significant values for Tukey's HSD Test for multiple comparisons (Table 6).

Discussion

In all GSRPs, leadership positions were predominantly filled by men with women occupying less than one-fourth of all leadership roles. Our analysis of program type and mean number of men or women occupying a particular leadership role revealed university-based programs had a higher mean number of women PDs than community-based programs, while the inverse was observed for men. University-based programs were also found to have a higher mean number of women APDs and DCs than both community-based and community-based university-affiliated programs. University-based programs had a higher mean number of men in the DC role than community-based and community-based university-

Table 5
Descriptive one-way ANOVA of gender representation of leaders by program regions.

* $\mathrm{P} \leq 0.05$
affiliated programs. No significant difference between program type and number of men APDs was found.

These findings are in concordance with past studies demonstrating the apparent gender gap in general surgery [5,7,8,18]. The cause of this gender disparity across all GSRPs may be multifactorial as it has been shown that traditional gender roles, lack of mentors, and sexism in medical settings feasibly hinder women's leadership and career advancement [19].

Our results indicate that university-based programs tend to have a higher number, on average, of women in leadership roles when compared to other program types. This observation contradicts a previous study conducted by Weiss et al., where no statistical significance was found across leadership positions and program type [20]. This suggests an increase in women representation in various leadership positions among university-based programs. This improvement in gender diversity may be due to the implementation of educational programs and pipelines that empower women's leadership [21,22]. The establishment of the Association of Program Directors in Surgery Diversity and Inclusion Taskforce has demonstrated a significant increase in women in leadership positions in various organizations [23]. However, further research is necessary to investigate the factors influencing the women advancement seen at university-based programs.

Analysis of program region and mean number of men and women occupying a particular leadership role showed no significant difference in the mean number of men or women occupying the position of PD or APD across regions. A weakly significant difference in the mean number

Table 6
Multiple Comparisons of Post Hoc Test (Tukey HSD) of Gender Representation of Leadership Roles by Program Region.

	Program region (I)	Program region (J)	Mean difference	Std error	Sig.
PD					
Women	West	Midwest	-0.11366	0.08103	0.498
		South	-0.01000*	0.07681	0.999
		Northeast	-0.04713^{*}	0.7809	0.931
	Midwest	South	0.10366	0.06563	0.392
		Northeast	0.06653	0.06713	0.755
	South	Northeast	-0.03713	0.06197	0.932
Men	West	Midwest	0.11366	0.08189	0.508
		South	0.00107	0.07763	1.000
		Northeast	0.04713	0.07892	0.933
	Midwest	South	-0.11259	0.06633	0.327
		Northeast	-0.06653	0.06784	0.761
	South	Northeast	0.04606	0.06263	0.883
APD					
Women	West	Midwest	0.15415	0.12168	0.585
		South	0.18964	0.11534	0.355
		Northeast	0.10416	0.11726	0.811
	Midwest	South	0.3550	0.09856	0.984
		Northeast	-0.04999	0.10080	0.960
	South	Northeast	-0.08548	0.09305	0.795
Men	West	Midwest	-0.00976	0.16106	1.000
		South	0.05536	0.15267	0.984
		Northeast	-0.03366	0.15521	0.996
	Midwest	South	0.06511	0.13046	0.959
		Northeast	-0.2391	0.13343	0.998
	South	Northeast	-0.08902	0.12317	0.888
DC 0					
Women	West	Midwest	0.39610	0.16054	0.067
		South	0.30071	0.15218	0.199
		Northeast	0.12515	0.15471	0.850
	Midwest	South	-0.09538	0.13004	0.884
		Northeast	-0.27095	0.13300	0.176
	South	Northeast	-0.17557	0.12277	0.481
Men	West	Midwest	1.10000	0.62291	0.292
		South	0.6000	0.59047	0.740
		Northeast	-0.15743	0.60031	0.994
	Midwest	South	-0.5000	0.50457	0.755
		Northeast	-1.25743	0.51605	0.072
	South	Northeast	-0.75743	0.47638	0.386

[^2]of women DCs was observed across regions with the West having the highest mean number of women DCs and the Midwest having the lowest. This suggests region does not seem to have a prominent effect on the number of women holding leadership roles as program type.

There are several limitations of this study. Leadership data was collected from GSRP websites which may contain out-of-date information resulting in possible inaccuracies and underreporting of women leadership. We acknowledge the limitation in assessing gender as binary and the lack of pronouns listed on GSRP websites in restricting gender identification accuracy. Due to the cross-sectional methodology of this study, we were unable to determine the period that men and women have served in a particular leadership role as well as the length of time between their role as general faculty and appointment to a leadership position.

Conclusion

Despite the growing number of women trainees entering GSRPs, a significant gender disparity in leadership positions remains. This gender gap is heightened in community-based programs and may be alleviated by increasing women recruitment and implementing measures to retain and promote women that attend community-based GSRPs.

Funding sources

This research did not receive any specific grant from funding agencies in the public commercial, or not-for-profit sectors.

Ethical approval

This study is considered exempt from Institutional Review Board approval at California University of Science and Medicine, School of Medicine due to the public nature of the data collected.

CRediT authorship contribution statement

Xinfei Miao: Conceptualization, Investigation, Methodology, Project administration, Resources, Visualization, Writing - original draft, Writing - review \& editing. Reem Sarsour: Conceptualization, Investigation, Resources, Writing - original draft, Writing - review \& editing. Madeleine Givant: Data curation, Formal analysis, Investigation, Resources, Validation, Visualization, Writing - review \& editing. Helena Spartz: Methodology, Project administration, Supervision, Writing review \& editing.

Declaration of competing interest

Spartz, Miao, Sarsour, and Givant have no conflict of interests to declare.

References

[1] Davis EC, Risucci DA, Blair PG, Sachdeva AK. Women in surgery residency programs: evolving trends from a national perspective. J Am Coll Surg 2011;212 (3):320-6. https://doi.org/10.1016/J.JAMCOLLSURG.2010.11.008.
[2] Mehta A, Wireko AA, Tope Adebusoye F, et al. Gender representation in surgery: progress and challenges in recent years. Int J Surg 2023;109(3):599. https://doi. org/10.1097/JS9.0000000000000189.
[3] Active Physicians by Sex and Specialty, 2021 | AAMC. Accessed March 14, 2024. https://www.aamc.org/data-reports/workforce/data/active-physicians-sex-specia lty-2021.
[4] Bennett CL, Baker O, Rangel EL, Marsh RH. The gender gap in surgical residencies. JAMA Surg 2020;155(9):893. https://doi.org/10.1001/JAMASURG.2020.2171.
[5] Carpenter AM, Tan SA, Costopoulos K, Cooper LA, Sarosi GA, Shaw CM. Gender diversity in general surgery residency leadership. J Surg Educ 2018;75(6):e68-71. https://doi.org/10.1016/J.JSURG.2018.07.021.
[6] Filiberto AC, Le CB, Loftus TJ, et al. Gender differences among surgical fellowship program directors. Surgery 2019;166(5):735-7. https://doi.org/10.1016/J. SURG.2019.05.017.
[7] Battaglia F, Farhan SA, Narmeen M, et al. Does gender influence leadership roles in academic surgery in the United States of America? A cross-sectional study. Int J Surg 2020;83:67-74. https://doi.org/10.1016/J.IJSU.2020.08.029.
[8] Kassam AF, Taylor M, Cortez AR, Winer LK, Quillin RC. Gender and ethnic diversity in academic general surgery department leadership. Am J Surg 2021;221 (2):363-8. https://doi.org/10.1016/J.AMJSURG.2020.11.046.
[9] Wu B, Bhulani N, Jalal S, Ding J, Khosa F. Gender disparity in leadership positions of general surgical societies in North America, Europe, and Oceania. Cureus 2019; 11(12). https://doi.org/10.7759/CUREUS. 6285.
[10] Krise SM, Etheart I, Perzynski A, Como J, Carneval M, Conrad-Schnetz K. Leadership amongst regional and national surgical organizations: the tides are changing. Cureus 2020;12(10). https://doi.org/10.7759/CUREUS.10827.
[11] Cohen JJ, Gabriel BA, Terrell C. The case for diversity in the health care workforce. Health Aff (Millwood) 2002;21(5):90-102. https://doi.org/10.1377/ HLTHAFF.21.5.90.
[12] Zhu K, Das P, Karimuddin A, Tiwana S, Siddiqi J, Khosa F. Equity, diversity, and inclusion in academic American surgery faculty: an elusive dream. Published online. 2020. https://doi.org/10.1016/j.jss.2020.08.069.
[13] Hughes A, Im K, Zhu J, Saunders B. A descriptive analysis of general surgery residency program directors in the United States. Am J Surg 2022;224(5):1247-51. https://doi.org/10.1016/J.AMJSURG.2022.06.020.
[14] Fisher ZE, Rodríguez JE, Campbell KM. A review of tenure for Black, Latino, and Native American faculty in academic medicine. South Med J 2017;110(1):11-7. https://doi.org/10.14423/SMJ.0000000000000593.
[15] Wallis CJD, Jerath A, Aminoltejari K, et al. Surgeon sex and long-term postoperative outcomes among patients undergoing common surgeries. JAMA Surg 2023;158(11):1185-94. https://doi.org/10.1001/JAMASURG.2023.3744.
[16] FREIDA Residency Program Database \| Medical Fellowship Database | AMA. Accessed March 14, 2024. https://freida.ama-assn.org/.
[17] U.S. Department of Commerce Economics and Statistics Administration. Census bureau regions and divisions with state FIPS codes. U.S. Census Bureau.
[18] Carman M, Zink H, Larson K, et al. Advanced degrees, gender, and professoinal rank in surgery, disparities in academic medicine. Am J Surg 2024;228:5-9. https://doi.org/10.1016/j.amjsurg/2023.07.018.
[19] Leschber G. From female surgical resident to academic leaders: challenges and pathways forward. J Thorac Dis 2021;13(1):480-4. https://doi.org/10.21037/ JTD-2020-WTS-08.
[20] Weiss A, Lee KC, Tapia V, et al. Equity in surgical leadership for women: more work to do. Am J Surg 2014;208(3):494-8. https://doi.org/10.1016/J. AMJSURG.2013.11.005.
[21] Jagsi R, Spector ND. Leading by design: lessons for the future from 25 years of the executive leadership in academic medicine (ELAM) program for women. Acad Med 2020;95(10):1479-82. https://doi.org/10.1097/ACM.0000000000003577.
[22] Ford AY, Dannels S, Morahan P, Magrane D. Leadership programs for academic women: building self-efficacy and organizational leadership capacity. J Women's Health (Larchmt) 2021;30(5):672-80. https://doi.org/10.1089/JWH.2020.8758.
[23] Morris-Wiseman LF, Dent D, Nfonsam VN, Arora TK. Leadership diversity in the association of program directors in surgery: a report of progress. J Surg Educ 2022; 79(6):e109-15. https://doi.org/10.1016/J.JSURG.2022.08.004.

[^0]: * Gallery proofs: Not applicable.Reprint requests: Not applicable.
 * Corresponding author at: California University of Science and Medicine, School of Medicine, 1501 Violet St, Colton, CA, 92324, United States of America. E-mail address: xinfei.miao@md.cusm.edu (X. Miao).

[^1]: * The mean difference is significant at the 0.05 level.

[^2]: * The mean difference is significant at the 0.05 level.

