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Abstract

Measurement of neural tracking of natural running speech from the electroencephalogram

(EEG) is an increasingly popular method in auditory neuroscience and has applications in

audiology. The method involves decoding the envelope of the speech signal from the EEG

signal, and calculating the correlation with the envelope of the audio stream that was pre-

sented to the subject. Typically EEG systems with 64 or more electrodes are used. How-

ever, in practical applications, set-ups with fewer electrodes are required. Here, we

determine the optimal number of electrodes, and the best position to place a limited number

of electrodes on the scalp. We propose a channel selection strategy based on an utility met-

ric, which allows a quick quantitative assessment of the influence of a channel (or a group of

channels) on the reconstruction error. We consider two use cases: a subject-specific case,

where the optimal number and position of the electrodes is determined for each subject indi-

vidually, and a subject-independent case, where the electrodes are placed at the same posi-

tions (in the 10-20 system) for all the subjects. We evaluated our approach using 64-

channel EEG data from 90 subjects. In the subject-specific case we found that the correla-

tion between actual and reconstructed envelope first increased with decreasing number of

electrodes, with an optimum at around 20 electrodes, yielding 29% higher correlations using

the optimal number of electrodes compared to all electrodes. This means that our strategy

of removing electrodes can be used to improve the correlation metric in high-density EEG

recordings. In the subject-independent case, we obtained a stable decoding performance

when decreasing from 64 to 22 channels. When the number of channels was further

decreased, the correlation decreased. For a maximal decrease in correlation of 10%, 32

well-placed electrodes were sufficient in 91% of the subjects.

Introduction

To understand how the human brain processes an auditory stimulus, it is essential to use eco-

logically valid stimuli. An increasingly popular method is to measure neural tracking of natural
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running speech from the electroencephalogram (EEG). This method also has applications in

domains such as audiology, as part of an objective measure of speech intelligibility [1, 2], and

coma science [3].

Among the different models used to study the relationship between the stimulus and the

brain response, two of the most often used ones are the forward and backward models [1, 4–

7]. In the forward model (also know as encoding model), we determine a linear mapping from

the stimulus to the brain response. In the backward model (also known as stimulus reconstruc-

tion), we determine the linear mapping from the brain response to the stimulus. Backward

models are referred to as decoding models, because they attempt to reverse the data generation

process. Both the forward and backward models involve the solution of a linear least squares

(LS) regression problem. The quality of the reconstruction is usually quantified in terms of

correlation between the true and reconstructed signal. The benefit of the forward model is that

the obtained models (also called temporal response functions) can be easily interpreted, and

topographical information can be easily obtained. The benefit of the backward model is that

through combination of information across EEG channels, better performance (higher corre-

lations) can be obtained, but the model coefficients can not be easily interpreted. Another

approach to study the relationship between the stimulus and the brain response is based on

Canonical Correlation Analysis (CCA) [8]. CCA estimates the optimal linear operator to be

applied to both the stimulus and the response in order to reveal correlations between the two.

This allows the stimulus representation to be stripped of dimensions irrelevant for measurable

brain responses, and the EEG to be stripped of activity unrelated to auditory perception [9]. In

this experimental paradigm, the most used stimulus representation is its slowly varying tempo-

ral envelope [10, 11], which is known to be one of the most important cues for speech recogni-

tion [12].

EEG systems used in research typically have 64 electrodes or more. However, in practical

applications, such as objective measurement of speech intelligibility in the clinic, such large

numbers of electrodes are not always possible due to the cost of high density systems and the

time required to place the electrodes on the scalp. We therefore considered the following ques-

tions: for a smaller number of electrodes, (1) what is the optimal location of electrodes on the

scalp and (2) what is the impact on the correlation when we decrease the number of channels.

We consider two use cases: in one case the electrodes are placed at the same positions (in the

10-20 system) for all subjects, which would for instance be relevant in the design of an applica-

tion-specific headset or electrode cap. We will refer to this use case as the subject-independent
scenario. In a second use case the optimal number and position of electrodes is determined for

each subject individually. In this case the main application of the method would be to improve

correlations with the use of a high-density system. Another future application would be to

determine the optimal electrode locations in order to design a custom system for each subject,

but this will require further validation. We will refer to this use case as the subject-specific sce-
nario. We use the backward model, due to its advantages in decoding accuracy compared to

the forward model.

We started from 64-channel recordings, and considered the question which subset of K
channels allow to get the best decoding performance. This is a combinatorial problem, closely

related to the column subset selection problem [13], whose NP-hardness is an interesting open

problem. In order to overcome this challenge, Mirkovic et al. [14]; Fuglsang et al. [15] used a

channel selection strategy based on an iterative backward elimination approach, where at each

iteration, the electrode with the lowest corresponding coefficient magnitudes in the decoder is

removed from the next iteration (we will refer to this channel selection method as the decoder

magnitude-based (DMB) method). This strategy assumes that important channels will have a

large coefficient in the least squares solution. However, as pointed out by [16], this is an
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unsuitable assumption: for example, if the coefficients of one of the channels would all be

scaled with a factor α, then the corresponding decoder coefficient in the LS solution would be

scaled with α−1, whereas the information content of that channel obviously remains

unchanged.

In this work, we propose a channel selection strategy based on the utility metric [16], which

allows a quick quantitative assessment of the influence of a channel (or a group of channels)

on the reconstruction error. In the subject-specific scenario, we use the utility metric to

remove channels one by one, each time removing the channel with least influence on the

reconstruction error. In the subject-independent scenario, we use the utility metric to remove

one group of channels at a time (the group of channels with least influence on the reconstruc-

tion error). For channels located off the midline each group is composed of one channel

located over the left hemisphere and its closest symmetric counterpart located over the right

hemisphere. For channels located over the central line dividing both hemispheres, each group

is composed of one channel located over the frontal lobe and its closest symmetric counterpart

located either over the parietal or the occipital lobe (see Fig 1). The rationale behind this chan-

nel selection strategy is to maintain symmetry. The symmetry criterion avoids bias to one

hemisphere, which could be problematic as hemispheric differences are often found between

subjects [17, 20]. A similar channel selection strategy, also based on the utility metric, was pro-

posed by Narayanan and Bertrand [21] on an auditory attention decoding task, where the

Fig 1. Channel grouping strategy. For channels located either over the left or right hemisphere (groups 1, 2, . . ., 27),

each group is composed by one channel located over the left hemisphere and its closest symmetric counterpart located

over the right hemisphere. For channels located over the central line dividing both hemispheres (groups 28, 29, 30, 31),

each group is composed by one channels located over the frontal lobe and its closest symmetric counterpart located

either over the parietal or the occipital lobe.

https://doi.org/10.1371/journal.pone.0246769.g001
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main goal was to optimize the topology of a wireless EEG sensor network (WESN), without

imposing a symmetry constraint on the selected channels. We evaluated our approach using

EEG data from 90 subjects. We aimed to minimize reconstruction error, and to minimize the

intra-subject variability in reconstruction error.

While Mirkovic et al. [14]; Narayanan and Bertrand [21] used auditory attention decoding

accuracy as their main outcome measure, we investigated the underlying correlation between

actual and reconstructed envelope instead. This correlation can be considered a measure of

signal to noise ratio. Note that stable attention decoding accuracy does not imply stable corre-

lation. Another difference with the literature is that we considered both the subject-specific

and subject-independent cases. In addition, we propose and use symmetry constraints for

avoiding lateralization bias.

Methods

Data collection

0.0.1 Participants. Ninety Flemish-speaking volunteers participated in this study. Their

age ranged from 18 to 30 years old, with a mean of 22. 15% of the participants was male and

7% was left-handed. They were recruited from our university student population to ensure

normal language processing and cognitive function. No tests of language processing or cogni-

tive function were performed. Each participant reported normal hearing, which was verified

by pure tone audiometry (thresholds lower than 25 dB HL for 125 Hz until 8000 Hz using

MADSEN Orbiter 922–2 audiometer). Before each experiment, the participants signed an

informed consent form. The study was approved by the Medical Ethics Committee UZ KU

Leuven/Research (KU Leuven).

0.0.2 Experiment. Each participant listened attentively to the children’s story “Milan”,

written and narrated in Flemish by Stijn Vranken. The stimulus was 15 minutes long and was

presented binaurally at 60 dBA without any noise. The participants were motivated to pay

attention by asking content-related questions after presentation of the story (which were

answered mostly correctly). It was presented through Etymotic ER-3A insert phones (Etymotic

Research, Inc., IL, USA) which were electromagnetically shielded using CFL2 boxes from Per-

ancea Ltd. (London, UK). The acoustic system was calibrated using a 2-cm3 coupler of the arti-

ficial ear (Brüel & Kjær, type 4192). The experimenter sat outside the room and presented the

stimulus using the APEX 3 (version 3.1) software platform developed at ExpORL (Dept. Neu-

rosciences, KU Leuven, Belgium) [22] and a RME Multiface II sound card (RME, Haimhau-

sen, Germany) connected to a laptop. The experiments took place in a soundproof,

electromagnetically shielded room.

0.0.3 EEG acquisition. In order to measure the EEG responses, we used a BioSemi

(Amsterdam, Netherlands) ActiveTwo EEG setup with 64 channels. The signals were recorded

at a sampling rate of 8192 Hz, using the ActiView software provided by BioSemi. The elec-

trodes were placed over the scalp according to the international 10-20 standard.

Signal processing

0.0.4 EEG pre-processing. Data pre-processing was performed offline, using MATLAB

(Mathworks Inc., Natick, MA). In order to decrease computation time, the EEG data was

downsampled from 8192 Hz to 1024 Hz (we used the resample function, which applies an anti-

aliasing FIR lowpass filter to the data). Next, the data was bandpass filtered between 0.5-4 Hz

(delta band), using a Chebyshev filter with 80 dB attenuation at 10% outside the passband.

Finally, the data was downsampled to 64 Hz and re-referenced to Cz in the channel subset

selection stage, and to a common-average reference (across the selected channels) in the
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decoding performance evaluation stage. The delta band was chosen because it yields the high-

est correlations and most of the information in the stimulus envelope is contained within this

frequency band [1, 23]. To assess the effect of frequency band on the results, we also analyzed

the optimal number and placement of electrodes for measurement of neural tracking of speech

in the theta band (4-8 Hz), the results are shown in the S1 Appendix.

The pre-processing pipeline does not include an artifact rejection step, as this would require

the use of electrodes that may later on be eliminated and therefore can potentially leak infor-

mation from the unselected channels to the selected ones. However, to investigate the effect of

artefact rejection we repeated the full analysis using artifact rejection, involving the Sparse

Time Artifact Removal method (STAR) [24] and the multi-channel Wiener filter algorithm

[25]. A Wilcoxon signed rank test of the effect of artefact rejection on correlation showed no

significant effect.

0.0.5 Speech envelope. The speech envelope was computed according to Biesmans et al.

[26], who showed that good reconstruction accuracy can be achieved with a gammatone filter-

bank followed by a power law. We used a gammatone filterbank [27, 28], with 28 channels

spaced by 1 equivalent rectangular bandwidth, with centre frequencies from 50 Hz to 5000 Hz.

From each subband, we take the absolute value of each sample and raise it to the power of 0.6.

The resulting 28 signals were then downsampled to 1024 Hz, averaged, bandpass filtered with

a (0.5-4 Hz) Chebyshev filter to obtain the final envelope, and finally downsampled again to

64Hz. The power law was chosen as the human auditory system is not a linear system and

compression is present in the system. The gammatone filterbank was chosen as it mimics the

auditory filters present in the basilar membrane in the cochlea.

0.0.6 Backward model. The backward model to decode a speech envelope from the EEG

can be stated as a regularized linear least squares (LS) problem [29]:

JðXÞ≜minimize
w

k Xw � y k2

2
þl k w k2

2 ð1Þ

where X 2 RT�ðN�tÞ is the EEG data matrix concatenated with τ time-shifted (zero-padded)

version of itself, y 2 RT�1 is the speech envelope, w 2 RðN�tÞ�1 is the decoder, T is the total

number of time samples, N is the number of channels, τ is the number of time samples cover-

ing the time integration window of interest, and λ is a regularization parameter. The solution

to the backward problem (ŵ) is usually referred to as a decoder. In order to choose the regular-

ization parameter λ, we compute and sort the eigenvalues of the covariance matrix associated

to X. Then, we pick as λ the eigenvalue where the accumulated percentage of explained vari-

ance is greater than 99%.

0.0.7 Channel selection. To select channels we used the utility metric [16], which quanti-

fies the effective loss, i.e., the increase in the LS cost, if a group of columns (corresponding to

one channel or a set of channels and all their τ − 1 corresponding time-shifted version) would

be removed and if the model (1) would be reoptimized afterwards:

Ug ≜ JðX� gÞ � JðXÞ ð2Þ

where X−g denotes the EEG data matrix X after removing the columns associated with the g-th

group of channels and their corresponding time-shifted versions. We will later on define how

channels are grouped in our experiments (see Subsection 0.0.8).

Note that a naive implementation of computing Ug would require solving one LS squares

problem like (1), for each possible removal of a candidate group, which would lead to a large

computational cost for problems with large dimensions and/or involving a large number of

groups.
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Fortunately, this can be circumvented, as shown by Bertrand [16], with a final computa-

tional complexity that scales linearly in the number of groups, given the solution of (1) when

none of the channels are removed. The basic workflow for finding the best k groups of EEG

channels can be summarized as follows [21]: we compute the utility metric for each of the

groups and remove the group with the lowest utility. Next, we recalculate the new values of the

utility metric taking only into account the remaining groups, and once again we remove the

one with the lowest value of utility. We continue iterating following these steps until we arrive

to k groups.

We used the utility metric in two conditions: (1) in the subject-specific case where optimal

electrodes are selected for each subject, and (2) in the generic case where the same set of elec-

trodes is used for all subjects.

In the subject-specific case, we computed (for each subject i) the regularized covariance

matrix CðiÞ ¼ XðiÞ
>
XðiÞ

T þ lI (I denotes the identity matrix) and the cross-correlation vector rðiÞ ¼
XðiÞ
>
y

T in order to compute the optimal all-channel decoder ŵðiÞ ¼ ðCðiÞÞ� 1rðiÞ. The utility metric

for each (group of) channel(s) can be directly computed from ŵðiÞ and C(i) (we refer to Ber-

trand [16] and Narayanan and Bertrand [21] for more details). We used the utility metric

toolbox from Narayanan and Bertrand [21] available at https://github.com/mabhijithn/

channelselect. We then ranked the groups according to their corresponding utilities, and

removed the channel(s) corresponding to the group g with the lowest utility. We then repeated

the same process with the matrix XðiÞ
� g in which the columns corresponding to the channels in

group g were removed. We kept repeating this process until only k groups remained.

Next, during the decoding evaluation stage, we computed a decoder by solving the back-

ward problem using the best k selected groups of channels for each subject. In this stage, we

re-referenced the channels with respect to the common average across the selected channels

and discarded the reference electrode Cz. We solved each backward problem using a 7-fold

cross-validation approach, where 6 folds were used for training and 1 for testing. This corre-

sponds to approximately 12 and 2 minutes of data, respectively. This cross-validation served

to reduce the influence of intra-suject variability over time on the results. Using the decoder

ŵ, we computed the reconstructed envelope as ŷ ¼ Xŵ after which we computed the Spear-

man correlation between the reconstructed speech envelope (ŷ) and the true one (y). By

following this procedure, for each subject, we ended up with 7 values of correlation (corre-

sponding to the evaluation of the correlation using each one of the test folds), which can be

arranged as an array S 2 R90�k�7
(number of subjects × number of groups × number of test

folds).

To compare with the literature, we also implemented the DMB approach, wherein we itera-

tively solved a backward problem for each subject, and at each iteration, the group of elec-

trodes with the lowest corresponding coefficient magnitudes in the decoder was removed

from the next iteration.

As a reference, we also implemented the forward model, where for each subject and elec-

trode the correlation between actual EEG and EEG predicted from the speech envelope is

obtained. The results are shown in the S1 Appendix.

In the subject-independent case, where the same set of electrodes is used for all subjects, we

only used the utility metric. The evaluation consisted of the same two stages described above.

The only difference was that, during the channel selection stage, we computed a grand average

model by averaging the covariance matrices of all the subjects, which is equivalent to

concatenating all the data from all the subjects in the data matrix X in (1). Finally, the decoding

evaluation stage followed exactly the same steps described for the subject-specific case above,
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i.e., using a subject-specific decoder (yet, computed over electrodes that were selected in a sub-

ject-independent fashion).

0.0.8 Symmetric grouping of the EEG channels. In addition to selecting individual chan-

nels to remove (no grouping of channels), we also evaluated a strategy in which symmetric

groups of channels were removed, to avoid hemisphere bias effects across subjects. Each group

is composed of two EEG channels (see Fig 1). For channels located on either side of the mid-

line (Fig 1, groups with labels from 1 to 27), each group is composed by one channel located

over the left hemisphere and its closest symmetric counterpart located over the right hemi-

sphere. For channels located over the midline dividing both hemispheres (Fig 1, groups with

labels from 28 to 31), each group is composed by one channel located over the frontal lobe and

its closest symmetric counterpart located either over the parietal or the occipital lobe. Channel

Cz does not belong to any group because it was used as a reference (in the channel subset selec-

tion stage). Channel Iz was not considered in order to preserve the symmetry with respect to

the number of electrodes.

Results

Channel selection strategies: Utility metric vs DMB

We compared the performance of the utility metric and DMB in the the subject-specific case,

where the optimal electrode locations were determined for each subject individually. We com-

pared the median of the correlation between y and ŷ for each subject, as well as the number of

channels required to obtain it (from now on referred to as the optimal number of channels).

For both methods we observe a large increase in correlation when we use a reduced number of

channels, with the optimum of the median around 20 and 30 channels, for the utility metric

and DMB, respectively (see Fig 2a). This means that the evaluated strategies of removing elec-

trodes can be used to substantially improve the correlation metric in high-density EEG

recordings.

We can see in Fig 2a that the utility metric globally outperforms the DMB approach, obtain-

ing consistently higher correlations (median) across subjects. In Fig 2b, we can see that the

utility metric also outperforms the DMB approach on an individual level, obtaining for every

subject a higher value of maximal correlation, as well as requiring a smaller number of elec-

trodes to obtain it. A Wilcoxon signed rank test showed that there was a significant difference

(W = 6, p< 0.001) between the correlation using the optimal number of channels according to

the utility metric (median = 0.22) compared to the one obtained using DMB (median = 0.19).

Another Wilcoxon signed rank test showed that there was also a significant difference

(W = 424.5, p< 0.001) between the optimal number of channels selected by the utility metric

(median = 19) compared to the optimal number selected by DMB (median = 32). Because of

the improved performance offered by the utility metric compared to DMB, we solely focus on

the former in the remaining of the paper.

Channel selection based on the utility metric vs using all the channels

In this section, we compare the channel selection strategy based on the utility metric with the

case where all the available channels are used. We compared both strategies in the subject-spe-

cific and subject-independent scenario.

0.0.9 Subject-specific electrode locations. We consider here the condition where we

remove channels one by one, obtaining the best channels for each subject independently. Fig

3a shows the median correlation, computed as the median across folds followed by the median

across subjects. Blue dashed lines show the 25-th (lower) and 75-th (upper) percentile. In this
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figure, we can see that at least 50% (median) of the subjects exhibit a higher correlation for 6

up to 63 channels, with respect to the correlation obtained with all the available channels.

Fig 3b shows the standard deviation of the correlation, as a measure for within-subject vari-

ability, computed as the standard deviation across folds followed by the median across sub-

jects. Blue dashed lines show the 25-th (lower) and 75-th (upper) percentile. In this figure we

can see a largely stable standard deviation of the correlation around the reference value (stan-

dard deviation of the correlation when using all the 64 channels).

Fig 3a and 3b suggest that we could obtain a higher correlation with a reduced number of

channels. However, these are group results. Fig 3c shows, independently for each subject, the

difference between the correlation when we use all the 64 channels and when we use a reduced

number of channels. We can see that this effect is indeed consistently present for all subjects

when we use a number of channels between 19 and 57. This behaviour can be seen more

clearly in Fig 4a, where the percentage of subjects with a correlation greater or equal to 100%,

95% and 90% of the correlation obtained using all the channels (green, purple and cyan lines,

respectively) is shown. Fig 4a clearly shows that for 98% of the subjects it is possible to reduce

the number of channels to 19 and still obtain a correlation higher than the one obtained using

all the channels. Even if we go all the way down to 8 channels, we can see that 82%, 91% and

96% of the subjects are still able to get a correlation higher than 100%, 95% and 90% of the cor-

relation obtained using all channels, respectively.

Fig 3d shows a comparison of the correlation obtained using the optimal number of chan-

nels (obtained through the utility metric) versus the correlation obtained using all 64 channels.

In this figure we can see that for every subject we get higher correlations for the reduced

Fig 2. Comparison of channel selection strategies: Utility metric vs DMB (subject-specific scenario). A Wilcoxon signed rank test showed that there

was a significant difference (W = 6, p< 0.001) between the correlation obtained using the optimal number of channels according to the utility metric

(median = 0.22) compared to the one obtained using DMB (median = 0.19). Another Wilcoxon signed rank test showed that there was also a significant

difference (W = 424.5, p< 0.001) between the optimal number of channels selected by the utility metric (median = 19) compared to the one selected by

DMB (median = 32). (a) Correlation across subjects, computed as the median across folds followed by the median across subjects. Dashed lines show

the 25-th (lower) and 75-th (upper) percentile. (b) Comparison of the correlation obtained using the optimal number of channels (number of channels

where each subject obtained the highest correlation). Size of the markers is proportional to the optimal number of channels (one marker per subject).

For comparison purpose, the grey marker has a size equivalent to 64 channels.

https://doi.org/10.1371/journal.pone.0246769.g002
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Fig 3. Comparison of the channel selection based on the utility metric vs using all the channels (subject-specific scenario). A Wilcoxon signed rank

test showed that there was a significant difference (W = 0, p< 0.001) between the correlation obtained using the optimal number of channels suggested

by the utility metric (median = 0.22) compared to the one obtained using all the channels (median = 0.17). (a) Correlation computed as the median

across folds followed by the median across subjects. Dashed lines show the 25-th (lower) and 75-th (upper) percentile. (b) Standard deviation of the

correlation coefficient, computed as the standard deviation across folds followed by the median across subjects. Dashed lines show the 25-th (lower) and

75-th (upper) percentile. (c) Normalized correlation per subject (each line is a different subject), defined as the difference between the value of the

correlation obtained when we use all the channels and the value of the correlation obtained when we use a reduced number of channels. (d)

Comparison of the correlation obtained using the optimal number of channels (number of channels where each subject obtained the highest

correlation) vs the correlation obtained using all the channels. Size of the markers is proportional to the optimal number of channels (one marker per

subject). The grey marker has a size equivalent to 64 channels.

https://doi.org/10.1371/journal.pone.0246769.g003
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number of channels, as selected by the utility metric, compared to using all channels. A Wil-

coxon signed rank test showed that there was a significant difference (W = 0, p< 0.001)

between the correlation using the optimal number of channels according to the utility metric

(median = 0.22) compared to the one obtained using all the channels (median = 0.17), which

is a 29% improvement.

While for each of the 90 subjects electrodes are selected individually, we conducted some

extra analysis to investigate to what extent the selected electrodes correspond across subjects.

The median rank order of electrodes selected across subjects is shown in Fig 6a in S1 Appen-

dix. While some patterns emerge, there is clearly substantial variation across subjects. In addi-

tion we analysed the correlations obtained for each subject and electrode with the forward

model (see Fig 7 in S1 Appendix). We found generally similar areas of interest, but there are

also substantial differences. This is no surprise: in the backward model a spatial filter is

designed that exploits dependencies across the channels, which is not possible in the forward

model. Furthermore, in the forward model channels with highly similar information are both

highlighted while one of them would be removed by the utility metric.

In the S1 Appendix the same analysis is conducted for the theta frequency band. Generally

the same trends are observed as in the delta band. A Wilcoxon signed rank test showed that

there was a significant difference (W = 0, p< 0.001) between the correlation using the optimal

number of channels according to the utility metric (median = 0.12) compared to the one

obtained using all the channels (median = 0.06), which is a 100% improvement. This suggests

that these results are robust to the choice of frequency band and filter parameters. However,

other electrodes are selected.

0.0.10 Subject-independent electrode locations. We now consider the case where the

same set of electrodes is used for all subjects. Fig 5a shows the correlation across subjects, com-

puted as the median across folds followed by the median across subjects. In this figure, we can

see that at least 50% (median) of the subjects exhibit a stable correlation for 22 up to 64

channels.

Fig 4. Percentage of subjects with a correlation greater or equal to 100%, 95% and 90% of the correlation obtained using all the channels. In the

subject-specific scenario we can see that for 98% of the subjects is possible to reduce the number of channels to 19 and still be able to obtain a

correlation higher than the one obtained using all the channels. In the subject-independent scenario we can see that for 59%, 74% and 91% of the

subjects is possible to reduce the number of channels to 32 and still be able to obtain a correlation higher than 100%, 95% and 90% of the correlation

obtained using all channels, respectively. The percentage of subjects can increase to 62%, 81% and 91%, respectively, if we increase the number of

channels from 32 to 40. (a) Subject-specific scenario. (b) Subject-independent scenario.

https://doi.org/10.1371/journal.pone.0246769.g004

PLOS ONE Effect of number and placement of EEG electrodes on measurement of neural tracking of speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0246769 February 11, 2021 10 / 18

https://doi.org/10.1371/journal.pone.0246769.g004
https://doi.org/10.1371/journal.pone.0246769


Fig 5. Comparison of the channel selection based on the utility metric vs using all the channels (subject-independent scenario). A Wilcoxon signed

rank test showed that there was a significant difference (W = 0, p< 0.001) between the correlation obtained using the optimal number of channels

suggested by the utility metric (median = 0.18) compared to the one obtained using all the channels (median = 0.16). (a) Correlation across subjects,

computed as the median across folds followed by the median across subjects. Dashed lines show the 25-th (lower) and 75-th (upper) percentile. (b)

Standard deviation of the correlation coefficient, computed as the standard deviation across folds followed by the median across subjects. Dashed lines

show the 25-th (lower) and 75-th (upper) percentile. (c) Normalized correlation per subject (each line is a different subject), defined as the difference

between the value of the correlation obtained when we use all the channels and the value of the correlation obtained when we use a reduced number of

channels. (d) Comparison of the correlation obtained using the optimal number of channels (number of channels where each subject obtained the

highest correlation) vs the correlation obtained using all the channels. Size of the markers is proportional to the optimal number of channels (one

marker per subject). The grey marker has a size equivalent to 64 channels.

https://doi.org/10.1371/journal.pone.0246769.g005
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Contrary to the subject-specific electrode locations, we here found a small benefit of using

the symmetric channel grouping strategy: median correlations with the optimal number of

channels significantly improved when moving from the channel-by-channel to symmetric

grouping strategy (W = 1556, p = 0.04). In the figures and what follows, we only consider the

results obtained with the symmetric grouping strategy.

Fig 5b shows the standard deviation of the correlation, as a measure of within-subject

variability, computed as the standard deviation across folds followed by the median across

subjects. In this figure we can see a largely stable standard deviation of the correlation

around the reference value (standard deviation of the correlation when using all the 64

channels).

Fig 5a and 5b suggest that we could obtain a correlation value similar to the one obtained

using all the available channels even if we use a reduced number of channels. However, these

are group results. Fig 5c shows, separately for each subject, the difference between the value of

the correlation when we use all the 64 channels and the value of the correlation when we use a

reduced number of channels. We can see that this effect is not consistently present for all sub-

jects (if that would have been the case, all the lines would have appeared above 0 when we use a

reduced number of channels nk, 22� nk< 64). Nevertheless, a certain percentage of subjects

do exhibit a higher value of the correlation when using a reduced number of channels. Fig 4b

helps us to quantify this property, by showing the percentage of subjects with a correlation

greater or equal to 100%, 95% and 90% of the correlation obtained using all the channels

(green, purple and cyan lines, respectively). In this figure we can see that for 59%, 74% and

91% of the subjects it is possible to reduce the number of channels to 32 and still be able to

obtain a correlation higher than 100%, 95% and 90% of the correlation obtained using all

channels, respectively. The percentage of subjects can increase to 62%, 81% and 91%, respec-

tively, if we increase the number of channels from 32 to 40.

Fig 5d shows a comparison of the correlation obtained using the optimal number of chan-

nels suggested by the utility metric versus the correlation obtained using all 64 channels. In

this figure we can see that, similar to the subject-specific scenario, the utility metric consis-

tently obtained, for every subject, a higher correlation compared to using all the channels. A

Wilcoxon signed rank test showed that there was a significant difference (W = 0, p< 0.001)

between the correlation obtained using the optimal number of channels suggested by the util-

ity metric (median = 0.18) compared to the one obtained using all the channels (median =

0.16).

Fig 6a, 6b, 6c and 6d show the best 8, 16, 24 and 32 channels selected by the utility metric.

Next to each group of channels (formed exactly by two electrodes, see Fig 1), its corresponding

rank order is shown, which is computed as N − p + 1, where N is the total number of groups

and p is the iteration at which the group was discarded in the greedy removal procedure. The

rank order reflects the importance of a group of channels with respect to the other selected

groups. The lower this number, the more important the group, as it was retained for a larger

number of iterations in the backwards greedy removal process due to its high influence in the

LS cost (see Section 0.0.7). As we can see, the selected channels are mostly clustered over the

left and right temporal lobes, which agrees with the empirical evidence which suggests that

channels located close to auditory cortex are important for picking up electrical brain activity

evoked as response to an auditory stimulus.

In Fig 5 in S1 Appendix the same analysis is shown for the theta frequency band. It can be

seen that now mainly electrodes in the frontal and temporal areas are selected, indicating that

an application (frequency-band) specific electrode selection is required.

While the electrode layouts shown Figs 6 and 5 in S1 Appendix are the best we can do, they

yield substantially worse performance than individual channel selections. In the 8-channel
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cases the percentage of subjects with unchanged performance is down to 10%, so this layout

cannot be recommended for practical applications. In Figs 8 and 9 in S1 Appendix we show

for each channel in each subject-independent layout how many times the same electrode was

selected in the corresponding subject-specific layouts. The ranges are 20-28; 31-40; 37-55; 44-

67 out of 90 subjects for respectively the 8, 16, 24 and 32 channel layout. These relatively small

Fig 6. Optimal channel selection. The number next to each group of channels (formed by two electrodes, see Fig 1) indicates the ranking of the

group with respect to its influence on the LS cost (see text). The lower this number, the more important the group. (a) Best 8 channels. (b) Best

16 channels. (c) Best 24 channels. (d) Best 32 channels.

https://doi.org/10.1371/journal.pone.0246769.g006

PLOS ONE Effect of number and placement of EEG electrodes on measurement of neural tracking of speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0246769 February 11, 2021 13 / 18

https://doi.org/10.1371/journal.pone.0246769.g006
https://doi.org/10.1371/journal.pone.0246769


proportions indicate again that the generic layouts are not optimal. Note that in this analysis

we did not apply the symmetric grouping constraint in the subject-independent case for the

sake of comparison.

Discussion

Based on 64-channel EEG recordings, we determined the effect of reducing the number of

available channels and the optimal electrode locations on the scalp for 4 frequently-used num-

bers of channels. This was based on a utility-based metric, by which we avoided the computa-

tionally intractable number of combinations that underlies the problem at hand.

Mirkovic et al. [14]; Fuglsang et al. [15] tackled the channel subset selection problem in the

context auditory attention decoding (identify the attended speech stream in a multi-speaker

scenario). They processed EEG recordings from 12 and 29 subjects, acquired using an EEG

system with 96 and 64 channels, respectively. They found that, on average, the decoding accu-

racy dropped when using a number of channels less than 25. Both studies used the same chan-

nel selection strategy, which is based on an iterative backward elimination approach, where at

each iteration, the channel with the lowest average decoder coefficient is removed from the

next iteration. This strategy assumes that important channels will have a large coefficient in

the LS solution. However, as explained in the introduction, this is not necessarily a suitable

assumption. They did not report optimal electrode positions.

Narayanan and Bertrand [21] also analyzed the channel subset selection problem in the

context of auditory attention decoding, using a channel selection strategy based on the same

utility metric discussed in the present study, but without imposing the symmetric grouping

approach discussed in Section 0.0.8. They found that, on average, the decoding accuracy

remained stable when using a number of channels greater or equal to 10. The (asymmetric)

channels reported in their study correspond with the ones reported in this study in the sense

that mostly channels around the left and right temporal lobes were selected.

Instead of attention decoding accuracy, we assessed the correlation between actual and

reconstructed envelope (in a single-speaker scenario), which can be used as a metric for speech

intelligibility [1, 2]. A major difference with auditory attention decoding accuracy as a metric

is that in the attention decoding paradigm correlations are compared between the attended

and unattended speaker, therefore if both increase or decrease in the same direction, decoding

accuracy is not affected. For subject-specific electrode locations, we found similar differences

between the DMB and utility metric: using the DMB metric, on average 14 electrodes were

required to avoid a drop in correlation below the 64-channel case, and using the utility metric,

only 6 electrodes were required. On top of this, we found a substantial increase in correlation

when reducing the number of electrodes from 64 to 32-20. This indicates that application of

the proposed channel selection approach may be practically useful.

The stable or sometimes even improved performance after reducing the number of chan-

nels could be attributed to the removal of noisy or irrelevant channels that do not contribute

significantly to the reconstruction of the target speech envelope. As explained in Section 0.0.6,

the backward problem is usually solved by using a regularized Ridge regression approach,

which shrinks the magnitude of many decoder components to prevent overfitting (finding

solutions that minimize the reconstruction error while satisfying, at the same time, the condi-

tion of having a small norm value). We recalculated the optimal regularization parameter for

each number of channels. Reducing the number of channels has a similar regularization effect;

it reduces the degrees of freedom by discarding irrelevant channels, making the model less

prone to overfitting.
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In the case where the same channels were selected for all subjects, the initial increase in cor-

relation with decreasing number of channels was smaller and not present for all subjects.

Therefore in this case our strategy is not useful to increase correlation.

Grouping electrodes across hemispheres to remove bias effects improved the results in the

subject-independent but not in the subject-specific experiments. This is probably because of

subject specific hemisphere bias.

Selected channels

Based on the literature, we expect that most of the signals of interest originate from auditory

cortex [e.g., [30, 31]. We indeed see that channels that cover dipoles originating in this area are

always selected with high priority. For higher numbers of channels, other areas are covered

where auditory related responses have been shown to originate from, such as the inferior fron-

tal cortex and the premotor cortex [2, 32], and possibly channels that aid in the suppression of

large irrelevant sources.

When changing from the delta to theta frequency band, different channels were selected.

This suggests differences in neural sources and indicates that the frequency band of interest

should be taken into account when selecting channels.

Comparison of the selected channels with the literature is hard due to methodological dif-

ferences: [33] investigated the attention decoding paradigm in a two-speaker scenario (instead

of single-speaker correlation in this work) and only investigated a number of a priori defined

channel selections. They report high decoding accuracy using the scalp temporal and the scalp

wide layouts, which is in agreement with our results.

While the presented channel layouts for 8, 16, 24, and 32 channels are the best we can do

with our current data and methods, and may be useful for some applications, it should be

pointed out that they yield relatively poor performance compared to subject-specific layouts

and are therefore certainly not optimal for all subjects.

Applications

The use of subject-specific or subject-independent electrode locations leads to different

applications.

Subject-independent electrode locations could be used to design a headset for a specific

application. For example the backward model has been proposed in applications where an

objective measure of speech intelligibility is needed. Our suggested electrode positions could

be used to configure an electrode cap or headset for this specific application. We chose to run

our calculations with the speech envelope as the stimulus feature and for the delta band (0.5-

4Hz), as these parameters are most commonly used. Note that when deviating from these

parameters, the selection should be re-run. In particular, when higher-order stimulus features

are used, we expect significant changes in topography and therefore optimal electrode

positions.

Subject-specific electrode locations are at this point mainly useful to increase correlations

when a full electrode cap is available. In this case, the utility-based algorithm would be part of

the processing pipeline to retain the optimal number of electrodes. In the future subject-spe-

cific locations may also be useful to design a subject-specific headset based on initial record-

ings with a full cap. However, this will require validation of generalisability between test

sessions and between EEG systems, which is currently unknown.

PLOS ONE Effect of number and placement of EEG electrodes on measurement of neural tracking of speech

PLOS ONE | https://doi.org/10.1371/journal.pone.0246769 February 11, 2021 15 / 18

https://doi.org/10.1371/journal.pone.0246769


Conclusion

In this work, the effect of selecting a reduced number of EEG channels was investigated within

the context of the stimulus reconstruction task. We proposed a utility-based greedy channel

selection strategy, aiming to induce the selection of symmetric EEG channel groups. We evalu-

ated our approach using 64-channel EEG data from 90 subjects. When using individual elec-

trode selections for each subject, we found that the correlation between the actual and

reconstructed envelope first increased with decreasing number of electrodes, with an optimum

at around 20 electrodes. This means that the proposed method can be used in practice to

obtain higher correlations. When using a generic electrode placement (the same for all sub-

jects), we obtained a stable decoding performance when using all 64 channels down to 22, sug-

gesting that it is possible to get an acceptable reconstruction of the speech envelope from a

reduced number of EEG channels.
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