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Abstract
Tubulointerstitial hypoxia and peritubular capillary rar-
efaction are typical features of chronic progressive renal
disease. In response to low oxygen supply, hypoxia-indu-
cible factors (HIFs) are activated but until now, it is unclear
if this increased expression leads to a stabilization of the
disease process and thus is nephroprotective or contributes
to interstitial fibrosis and/or tubular atrophy. This duality
has also been described as far as vascular endothelial
growth factor (VEGF), one of the major target genes of
HIFs, is concerned. On the one hand, neoangiogenesis
driven by VEGF, if intact, ameliorates hypoxia, on the
other, VEGF is a potent pro-inflammatory mediator and
neoangiogenesis, if defective because interference by other
pathologies exaggerates injury. In summary, experimental
data support the idea that dependent on timing and pre-
dominant pathology, hypoxia counter-regulatory factors
exert beneficial or undesirable effects. Thus, before their
therapeutic potential can be fully explored, a better way
to characterize the clinical and pathophysiological situ-
ation in an individual patient is mandatory.
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Introduction

To study the transcriptional response that separates patients
with a stable proteinuric renal disease from thosewith a pro-
gressive loss of glomerular filtration rate, we isolated prox-
imal tubular epithelial cells by laser capture microdissection
from cryocut biopsy tissue. Genome-wide gene expression
profiling followed by a systems biology analysis identified
an activation of hypoxia response and vascular endothelial
growth factor (VEGF) signalling pathways in progressive
patients associated with an up-regulation of hypoxia-indu-
cible factor (HIF)-1α. Interestingly, however, one of the
most important HIF target genes, VEGF-A, was down-regu-
lated on messenger RNA and protein level. The expression
levels of HIF-1α andVEGF-Awere significantly superior in
predicting clinical outcome to proteinuria, renal function

and degree of tubular atrophy and interstitial fibrosis at
the time of biopsy [1]. A reduction of VEGF expression
was also shown by Lindenmeyer et al. [2] in diabetic ne-
phropathy. These studies thus provided evidence for tubular
hypoxia in progressive renal disease, which, however, does
not lead to the expression of VEGF-A, a potent pro-angio-
genic factor (see Table 1).

Chronic progressive renal disease––a
tubulointerstitial process

By convention, chronic progressive renal disease is de-
fined by a decrease of filtration function at the glomerular
level. However, on a histopathological level, tubulointersti-
tial rather than glomerular injury predicts the clinical out-
come. Tubular atrophy and interstitial f ibrosis are
hallmarks of advanced and (probably) irreversible kidney
diseases of diverse aetiology. Fibrosis presents a number of
characteristic features including an inflammatory cell infil-
trate, an increase in interstitial fibroblasts and matrix,
while tubular atrophy is linked to epithelial cell apoptosis
and epithelial to mesenchymal transdifferentiation. An-
other characteristic feature of progressive renal disease is
a loss of postglomerular peritubular capillaries leading to a
reduction in oxygen supply and it has been proposed that
hypoxia is one of the common pathways of chronic renal
disease progression [3].

Capillary rarefaction

Several years ago, Bohle et al. [4] noted a negative correl-
ation between the area occupied by peritubular capillaries
in biopsies and the serum creatinine concentration and
prognosis in patients with diverse renal disorders, such
as diabetic glomerulosclerosis, amyloidosis, benign ne-
phrosclerosis or chronic interstitial nephritis. This observa-
tion has been reproduced in various animal models
including experimental glomerulonephritis [5], the
remnant kidney [6], ureteral obstruction [7], renal artery
stenosis (RAS) [8] and ageing [9].
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Damage to the postglomerular microvasculature deter-
mines also the long-term outcome after ischaemia-reperfu-
sion injury [10]. After bilateral renal artery clamping for
45–60 min, glomerular filtration rate in Sprague–Dawley
rats returns to normal after 1–2 weeks. However, after 40
weeks, the animals develop proteinuria and prominent
interstitial scarring, which is associated with a 30–50% re-
duction in microvascular density. Similar results were ob-
tained in mice [11]. These experimental data resemble the
observation made in humans that acute kidney injury
(AKI) dramatically increases the risk of end-stage renal
disease (ESRD) [12]. When compared to matched con-
trols, the hazard ratio for developing ESRD after AKI is
41.2 (95% confidence interval 34.6–49.1) for patients with
pre-existing chronic kidney disease and 13 (10.6–16.0) for
those with normal renal function prior to AKI. Similar as-
sociations were found by Wald et al. In their study, the in-
cidence of ESRD was 2.63 per 100 person-years among
3769 individuals with a history of AKI requiring dialysis
and 0.91 among 13598 matched controls [13]. In line with
this hypothesis, delayed renal allograft function is an im-
portant predictor of long-term transplant outcome and in-
jury to and progressive loss of peritubular capillaries is a
characteristic feature of chronic allograft nephropathy [14].

Hypoxia in renal disease

Hypoxia-induced alterations in gene expression profiles
have been detected at the glomerular as well as tubulointer-
stitial level [15]. One of the most obvious sequels of capil-
lary rarefaction in the tubulointerstitial compartment of the
kidney is a reduction in oxygen supply. Ischaemia can also
be induced without a loss in peritubular capillaries via ex-
cess postglomerular vasoconstriction induced by angioten-
sin II, endothelin or a reduction in the availability of
vasodilators like nitric oxide (NO). Interestingly in this con-
text, angiotensin II receptor blockade, usually associated
with renal protection on a glomerular level, also improves
microvascular oxygen tension in the interstitium [16].

Paradoxically, the renal medulla even under normal con-
ditions has the lowest oxygen tension compared with any
other organ despite the fact that the kidney receives the lar-
gest fraction of the cardiac output. Hypoxia is the inevit-
able consequence of the unique medullary vasculature that
serves a counter-current function to prevent the medullary
solute gradient from being dissipated. However, the anti-
parallel arrangement of blood vessels also allows diffu-
sional shunting of oxygen from the descending arterial
vasa recta to the ascending venous vessels. As a conse-
quence, the oxygen tension in the renal outer medulla is
between 10 and 20 mm Hg. At the same time, tubular epi-
thelial cells have a large oxygen demand because of high
transporter activity. However, only the cells in the loop of
Henle, but not the proximal tubular epithelial cells of the
S3 segment, can switch to anaerobic glycolysis in case of
oxygen deprivation [17].

Tubulointerstitial hypoxia was demonstrated immuno-
histochemically by the presence of pimonidazole protein
adducts, by blood oxygen-dependent magnetic resonance
imaging detecting deoxygenated haemoglobin or in hyp-
oxia-responsive element-driven luciferase vector animals
with experimental glomerulonephritis, remnant kidney
and diabetic nephropathy as well as during ageing and
polycystic renal disease [18].

In the kidney, a reduction in oxygen delivery is a potent
stimulus for inflammation providing a homing signal for
inflammatory cells [19] and pro-fibrotic-circulating pro-
genitor cells [20] via interactions between the chemokine
receptor CXCR4 and its ligand, stromal cell-derived fac-
tor-1 [21]. In biopsies from patients with chronic renal dis-
ease, Eardley et al. [22] found a significant association
between peritubular capillary density and interstitial
macrophage accumulation as well as urinary monocyte
chemoattractant protein 1 levels.

Hypoxia may also lead to the loss of tubular epithelial
cells resulting in atubular glomeruli [23] or trigger transition
of tubular cells towards a myofibroblastic phenotype [24–
26]. Oxygen-deprived fibroblasts enter a fibrogenic pheno-

Table 1. Members of the hypoxia response and VEGF signalling pathways showing a significant difference in
expression between biopsies of patients with post-bioptically stable and progressive chronic kidney disease
(positive number: increased expression in patients with a progressive loss of renal function after biopsy when
compared to stable subjects and negative number: decreased expression) (adapted from reference [1]); eNOS,
endothelial nitric oxide synthase; VEGFR, vascular endothelial growth factor receptor; ERK, extracellular
regulated kinase

Gene name Pathway component Fold change

CREB-binding protein (Rubinstein–Taybi syndrome) CREBBP/p300 2.877
PTK2B protein tyrosine kinase 2 beta FAK 2.539
Rho GTPase-activating protein 1 Rac 2.475
NO synthase-1 (neuronal) ENOS 2.191
Phosphoinositide-3 kinase, regulatory subunit 2 (p85 beta) PI3K 2.059
Mitogen-activated protein kinase 1 MEK/Erk 1.913
Protein kinase C, epsilon PKC 1.866
Phosphoinositide-3 kinase, regulatory subunit 2 (p85 beta) PI3K 1.814
HIF-1, alpha subunit (basic helix-loop-helix transcription factor) HIF-1α 1.792
Phosphoinositide-3 kinase, catalytic, beta polypeptide PI3K 1.765
Aryl hydrocarbon receptor nuclear translocator HIF-1-β 1.748
Phospholipase C, gamma 2 (phosphatidylinositol specific) PLC-γ −1.750
FK506-binding protein 12-rapamycin-associated protein 1 MTOR −1.764
PTK2 protein tyrosine kinase 2 FAK −1.798
VEGF-A VEGFR-2 −2.516
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type andmatrix degradation is reduced by promoting expres-
sion of endogenous tissue inhibitors of metalloproteinase
[26]. The resulting interstitial accumulation of extracellular
matrix reduces peritubular capillary blood flow even further
and impairs oxygen diffusion thus aggravating regional hyp-
oxia. Hypoxia also causes endothelial cell apoptosis, endo-
thelial to mesenchymal transition as well as damage to the
vascular pericytes [27, 28] further promoting loss of peritub-
ular capillaries and creating a vicious cycle typical for chron-
ic progressive renal disease (Figure 1).

The two faces of HIFs

In the kidney, just like in other organs, various response path-
ways are activated in the presence of hypoxia. On a molecu-
lar level, the most important steps of adaptation are mediated
byHIFs. They belong to a broader group of transcription fac-
tors comprising the basic helix-loop-helix-per-arnt-sim
(PAS) family and consist of a labile α-subunit (1 or 2α,
which both have identical but also distinct activities, and
3α, which contains no transactivation domain and antago-
nizes HIF-1α and -2α-driven gene expression) and a stable
β-subunit (ARNT). Once heterodimerized, they form a tran-
scriptional complex which translocates to the nucleus and
binds to its consensus enhancer (hypoxia-responsive elem-
ent) transactivating, in collaboration with a number of cofac-
tors, 100–200 target genes involved in angiogenesis,
erythopoiesis and energy metabolism [28].

The primary mechanism of regulation of HIF activity is
oxygen-dependent proteasomal degradation of the α-sub-
unit. At lowoxygen tension or in the absence of the vonHip-
pel Lindau E3 ubiquitin ligase, which is composed of von
Hippel-Lindau tumour suppressor protein, Cullin2, Elongin
C and Rbx1, HIF-α escapes degradation, heterodimerizes
with HIF-β and binds the transcriptional coactivator CBP/
p300. Besides hypoxia, several other coregulators of HIF-α
have been described recently. They include reactive oxygen
species, ascorbate, succinate, fumarate or NO, the acetyl-
transferase ARD1 and under hypoxic conditions, the small
ubiquitin modifiers group (SUMO) [29]. In view of this
tight regulation, obviously HIF-α overactivity as well as un-
deractivity likely has drastic consequences on cell growth,
differentiation and metabolism.

Under hypoxic conditions typical for renal injury, the
HIF system is activated and in the remnant kidney model
as well as after ureteral obstruction, this occurs even be-
fore any histological evidence of tubulointerstitial damage
[30, 31]. Increased HIF expression has also been shown in
biopsies from patients with diabetic nephropathy, IgA
glomerulonephritis and chronic allograft nephropathy
[18]. In many of these diseases, the degree of HIF expres-
sion correlated with the extent of tubular injury. However,
whether this increased activity is beneficial or harmful is
unclear and may well depend on the context, the cell type-
affected and/or the duration of HIF expression. One target
gene for HIF is the pro-fibrotic connective tissue growth
factor. Accordingly, tissue-specific deletion of HIF-1α in-
hibited the development of tubulointerstitial disease in
mice [31]. In the von Hippel-Lindau tumour suppressor
knockout mouse, HIF-1α is also a critical contributor to
the progression of fibrosis [32]. Interestingly, however, in
kidney disease, HIF activation remains suboptimal and
thus, it is still possible that augmentation of HIF activity
might be nephroprotective [33] as at least in some forms
of experimental renal disease (ischaemia reperfusion, pro-
gressive uninephrectomized anti-Thy-1 nephritis, cisplatin
nephrotoxicity or Habu snake venom nephritis) activation
of HIFs improves outcome [34]. Also, in experimental
acute ischaemic renal disease, therapeutic interventions
to increase HIF activity are beneficial [35]. Even though
these encouraging results are not consistent with a recent
study in humans [36] inducing prolonged HIF activation,
a beneficial effect of short-term HIF up-regulation in AKI
cannot be excluded.

The two faces of VEGF and angiogenesis

HIFs also up-regulate pro-angiogenic genes like placental
growth factor, angiopoietin-1 and -2 and platelet derived
growth factor BB (Figure 2) [37]. However, the induction
of VEGF is perhaps the most remarkable effect––up to
30-fold within minutes. VEGF stimulates angiogenesis in
a dose-dependent manner [38] and is an absolutely critical
mediator of vasculogenesis. Knockout mice die with major
vascular defects several days after coitus [39] and VEGF
also has a role in glomerular development [40]. So the re-
sults of our study [1], where an impaired expression of
VEGF in the kidney-characterized patients with a loss of
glomerular filtration rate could provide evidence that pro-
gressive renal disease is due to an impaired angiogenic re-
sponse to hypoxia, which may be further dampened by the
additional induction of anti-angiogenic molecules, such as
thrombospondin-1 [25]. An important protective role for
VEGF in the maintenance of an intact tubulointerstitial
compartment was suggested by the study of Choi et al.
[41]. In human kidney biopsies, they observed that peritub-
ular capillary density was positively correlated to proximal
tubular size and negatively with interstitial volume. Com-
pared with normal control kidneys, where only podocytes
consistently expressed VEGF, an increased expression was
found in the tubules that maintained their structural integ-
rity. A nephroprotective role of VEGF can also be deducted
from the fact that proteinuric renal disease usually progress

Glomerulosclerosis induced loss of
postglomerular peritubular capillaries; 

postglomerular capillary vasoconstriction

aggravation of tubulointerstitial hypoxia

tubular cell apoptosis
epithelial mesenchymal transition Inflammation induction of fibrosis 

endothelial cell damage

loss of postglomerular capillaries
increase in oxygen diffusion distance

aggravation of tubulointerstitial hypoxia

Fig. 1. Pathogenesis and consequences of tubulointerstitial hypoxia.
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faster to ESRD than pathologies characterized by a low urin-
ary albumin excretion as it has been shown that albumin re-
duces the production of VEGF by tubular epithelial cells
[42]. The beneficial effect of VEGF, which is normally ex-
pressed by podocytes, tubular epithelial cells as well as
endothelial cells [43, 44] on the kidney, is supported by
the observation that a loss of VEGF expression in knockout
mice leads to endothelial cell swelling, capillary collapse
and proteinuria [45], a picture that resembles pre-eclampsia
in the human setting. Treatment with VEGF antagonists can
lead to proteinuria and thrombotic microangiopathy in hu-
mans [46]. In experimental ischaemia-reperfusion injury,
VEGF expression is reduced [47] and in a study by Leonard
et al. [48], early, but not late, administration of VEGF pre-
vented the long-term damage described in placebo-treated
rats after renal artery clamping.

However, the role of VEGF in renal disease is much
more complex as it also mediates glomerular hypertrophy
and sclerosis in diabetes [49] and overexpression can lead
to a form of collapsing glomerulopathy [45]. Treatment
with anti-VEGF antibodies was beneficial in an animal
model of early diabetes [50]. An interesting insight into
the dual role of VEGF in renal disease is provided by stud-
ies in the remnant kidney model. In early stages, glomeru-
lar hypertrophy is accompanied by an increase in
glomerular VEGF expression and VEGF is also found at
increased levels in the tubulointerstitial compartment. In
later stages, however, VEGF expression decreases in paral-
lel with the progression of histological damage and VEGF
administration results in the preservation of peritubular ca-
pillaries, with a partial reduction of tubulointerstitial injury
but cannot prevent glomerulosclerosis [51, 52].

Even as far as the role of VEGF-driven angiogenesis in
renal disease is concerned, the situation is complex. Micro-
vascular plasticity is the ability of the microvascular net-
works to adapt to the metabolic local conditions by up-
or down-regulating vascular proliferation [53]. Even
though neovascularization is closely linked to ischaemia,
excessive generation of new blood vessels is also observed
in situations like chronic inflammatory diseases, malignan-
cies and diabetic retinopathy and nephropathy [54].

In inflammation, leucocytes and platelets induce and de-
liver pro-angiogenic factors to mediate the proliferation of
local endothelial cells and/or facilitate the recruitment of

endothelial progenitor cells (EPCs) [49]. This response re-
solves with the resolution of the acute inflammation; how-
ever, excessive neovascularization can be found in chronic
disease [53]. As pro-inflammatory cytokines have pro-an-
giogenic properties vice versa VEGF and NO activate in-
flammation [55, 56]. In line with this concept is the fact
that neovessels are usually associated with leucocyte infil-
tration; these vessels are ‘sticky’ [57] and VEGF plays a
central role in this process as has been shown in chronic
allograft nephropathy [58]. Hence, inflammation and
angiogenesis induce overlapping and interactive processes
[49] that could be self-perpetuating. The complexity of the
regulatory networks in renal disease was nicely demon-
strated recently by Mu et al. [59]. Angiostatin, a potent
anti-angiogenic peptide, that also exerts massive anti-in-
flammatory activity, was genetically induced in animals
with remnant kidneys. Treatment reduced renal peritubular
capillary number but despite so ameliorated interstitial fi-
brosis. As this was associated with a reduced influx of
macrophage and T-cell infiltration, the authors concluded
that the protective role of angiostatin in this animal model
is due to its anti-inflammatory properties despite a negative
effect on neoangiogenesis.

Finally for angiogenesis to function properly, an orche-
strated interplay of several key players like the recruitment
of EPCs, endothelial cell proliferation and an adequate
amount of VEGF, NO production and angiopoietin-1 to in-
duce vessel maturation is required [60]. In chronic renal
disease, many of these mechanisms are disturbed. NO
availability is reduced due to high asymmetric dimethylar-
ginine levels [61] leading to a reduced release of EPC from
the bone marrow [62]. Accordingly, the number of circu-
lating EPCs is reduced in renal failure [63]. Accumulation
of extracellular matrix may also physically interfere with
EPC and local endothelial cell migration and extracellular
matrix molecules such as thrombospondin-1 can exert anti-
angiogenic effects by inhibiting endothelial cell prolifera-
tion, migration and tube formation [64].

Immature and distorted microvessels may present func-
tional abnormalities, increased permeability or blind end-
ings [65, 66] and new and fragile vessels might even
exacerbate tissue injury [53]. These defects have not only
been described in the kidney but also act systemically
[67]. Simple administration of VEGF, therefore, is un-
likely to be beneficial and in obstructive nephropathy,
administration of VEGF actually worsened injury [68].
Intriguingly in some animal models of renal disease,
anti-angiogenic drugs like thalidomide restore renovascu-
lar function [65, 69].

Recent studies have shown the capability of endothelial
or mesenchymal progenitor cells as a targeted intervention
to promote correct vasculogenesis [53]. They have been
shown to promote vascular proliferation and maturation,
which may in part be explained by their paracrine secretion
of a variety of angiogenic factors. Chade et al. [70] infused
EPCs in a pig model of RAS. Autologous EPCs increased
the renal expression of angiogenic factors like VEGF, sti-
mulated proliferation and maturation of new vessels and
attenuated renal microvascular remodelling and fibrosis
in RAS. Furthermore, they normalized renal microvascular
and filtration function.

HIF activation

VEGF upregulation

neoangiogenesis

defective intact 

proinflammatory stimulus increase in oxygen supply

progression
of injury

remission
of injury

Fig. 2. Possible consequences of HIF activation in chronic renal disease-
associated tubulointerstitial pathology.
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It thus can finally be speculated that the reduced activity
of VEGF observed by us and Lindenmeyer [1, 2] repre-
sents an intrinsic protective mechanism to avoid inflamma-
tion even at the cost of hypoxia.
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Iron and vascular calcification. Is there a link?
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Abstract
Iron deficiency is frequently seen in patients with end-stage
renal disease, particularly in those treated by dialysis, this is

because of an impairment in gastrointestinal absorption and
ongoing blood losses or alternatively, due to an impaired
capacity to mobilize iron from its stores, called functional
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