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The immunomodulatory effects of regulatory T cells (Tregs) and co-signaling receptors
have gained much attention, as they help balance immunogenic and immunotolerant
responses that may be disrupted in autoimmune and infectious diseases. Drug
hypersensitivity has a myriad of manifestations, which ranges from the mild
maculopapular exanthema to the severe Stevens-Johnson syndrome (SJS), toxic
epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic
symptoms/drug-induced hypersensitivity syndrome (DRESS/DIHS). While studies have
identified high-risk human leukocyte antigen (HLA) allotypes, the presence of the HLA
allotype at risk is not sufficient to elicit drug hypersensitivity. Recent studies have
suggested that insufficient regulation by Tregs may play a role in severe hypersensitivity
reactions. Furthermore, immune checkpoint inhibitors, such as anti-CTLA-4 or anti-PD-1,
in cancer treatment also induce hypersensitivity reactions including SJS/TEN and DRESS/
DIHS. Taken together, mechanisms involving both Tregs as well as coinhibitory and
costimulatory receptors may be crucial in the pathogenesis of drug hypersensitivity. In
this review, we summarize the currently implicated roles of co-signaling receptors
and Tregs in delayed-type drug hypersensitivity in the hope of identifying potential
pharmacologic targets.
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INTRODUCTION

Hypersensitivity reactions refer to undesirable immune reactions
that are exaggerated or inappropriate against an antigen or
allergen. Generally, hypersensitivity reactions are classified into
four types, which differ in pathogenesis, clinical manifestation,
and prognosis (1). And when it comes to the treatment of these
allergic reactions, type IV hypersensitivity remains the most
challenging. Type IV hypersensitivity reaction is also called
delayed-type hypersensitivity (DTH) because it reaches its peak
48 to 72 h after exposure to drugs, allergens, or toxins (2). DTH is
mediated by direct cytotoxicity of CD8+ T cells or by the release
of cytokines from CD4+ cells, which act through antigen-
presenting cells (APC) such as macrophages and dendritic
cells (DCs) to stimulate chronic inflammatory reactions.
Therefore, unlike other types of hypersensitivity reactions that
are antibody-dependent, DTH is majorly a T cell-mediated
response, which accounts for a variety of drug eruptions
including severe cutaneous adverse reactions (SCARs), and
contact hypersensitivity (CHS) or allergic contact dermatitis
(ACD) (3–5).

SCARs include syndromes such as Stevens-Johnson
syndrome (SJS), toxic epidermal necrolysis (TEN), and drug
reaction with eosinophilia and systemic symptoms/drug-
induced hypersensitivity syndrome (DRESS/DIHS) (5). SJS/
TEN is a rare but life-threatening drug-induced cutaneous
reaction characterized by extensive necrosis and detachment
of epidermis and mucosal epithelium (6). SJS and TEN share
the same clinical pattern, histopathologic features, and
mechanisms; though SJS is defined by the involvement of less
than 10% of total body surface area (TBSA) whereas TEN
indicates detachment of more than 30% of TBSA (7, 8). On
the other hand, DRESS/DIHS is also a potentially fatal drug-
induced systemic hypersensitivity syndrome which mainly
causes skin and internal organ damage (9–11). Patients with
uncontrolled DRESS/DIHS or complications such as
cytomegalovirus (CMV) reactivation are at high risk of death (12).
Abbreviations: ACD, allergic contact dermatitis; APC, antigen-presenting cell;
BTLA, B and T lymphocyte attenuator; CCR6, chemokine receptor 6; CHS,
contact hypersensitivity; CMV, cytomegalovirus; CTL, cytotoxic T lymphocyte;
CTLA-4, cytotoxic T lymphocyte-associated antigen-4; DC, dendritic cell; DIHS,
drug-induced hypersensitivity syndrome; DNFB, dinitrofluorobenzene; DRESS,
drug reaction with eosinophilia and systemic symptoms; DTH, delayed-type
hypersensitivity; EBV, Epstein-Barr virus; FOXP3, Forkhead protein 3; Gal-9,
galectin-9; GITR, glucocorticoid induced TNF receptor; GzmB, granzyme B;
HHV, human herpes virus; HIV, human immunodeficiency virus; HLA, human
leukocyte antigen; HVEM, herpesvirus-entry mediator; ICOS, inducible T cell
costimulator; IFN, interferon; IL, interleukin; IPEX, immunodysregulation,
polyendocrinopathy, enteropathy, X-linked; IrAE, immune-related adverse
event; LAG-3, lymphocyte activation gene-3; MHC, Major histocompatibility
complex; MPE, maculopapular exanthema; NK, natural killer; PBMC,
peripheral blood mononuclear cell; PD-1, programmed cell death 1; SCAR,
severe cutaneous adverse reaction; SJS, Stevens-Johnson syndrome; SMX,
sulfamethoxazole; TARC, thymus activation-regulated chemokine; TBSA, total
body surface area; TCR, T cell receptor; TEN, toxic epidermal necrolysis; TGF-b,
transforming growth factor-beta; Th1, T helper 1 cell; Th17, T helper 17 cell;
TIGIT, T cell immunoglobulin and ITIM domain; TIM-3, T-cell immunoglobulin
mucin-3; TNF, tumor necrosis factor; TNFRSF, tumor necrosis factor receptor
superfamily; Treg, regulatory T cell; Trm, tissue-resident memory T cell.
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Aside from drug eruptions, CHS or ACD is also an
inflammatory disease of the skin that is primarily T cell-
mediated (13). ACD results from exposure and sensitization of
hosts to specific allergens, followed by subsequent exposure that
initiates an inflammatory response, causing skin damage and
inflammation (3).

Since the treatment of the DTH entity remains challenging,
there is a need for physicians to look into the detailed
interactions between immune cells and explore novel
therapeutic targets (14–17). Fortunately, current evidence has
demonstrated that both the dysregulations of regulatory T cells
(Tregs) and the dysfunction of certain co-signaling axes are
associated with the development of cutaneous inflammatory
disease (18, 19). In this review, we summarize the established
pathogenesis of clinically-relevant DTHs then focus on currently
suggested concepts regarding how Tregs and various
costimulatory and coinhibitory receptors regulate different
components and cytokines in DTH in the hope of clarifying
potential targets for future treatment.
CURRENT MODELS OF PATHOGENESIS
IN DRUG HYPERSENSITIVITY
AND BEYOND

Delayed-type hypersensitivities ranging from CHS to SCARs
remain as major therapeutic challenges in clinical scenarios
(20, 21). Upon exposure to a certain drug, not only does the
drug itself but also its metabolites and drug-modified peptides
are often present systemically (22, 23). Importantly, some of
them could bind to human leukocyte antigen (HLA) and activate
T cells, potentiating hypersensitivity (24, 25). Previous studies on
drug hypersensitivity had identified several models explaining
the pairwise associations between specific HLA class I alleles and
the susceptibility to certain drug hypersensitivity, namely the
hapten/pro-hapten model, the pharmacologic interaction model,
and the altered peptide repertoire model, which have been
thoroughly reviewed (26, 27).

After activating certain drug-specific T lymphocytes, cytotoxic
molecules ranging from granulysin to granzyme B (GzmB) and a
variety of proinflammatory cytokines including but not limited to
tumor necrosis factor (TNF), interferon (IFN)-g, and interleukin
(IL)-2, are released, which collectively lead to unwanted
inflammatory damages (28–31). In addition to cytotoxic T cells,
activated natural killer (NK) cells, T helper 17 cells (Th17), and
APCs also contribute to the release of IL-5, IL-6, IL-12, IL-15, IL-
17, IL-18, further exacerbating the extensive collateral damages
and result in SJS/TEN (27, 32). On the other hand, when the
activation of certain drug-specific T helper 2 (Th2) lymphocytes
occurs with the reactivation of human herpes virus (HHV)-6,
HHV-7, Epstein–Barr virus (EBV), or CMV, these T cells are
thought to further release IL-4, IL-5, and IL-13 which work
together with eotaxin, thymus activation-regulated chemokine
(TARC), and pro-inflammatory cytokines such as IFN-g, TNF,
IL-6, and IL-15, promoting systemic inflammation with
eosinophilia and resulting in DRESS/DIHS (15, 33–36). Thanks
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to the high negative predictive values of genetic screenings for
HLA, physicians could achieve early prevention of these fatal drug
hypersensitivities prior to drug use (37–39). However, there are
only a few HLA-typing (e.g., HLA-B*57:01 for abacavir, HLA-
B*58:01 for allopurinol, and HLA-B*15:02 for carbamazepine)
that have been recommended to prevent drug hypersensitivity in
practice, and more attention is warranted to explore the
applicability of this strategy in other dozens of drug-related DTH.

Besides the HLA alleles, the T cell receptor (TCR) repertoire
also plays an important role in the pathogenesis of SCAR.
Recently, we identified a public TCR from carbamazepine-
induced SJS/TEN patients of Asians and Europeans. This
observation may explain why patients of different ethnicities
with different HLA alleles develop the same hypersensitivity.
This public TCR shows drug-specificity and phenotype-
specificity in an HLA allele-specific (HLA-B*15:02-favored)
manner (40). Intriguingly, despite the presence of the culprit
molecules systemically as well as the corresponding HLA type
and TCR, many people remain unaffected while others develop
severe drug hypersensitivity, implying that binding to drug-
specific T cells per se is not sufficient to be pathogenic. The
missing pieces to explain the unpredictability here could partially
be attributed to both the activity of the Treg and the collateral co-
signaling axes that largely determine the activation and effector
Frontiers in Immunology | www.frontiersin.org 3
functions of T cells, which had been extensively explored in fields
targeting tumors as well as autoimmune diseases (41, 42).

Besides the pathophysiology of different drug hypersensitivity
reactions identified previously, insufficient inhibitory mechanisms
and/or enhanced costimulatory signals to T cells have also been
gaining attention in the pathomechanism of SJS/TEN and DRESS/
DIHS as outlined in Figures 1 and 2, respectively. Furthermore,
since previous research on DTH has largely focused on CHS,
reviewing costimulatory/coinhibitory signaling in CHS may help
guide future drug hypersensitivity research; thus, the co-signaling
pathways suggested in the pathogenesis of CHS are also depicted
(Figure 3). Clarifying the immunological crosstalk may open the
therapeutic window to further prevent and control potentially fatal
drug hypersensitivity.
COSTIMULATORY RECEPTORS

Different HLA alleles represent important risk factors for drug
hypersensitivity by specific drugs in patients of specific genetic
ancestry. However, evidence thus far seems to suggest that the
commonly discussed variations of the HLA genotypes are not
sufficient to fully predict susceptibility to DTH (43–47). It is known
that alongside the TCR/peptide-MHC interaction, “signal 2”
FIGURE 1 | Immunoregulatory molecules and cytokines implicated in Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN). CD8+ cytotoxic T lymphocytes
(CTLs) play a central role in the pathogenesis of SJS/TEN. Cytokines (including IL-15 and TNF) and costimulatory molecules of APCs can stimulate the CTLs, which in turn
produce cytokines, including IFN-g and IL-15. CTL and NK cell degranulation that induce keratinocyte apoptosis may be mediated, at least partially, by the interaction between
CD49/NKG2C and HLA-E. Other players in SJS/TEN include Fas/FasL interactions, T cells and keratinocytes expressing PD-L1, and CD40/CD40L interactions at the dermal-
epidermal junction. Ag, antigen; APC, antigen presenting cell; CD40(L), cluster of differentiation 40 (ligand); FasL, Fas ligand; GNLY, granulysin; GzmB, granzyme B; HLA-E,
HLA class I histocompatibility antigen, alpha chain E; IFN-g, interferon gamma; IL-15, Interleukin 15; MHC, major histocompatibility complex; NK cell, natural killer cell; Perf,
perforin; PD-L1, programmed death ligand-1; TCR, T cell receptor; TNF, tumor necrosis factor; Treg: regulatory T cell.
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is crucial for proper activation of T cells by antigen-presenting
cells. Aside from the prototypic costimulatory receptor, CD28,
that is involved in this process (48), various costimulatory
receptors have also been demonstrated to facilitate the immune
responses in autoimmune diseases, cancer, and infectious
diseases (49–51). Costimulatory receptors implicated in DTH
are summarized in Table 1.

CD28
The costimulatory molecules B7-1 (CD80) and B7-2 (CD86) on
APCs interact with their cognate receptor CD28 on T cells to
augment and sustain a T cell response (73). CD28 costimulation
promotes T cell proliferation, cytokine production, and T cell
survival (74). In a transgenic mouse model for HLA-B*57:01–
linked abacavir hypersensitivity, CD80 on DCs are upregulated
upon CD4+ T cell depletion (likely including Tregs), resulting in
an adverse immune response (52, 53). To further assess the effect
of blocking this pathway on DTH, mice with antibodies targeting
CD28 or CD80 inhibited the accumulation of reactive CD8+PD-
1+ T cells in the lymph nodes, dampening the immune response
to abacavir. In addition, CHS to dinitrofluorobenzene (DNFB)
Frontiers in Immunology | www.frontiersin.org 4
and oxazolone is significantly decreased in CD28 −/− mutant
mice (54). CD28 antagonist has also been suggested prevent
Aldara-induced skin inflammation in non-human primates, as
shown by the inhibition of T cell and macrophage infiltration at
the epidermal interface (55). Since studies on the role of CD28 in
DTH have largely been animal-based, future studies to
investigate the role of CD28 in DTH in humans are warranted
before assessing the applicability of CD28 manipulation for
therapeutic purposes.

OX40 (CD134)
The costimulatory receptor OX40 (also known as CD134) is a
member of the TNF receptor superfamily (TNFRSF) that is
expressed on both activated CD4+ and CD8+ T cells,
neutrophils, and NK cells (75). OX40 has important
costimulatory functions in the activation, survival, and
expansion of both CD4+ and CD8+ T cells as demonstrated in
animal models of autoimmune disease, infectious disease, and
cancer (76). Additionally, activation of T cells by the OX40
ligand (OX40L) makes them less responsive to the inhibitory
signals from Tregs (77). One study demonstrated that mice
FIGURE 2 | Immunoregulatory molecules and cytokines implicated in drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity
syndrome (DRESS/DIHS) and maculopapular exanthema (MPE). Through cell-cell interaction, APCs are thought to activate drug-specific T cells with the aid of OX40
costimulation which prevent T cells from being inhibited by Tregs. Activated Th2 secretes cytokines including IL-4, IL-5, and IL-13, inducing eosinophilia. In addition,
eotaxin and TARC produced by keratinocytes and DCs, respectively, promote the local accumulation of harmful eosinophils. Together with the elevated levels of pro-
inflammatory cytokines, including IFN-g, TNF, IL-6, and IL-15, they cause systemic inflammation characterized as DRESS/DIHS. In the case of MPE, the augmented
immune responses through the CD40 axis along with the compromised inhibitory mechanisms of both PD-1 and TIM-3 axes were further identified. APC, antigen
presenting cell; DC, dendritic cells; Gal-9, galectin-9; GNLY, granulysin; IFN-g, interferon gamma; IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; IL-13,
interleukin 13; IL-15, interleukin 15; MF, macrophage; MHC, major histocompatibility complex; PD-1, programmed cell death protein 1; PD-L1, programmed death
ligand-1; TARC, thymus activation-regulated chemokine; TCR, T cell receptor; Th2, T helper 2 cell; TIM-3, T-cell immunoglobulin mucin-3; TNF, tumor necrosis
factor; Treg, Regulatory T cell.
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FIGURE 3 | Immunoregulatory molecules and cytokines implicated in contact hypersensitivity (CHS). During sensitization, the skin-penetrating hapten is processed
by Langerhans cells (LCs) or dermal dendritic cells. GITR-GTRL interactions between keratinocytes and LCs enhance keratinocyte secretion of cytokines, which aid
maturation and migration of LCs to the skin-draining lymph node. In the SDLN, in addition to hapten presentation, several costimulatory and coinhibitory interactions,
e.g., CD40-CD40L, OX40L-OX40, B7-CD28, and B7-CTLA-4, between the APC and the naïve T cell take place. The hapten-specific effector T cells, predominantly
CD8+ cytotoxic T cells, infiltrate the skin and elicit the CHS response upon hapten re-exposure. The presence of Tregs and several coinhibitory receptors on CD8+ T
cells and CD8+ Trm cells are associated with decreased CHS response. APC, antigen presenting cell; BTLA, B- and T-lymphocyte attenuator; CD40L, CD40 ligand;
CTLA-4, cytotoxic T-lymphocyte-associated antigen 4; Gal-9, galectin-9; GITR(L), glucocorticoid induced TNF receptor (ligand); HEVM, herpes virus entry mediator;
IL-1b, interleukin-1 beta; LC, Langerhans cell; MHC, major histocompatibility complex; OX40L, OX40 ligand; PD-1, programmed cell death protein 1; PD-L1,
programmed death ligand-1; SDLN, skin-draining lymph nodes; TCR, T cell receptor; TIM-3, T-cell immunoglobulin mucin-3; TNF, tumor necrosis factor; Treg,
regulatory T cell; Trm, tissue-resident memory T cell.
TABLE 1 | Costimulatory molecules involved in delayed-type hypersensitivity.

Costimulatory
molecules

Implicated cells in DTH Ligand/
receptors

Ligand/recep-
tors expression

Types of DTH Study designs

CD28 T cells (including Tregs) CD80,
CD86

APCs SJS/TEN; CHS; abacavir hypersensitivity Animal study (52–55)

OX40 Tregs, conventional T cells OX40L APCs CHS; DRESS/DIHS Case control (56, 57); case series (58);
animal study (59, 60)

CD40 Activated T cells, APCs CD40L APCs, activated
T cells

CHS; sulfamethoxazole hypersensitivity;
SJS/TEN; amoxicillin/amoxicillin-clavulanic
acid DTH; anti-epileptic-induced
hypersensitivity

Case control (61, 62); case series (63);
animal study (64–66); in vitro study (67)

CD226 T cells, APCs CD155 APCs, T cells CHS Animal study (68); in vitro study (69)
CD137/4-1BB Activated T cells CD137L/

4-1BBL
CD14+CD16+
Monocyte, APCs

SJS/TEN Case series (70)

GITR Epidermal keratinocytes, T
cells (including Tregs)

GITRL APCs CHS Animal study (71)

CD94/NKG2C NK cells, Cytotoxic T cells HLA-E Keratinocytes SJS/TEN Case control (72)
Frontiers in Immun
ology | www.frontiersin.org
 F5
DTH, delayed-type hypersensitivity; CD28, cluster of differentiation 28; APC, antigen-presenting cell; CHS, contact hypersensitivity; SJS/TEN, Stevens-Johnson syndrome/toxic epidermal
necrolysis; OX40L, OX40 ligand; DRESS/DIHS, drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome; GITR(L), glucocorticoid induced TNF
receptor (ligand); NK cells, natural killer cells; HLA-E HLA class I histocompatibility antigen, alpha chain E.
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lacking OX40L exhibited an impaired CHS response, due to
defects in T cell priming and cytokine production (59). In
another murine model of CHS, OX40L-deficient mice
displayed a significant reduction in both hapten-induced ear
swelling and hapten-specific T cell response. Conversely, these
responses were markedly increased in mice with OX40L
overexpression (60). In a comparison between eight patients of
acute stage DRESS/DIHS and seven healthy controls, OX40 was
found to be significantly upregulated on CD4+ T cells of DRESS/
DIHS patients (56). In their recent follow-up study of 12 DRESS/
DIHS patients, Miyagawa et al. have found that OX40L was also
preferentially expressed on their peripheral blood mononuclear
cells (PBMCs). Moreover, the percentage of OX40-expressing
CD4+ T cells correlated with parameters observed in Th2-type
immune responses (57) . Addit ional ly , during slow
desensitization of five patients with previous imatinib-induced
DTH, including maculopapular exanthema (MPE) and DRESS/
DIHS, decreased imatinib-induced CD4+CD25+OX40+ T-cell
percentages were observed (58), suggesting that decreased OX40
+ drug-specific T cells may be associated with immune tolerance.
Since co-expression of OX40 and CD25 after 48 h upon antigen
stimulation has been described as a marker for antigen-specific
CD4+ T cells (78), this result hints at the important role of OX40
in the T cell hypersensitivity response. Since studies on OX40
have largely focused on CHS in mice and DRESS/DIHS in
humans, a comprehensive understanding of the role of OX40/
OX40L in DTHmay require future investigation of other types of
DTH and the interactions between OX40 and other competing
players in the immune response. On another note, though the
potential therapeutic application of the OX40–OX40L
interaction has not been explored in DTH, it has already been
considered in autoimmune and cancer treatments (79).

CD40 and CD40L
The CD40/CD40 ligand (CD40L or CD154) costimulatory axis
also belongs to the tumor necrosis factor receptor superfamily
(TNFRSF) and amplifies the immune response and promotes
inflammation. While both are expressed on the surface of a
variety of cell types, CD40L expression mostly requires induction
whereas CD40 expression is often constitutive. Cells expressing
CD40L include, but are not limited to, activated T cells, DCs, NK
cells, platelets, and non-immune cells. Similarly, CD40 is
expressed on B cells, T cells, DCs, and many other cell types
(80). An in vitro study of T-cell-mediated hypersensitivity to
sulfamethoxazole (SMX) showed increased CD40 expression
with DC surfaces exposed to SMX and its metabolite, nitroso
SMX (67). CD40L blockade inhibited nitroso SMX-induced T
cell activation in mice. Additionally, CD40 stimulation enhanced
the drug-specific response. In mice, blockade of the CD40-
CD40L pathway was associated with defective CHS response,
possibly due to impaired migration of antigen-bearing DCs from
the skin to draining lymph nodes, while injection of the agonist
anti-CD40 monoclonal antibody “corrected” the CHS response
(64, 65). However, CD40-CD40L interactions may not be
mandatory for the development of the effector CD8+ or the
regulatory CD4+ T cells during DNFB sensitization for CHS in
mice (66). In order to study the role of CD40 in human diseases,
Frontiers in Immunology | www.frontiersin.org 6
the cellular infiltrates of the skin of eight patients with erythema
multiforme and six with SJS/TEN had been analyzed. While
CD40+ cells were similarly represented in erythema multiforme
and SJS/TEN, CD40L+CD4+ T cells which may bind to CD40 on
APCs were strongly represented in the perivascular and
subjunctional dermis of SJS/TEN specimens (63). This study
also revealed CD40, Fas, and Fas ligand expressions on
keratinocytes in SJS/TEN patients. Recently, the potential of
using CD40L to detect activated drug-specific T cells in DTH
to antibiotics and anti-epileptics has been demonstrated in case
control studies of small sample sizes, but its overall accuracy and
application in SCARs remain to be further explored. For
instance, among 14 patients clinically diagnosed with drug
eruptions, only 8 of their causative drug-activated PBMCs were
tested positive for CD40L (61, 62).

CD226 and CD155
The costimulatory receptor CD226 (DNAM-1) is a glycoprotein
expressed on the majority of NK cells, T cells, monocytes and
platelets, and a subset of B lymphocytes. CD226 competes with
the coinhibitory T cell immunoglobulin and ITIM domain
(TIGIT) for the same ligands, mediating positive stimulatory
signaling and inducing NK and T cell‐mediated cytotoxicity (81,
82). Ligands for CD226 include CD155 (poliovirus receptor,
PVR) and CD112 (nectin-2 or poliovirus receptor-related 2,
PVRL2), which are expressed on epithelial cells, endothelial
cells, APCs, and tumor cells; thus, the interaction between
CD226 and its ligands is more often discussed in the context
of tumor immunity (83, 84). A previous in vitro study had
suggested that CD226 on CD4+ naive T cells mediated an
activating signal for T helper 1 cell (Th1)/Th17 differentiation
as a result of ligation with CD155 (69). Somewhat surprisingly,
one murine study has demonstrated that CD155-mediated
signaling in CD4+ T cells triggered by the interaction with
CD226 on APCs was involved in Th1 development and CHS
(68). CD155, normally regarded as the “ligand” in this
costimulatory couple, was suggested to serve as the “receptor”
when present on T cells. In the same study, anti-CD155
monoclonal antibody administration was able to dampen the
CHS response. Whether the same manner of CD226/CD155
interact ion is involved in human CHS has yet to
be demonstrated.

CD137 (4-1BB)
Another costimulatory receptor 4-1BB (CD137) is expressed on
a vast array of cell types within the hematopoietic system,
including both activated CD4+ and CD8+ T cells, DCs, B cells,
monocytes, NK cells, neutrophils, and mast cells (85). The 4-1BB
ligand (4-1BBL or CD137L) is expressed on most leukocytes,
including APCs, and some non-immune cells. Interestingly, 4-
1BBL can also transmit signals into the APC on which it is
expressed (reverse signaling) and strengthen type 1, cell-
mediated immune responses (86–88). The ability to potentiate
effector responses by 4-1BB signaling in activated T cells makes
4-1BB an appealing target for cancer immunotherapy (89, 90). In
one study, CD14+CD16+ cells of the monocyte lineage co-
expressing CD80, CD86, and CD137L were found in the skin
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of all 11 SJS/TEN patients while interaction with CD8+CD137+
cells was also demonstrated on immunostaining (70). The
interaction between cells bearing CD137 and cells bearing
CD137L was suggested to contribute to epidermal damage
most probably by enhancing the cytotoxicity of CD8+ T cell.
Definitive conclusions cannot be drawn regarding CD137’s role
in DTH due to limited evidence; further supporting studies on
this costimulatory receptor are still needed.

Glucocorticoid-Induced TNF Receptor
The costimulatory receptor GITR (glucocorticoid-induced TNF
receptor, CD357) is a member of the TNFRSF that is
constitutively expressed at high levels on Tregs, at lower levels
on conventional T cells and innate immune cells, and on non-
immune cells, e.g., keratinocytes (91, 92). The GITR ligand
(GITRL) is predominantly expressed on activated APCs and
endothelial cells (91, 93). Some functions of GITR include
lowering the threshold of CD8+ T cell activation by CD28 and
abrogating Treg-mediated suppression of T cells (94, 95). Studies
on agonistic GITR in the context of cancer immunotherapy
similarly demonstrated its dual ability to enhance CD8+ T cell
proliferation and cytokine production while dampening Treg
suppressive function (96, 97). In the CHS mouse model, the anti-
GITRL monoclonal antibody inhibited hapten-specific CD8+ T
cell activation and CHS. However, Tregs and plasmacytoid DCs,
known to express high levels of GITR and GITRL, respectively,
were not the main players in GITRL-mediated CHS. Rather, their
results suggested that the binding of GITRL on Langerhans cells
to the GITR on epidermal keratinocytes induced the expression
of proinflammatory cytokines by the keratinocytes and the
migration of Langerhans cells to the draining lymph nodes to
initiate the CHS response (71). Since similar results have not
been reported by other studies, this mechanism in CHS
mandates further investigation.

CD94/NKG2C
CD94 expressed on NK cells can form heterodimers with
NKG2A (CD94/NKG2A) or with NKG2C (CD94/NKG2C).
Binding of the heterodimer CD94/NKG2C to its ligand, HLA‐
E, delivers an activating signal in NK cells (98). Interestingly,
CD94/NKG2C is also expressed by highly differentiated CD8+

effector T cells and co-stimulates TCR‐mediated cytotoxicity
(99). Keratinocytes from affected skin in SJS/TEN express
HLA-E, which sensitizes them to killing by CD94/NKG2C-
expressing cytotoxic T lymphocytes (CTLs) and NK cells.
Moreover, in a case control study of SJS/TEN patients,
activated blister T and NK cells expressing CD94/NKG2C
degranulate in response to HLA-E+ cells in an NKG2C-
dependent manner (72). And the cytolytic granules secreted by
CTLs and NK cells have been previously demonstrated to include
perforin, GzmB, soluble Fas ligand, and granulysin, which are
important for keratinocyte killing of patients with SJS/TEN (30).
Thus, the interaction between CD94/NKG2C on CTLs and NK
cells and HLA-E on keratinocytes seems to contribute to the
pathogenesis of SJS/TEN.

Since costimulatory signals boost the activation of T cells and
are suggested to play a role in drug hypersensitivity, developing
Frontiers in Immunology | www.frontiersin.org 7
targeting therapies against them may be a plausible strategy
against SCARs. Contrariwise, when it comes to the
immunological regulations that hold back unwanted immune
responses which we would like to augment, it is indispensable to
discuss Treg and its multifaceted immunosuppressive abilities
that could largely change the landscape of drug hypersensitivity
(100, 101).
REGULATORY T CELLS

Activation of the immune system is crucial for fending off foreign
pathogens or annihilating endogenous malignancies. However,
autoimmune diseases and hypersensitivity reactions are
important illustrations of exaggerated immune responses to
self and non-self antigens, respectively, that can be life-
threatening. Maintaining immunologic self-tolerance and
control requires a special subset of CD4+ T cells, the Tregs
(102, 103). Tregs regulate immune system through multiple
mechanisms, including the release of inhibitory cytokines, the
initiation of cytolysis, and the modulation of DC function (104).
Regulation through checkpoint receptors cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4) and programmed
cell death 1 (PD-1) are also pivotal to the Treg function. By
modulating CD4+ T cells, CD8+ T cells, B cells, and DCs, Tregs
play a crucial role in the homeostasis of the immune response.

The constitutively expressed forkhead box protein 3 (FOXP3)
is the lineage-defining transcription factor indispensable for Treg
development and suppressive function (105, 106). Mutations in
FOXP3 renders the scurfy transgenic mice and patients with
IPEX (immunodysregulation polyendocrinopathy enteropathy
X-linked) syndrome susceptible to spontaneous inflammation
in different tissues, including the skin, and traits characteristic of
connective tissue diseases (107–110). Recently, mapping
regulation of gene expression in Tregs has revealed
dysregulation of key Treg pathways in immune diseases,
including many that display skin inflammation, providing
hints to future drug targets for treatment (111).

The Relevance of Regulatory T Cells in
Delayed-Type Hypersensitivity
More Tregs than non-Tregs accumulate in the skin during
cutaneous immune response in mice. Furthermore, mRNA
expression profiles of cytokines in Tregs contain significantly
higher amounts of the inhibitory Il10, Tgfb1, and Ctla4
transcripts (112). Depletion of FOXP3+ Tregs in the PBMCs of
healthy human donors allows the detection of CD4+ and CD8+
T cell responses to drugs and haptenic chemical, suggesting
Treg’s canonical suppressive role (113). Not surprisingly, the
reintroduction of Tregs blocks drug activation of naïve T cells in
a cell concentration-dependent manner (114). In fact, the
dysfunction of Tregs does contribute to the pathogenesis of
drug hypersensitivity in clinical scenarios. For instance, the
incidence and severity of drug hypersensitivity were increased
in human immunodeficiency virus (115)-infected patients (116–
118), whose CD4 counts and CD4/CD8 ratios decreased
dramatically (118). Moreover, it was also observed that cancer
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pa t i en t s rece i v ing ant i -CTLA4 and/or an t i -PD-1
immunotherapy suffered from more drug hypersensitivity
adverse events (119).

Stevens-Johnson Syndrome/Toxic
Epidermal Necrolysis
Treg dysfunction has been suggested in the pathogenesis of SJS/
TEN. In mice, Tregs prevent experimentally induced epidermal
injury mimicking TEN (120). In humans, non-responders to
carbamazepine re-exposure have a statistically significant
expansion of Tregs compared to responders (121). In skin
lesions of HIV patients with TEN, the decrease in the number
of skin-directed CD4+ cells and the increase in the CD8+/CD4+
cell ratio likely contribute to an increased risk of developing drug
reactions because of the loss of skin-protective regulatory T cells
(116, 122). In another patient using the PD-1 inhibitor
nivolumab, sequential mRNA expression of FOXP3 and the
CD4+/CD8+ ratio reached its nadir at the onset of TEN in
peripheral blood cells (123). Additionally, the percentage of
Tregs in peripheral blood continued to drop in the course of
TEN (123). As expected, Treg-mediated suppression of drug-
specific T-cells in humans is seen with the addition of Tregs in a
concentration-dependent manner (124). A comparison of cell
composition in the skin of patients with erythema multiforme
and SJS/TEN shows that Tregs are less abundant in the latter
(125). Qualitative deficits of Tregs also seem to contribute to the
pathogenesis of SJS/TEN. Circulating Tregs of SJS/TEN patients
display impaired suppressor function that can be restored after
clinical resolution (126). Notably, our recent study has also
found that the TNF-a antagonist, etanercept, successfully
relieves SJS/TEN symptoms with an increase in frequencies of
CD4+CD25+FOXP3+ Tregs after treatment (127).

Drug Reaction with Eosinophilia and Systemic
Symptoms/Drug-Induced Hypersensitivity Syndrome
Patients with DRESS/DIHS at the acute stage show significantly
increased frequencies of Tregs in total CD4+ T cells compared
with healthy controls in blood, which is not observed in TEN or
MPE (126). A larger fraction of Tregs is likely to have a more
potent ability to migrate into the skin (126). Indeed, increased
FOXP3+ T cells in skin lesions of DRESS/DIHS were observed
and appear significantly higher when compared to those in SJS/
TEN (32, 128). Evidence suggests that functional Tregs expand at
the acute stage of DRESS/DIHS and contract with the resolution
of the disease while becoming functionally impaired (126).
Intriguingly, a shift from the Treg response to the Th17
response due to CD16+ monocytes producing IL-6 can partly
explain the observed decrease in Tregs upon resolution (129).
Furthermore, Tregs seem important in ameliorating
inflammatory responses while preventing the subsequent
development of CMV infection or autoimmune diseases in
DRESS/DIHS (11).

Contact Hypersensitivity
The modulatory role of Treg has also been demonstrated in CHS.
In vivo Treg expansion in mice produces prolonged CHS
suppression manifesting as a sustained reduction of hapten-
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specific CD8+ T cells and a decrease in effector cell influx in
inflamed tissue (130). CD4+ T cells isolated from the peripheral
blood of healthy nonallergic humans show a limited capacity to
proliferate in response to nickel in vitro, but responsiveness is
strongly augmented when cells are depleted of Tregs (131).

Although insufficient regulation by Tregs, whether
quantitative or qualitative, appears relevant in DTH, the exact
mechanisms leading to the pathogenesis of these diseases are still
nascent. In the next sections, we attempt to highlight the
currently proposed roles of Treg in DTH.

How Tregs Regulate the Immune
Response
Tregs can regulate participants of the immune system to achieve
tolerance through a variety of mechanisms. These mechanisms
include suppression by inhibitory cytokines, suppression by
metabolic interruption, suppression by checkpoint receptor
modulation of DC maturation or function, and suppression by
cytolysis (Figure 4) (132). Aside from these mechanisms, a novel
mechanism involving enhanced binding of Tregs to DC to
deplete peptide-MHC II from the surface has been proposed
recently (133).

Cytokines—Interleukin-10 and Transforming
Growth Factor-b
The suppression of various cells, including CD4+ T cells, by
Tregs is mediated through inhibitory cytokines including TGF-b,
IL-10, and IL-35 (134–137). An early study of mice with
disrupted IL-10 gene mounted an exaggerated CHS response
(138). Another murine model has demonstrated IL-10
production by Treg upon stimulation and that addition of
anti-IL-10 antibodies abrogated the suppressive effects of Treg
in CHS. Moreover, CD4+CD25+ T cells isolated from IL-10−/−
mice were unable to suppress the immune response (139). In a
study of humans with drug hypersensitivity, IL-10 was increased
in successful drug desensitization regardless of the
hypersensitivity reaction type (140). In patients with MPE, the
frequency of IL‐10–producing Tregs was significantly lower
compared to controls in both acute and resolution phases
(141). Interestingly, the source of IL-10 appears to be
important to have suppressive functions. In mice, CD8+ T cell‐
derived IL‐10 does not contribute significantly to the resolution
of CHS responses (142). One study treated CHS mice with
induced Tregs (iTregs) that had been exposed to TGF-b1 small
interfering RNA (siRNA) or control siRNA. Mast cell density
and inflammatory cytokines messenger RNA expression
suppression was compromised in the TGF-b1 siRNA-treated
group, suggesting that TGF-b1 derived from iTreg cells might
contribute to iTreg–mediated reversal of established CHS (143).

Metabolic Interruption: CD39/Adenosinergic Axis
and IL-2 Deprivation
CD39 is essential for Treg immunosuppressive activity via the
CD39/adenosinergic axis since adenosine generated by CD39
and CD73 on Tregs can bind the A2A adenosine receptors on
effector T cells and enhance intracellular cAMP levels to suppress
their function (144, 145). A murine CHS model has found that
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CD39 on Tregs depleted ATP in the extracellular environment,
which downregulated ATP-induced shedding of CD62L on CD8
+ T cells. This in effect interfered with the trafficking of CD8+ T
cells in and out of skin-draining lymph nodes and dampened the
immune response. Therefore, Tregs likely suppress CHS through
a CD39, adenosine-dependent mechanism in vivo (146, 147).
Higher frequencies of CD39+ Tregs have also been correlated
with lower production of IFN-g, an important cytokine detected
in SJS/TEN blisters (121, 148). Furthermore, individuals
originally unresponsive to carbamazepine re-exposure
converted to an IFN-g-producing state after treatment with the
CD39 inhibitor, POM-1 (121). These data suggest that targeting
the CD39/adenosinergic axis has therapeutic potential in SJS/
TEN and CHS.

Interestingly, Tregs consistently express high levels of IL-2
receptor a chain, CD25, which implies a higher affinity to IL-2
than that of conventional T cells. By competing for IL-2, Tregs
deplete IL-2 from other T cells, causing cytokine deprivation-
induced apoptosis in these cells; however, this concept may
require further validation (149, 150).

Checkpoint Receptors: CTLA-4, PD-1, LAG-3,
and TIGIT
Downstream signaling of checkpoint receptors or coinhibitory
receptors on Tregs has been shown to converge to the same
pathway leading to Treg stability. Furthermore, the coinhibitory
Frontiers in Immunology | www.frontiersin.org 9
receptors may regulate immune and non-immune cells that express
their corresponding ligands (151). CTLA-4 in conventional T cells
rises only after activation but is constitutively expressed on Tregs
(144). Treg-specific CTLA-4 deficiency shows impaired Treg
suppressive function, especially in in vitro and in vivo
downregulation of CD80 and CD86 expression on dendritic cells
(152). Furthermore, CTLA-4 has been shown to bind to CD80/
CD86 with higher affinity than its opponent CD28, thereby
depriving conventional T cells of costimulatory signaling through
CD28 (153). Tregs may also secrete soluble CTLA-4 that block
CD80/CD86 or deplete CD80/CD86 from the APC surface by
transendocytosis (154, 155). Additionally, Tregs use CTLA-4 to
induce the co-inhibitory molecule PD-L2 (one of the ligand for PD-
1) expression on dendritic cells (156).

PD-1 is mainly expressed on activated CD4+ T cells, activated
CD8+ T cells, and B cells in the periphery. Just like CTLA-4, PD-
1 delivers a negative signal when interacting with its ligands
(144). Both PD-1 and PD-1 ligand 1 (PD-L1) are expressed on
Tregs under resting and activated conditions (157). As for
chronic viral infection, either PD-1 blockade on chronic Tregs
or PD-L1 deficiency on CD8+ T cells dramatically diminishes the
suppression of T cell immune response, demonstrating the
importance of interaction between PD-1 on Tregs and PD-L1
on CD8+ T cells (158). Increasing cases of SJS/TEN secondary to
immune checkpoint inhibitors of CTLA-4 and PD-1/PD-L1
suggests checkpoint receptors’ roles in suppressing DTH (159).
FIGURE 4 | Regulatory T cells in delayed-type hypersensitivity. Tregs may exert immunosuppressive effect on APCs, effector T cells, and mast cells by the following
mechanisms: coinhibitory receptors binding to cognate molecules on dendritic cells, secretion of inhibitory cytokines, e.g., IL-10 and TGF-b, metabolic disruption by
depriving IL-2 binding and increasing adenosine binding to effector T cells, and contact-dependent cytolysis by granzyme B secretion. Likewise, cytokines and
immunoregulatory molecules also modulate the Treg function. AHR, aryl hydrocarbon receptor; ATP, adenosine triphosphate; CTLA-4, cytotoxic T-lymphocyte-
associated antigen 4; DC, dendritic cell; IL-2, interleukin 2; IL-7, interleukin 7; IL-10, interleukin 10; IL-15, interleukin 15; IL-33, interleukin 33; LAG-3, lymphocyte-
activation gene 3; MHC, major histocompatibility complex; PD-1, programmed cell death protein 1; TCR, T cell receptor; TGF-b, transforming growth factor beta;
TIGIT, T cell immunoreceptor with Ig and ITIM domains; Treg, regulatory T cell.
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The coinhibitory receptor LAG-3 (lymphocyte activation gene-
3) is a CD4-related protein that has been demonstrated to modulate
both the in vitro and in vivo suppressive function of induced Tregs
(160). MHC II cross-linking by LAG-3 on Tregs induces an
inhibitory signaling pathway to suppress dendritic cell maturation
and immunostimulatory capacity on conventional T cells (161). Of
note, rather opposing functions of LAG-3 have been postulated in a
study of DTH in primates: depleting LAG-3+ T cells may eliminate
effector T cells to block inflammation but prevent Treg inhibition of
immune responses in the draining lymph node (162). Whether
LAG-3 plays a role in modulating Tregs’ suppressive function
during DTH requires further elucidation.

TIGIT is another coinhibitory receptor that has been shown
to contribute to Treg’s suppressive function (163). One of its
corresponding ligands CD155 is expressed by dendritic cells and
activated CD4+ effector T cells (68, 164). Though both TIGIT
and its costimulatory counterpart CD226 bind to CD155, TIGIT
binds its ligands with much higher affinity (164, 165). In a
murine model, Treg has been suggested to inhibit keyhole
limpet hemocyanin-induced delayed-type hypersensitivity
reactions by inducing tolerogenic DC through the TIGIT-
CD155 interaction (166), which we will discuss later in detail.

Cytolysis: Granzyme B
Tregs can also produce a serine protease called GzmB, which can
induce apoptosis in effector T cells in a contact-dependent, perforin-
independent manner (167). In a murine CHS model, single-gene
profiling identified an IL-10/GzmB-expressing Treg population in
the draining lymph node with skin-tropic chemokine receptors,
which allowed retention of Tregs in inflamed skin and
downregulation of the cutaneous immune response (168).
However, GzmB is more widely known for its pathogenic role in
DTH. The levels of GzmB, along with TNF-a, perforin, and Fas
ligand, are markedly increased in PBMCs and blister fluids of SJS/
TEN patients (28). GzmB is released to the cytosol of target cells
upon cytotoxic T lymphocyte degranulation in SJS/TEN and
promotes apoptosis either by direct cleavage of caspase-3 or by
increasing the permeability of the mitochondrial outer membrane
(intrinsic pathway) (15). Therefore, evidence suggests that GzmB
molecules could either regulate or enhance DTH responses
depending on their source, such that more caution should be paid
when interpreting their role in DTH.

Regulating the Tregs
While FOXP3+ regulatory T cells have been described as the most
physiologically relevant regulatory cell type (144), how other cells
and molecules of the immune system regulate Treg development
and function to maintain immune homeostasis may be equally
important (Figure 4). Besides direct cell-cell contact through
receptor-ligand interaction, as seen between dendritic cells and T
cells, indirect interaction through cytokines also plays important
roles in tolerogenic responses of Tregs (169, 170).

CD28—CD80/CD86
The CD28-CD80/CD86 interaction on T cells provides a second
signal alongside the TCR ligation (signal 1) critical for regulatory
T cell survival and the maintenance of immune homeostasis (48).
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In mice, Treg-specific deletion of CD28 demonstrates lower
levels of CTLA-4, PD-1, and chemokine receptor 6 (CCR6)
and systemic autoimmunity characterized by prominent skin
inflammation (171). In a follow-up study, the upregulation of
CCR6 upon CD28 costimulation suggests its role in Treg skin-
homing in DTH (172). Interestingly, the percentage of CCR6+
cells among CD4+ T cells has been observed to be greater in SJS/
TEN skin than in DRESS/DIHS skin (32).

CD25—IL-2
IL-2 is required for sustaining the Treg population to maintain
immune homeostasis and tolerance. Since Tregs scarcely produce
IL-2, they are highly dependent on exogenous (paracrine) IL-2 for
survival (173). As mentioned previously, Tregs express consistently
high levels CD25 which serves as a “cytokine sink” to deplete IL-2
from other T cells (149, 150). In a murine model for CHS, IL-2 was
required for CD4+CD25+ T cell restriction of the development of
the hapten-reactive effector CD8+ T cells (174). Interestingly, by
expanding allergen-specific Tregs and reducing pro-inflammatory
effector T cells, microparticles (engineered to release TGF-
b1, rapamycin, and IL-2) can inhibit hypersensitivity responses to
subsequent allergen exposure in an allergen-specific manner,
effectively preventing or reversing allergic contact dermatitis in
previously sensitized mice (175). While low-dose IL-2 therapy has
been recently suggested to have clinical efficacy in a phase I–IIa trial
in patients with different autoimmune diseases (176, 177), its
therapeutic potential in contact or drug hypersensitivity
remains unexplored.

Transforming Growth Factor-b
The transforming growth factor-b (TGF-b) family consists of
pleiotropic cytokines with both proinflammatory and anti-
inflammatory effects, contributing to immune system homeostasis
(178). Regarding its connection to Tregs, different studies involving
the Tgfb1−/− mice have disclosed a multiorgan autoimmunity
phenotype and reduced the number of Tregs and expression of
FOXP3 (179, 180). Conversion of CD4+ T cells into iTregs or
peripheral Tregs (pTreg) is also dependent on TGF-b (181, 182). In
mice, the lack of intact TGF-b signaling via Smad3 results in an
increased proinflammatory, Th2, and Th17 type response in the
skin and gastrointestinal tract (183, 184).

T Helper 17 Cells
Th17s are a subtype of helper T cells known to cause autoimmunity
and inflammation (185). Interestingly, Th17s and iTregs both
depend on TGF-b for development. TGF-b can drive Th17
differentiation in the presence of other cytokines, such as IL-6
and IL-21 (186). Higher production of IL-17 in CD4+ T cells
expanded from SJS/TEN lesions than those from DRESS/DIHS
lesions suggests a role of the Th17/Treg axis in SJS/TEN (32). The
percentages of Th17 also tend to be high in SJS/TEN (2–6 days after
onset) as compared to normal subjects and MPE patients (187).

Aryl Hydrocarbon Receptor
Accumulating evidence indicates that aryl hydrocarbon receptor
(AhR) signaling has a specific impact on the generation of Treg.
Naïve T cells isolated from AhR null mice inefficiently generate
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Tregs in vitro (188). The absence of AhR signaling leads to
heightened inflammation and exacerbated skin pathology in a
model of DTH skin reactions in AhR-deficient mice (189). It has
been suggested that AhR ligands can regulate the differentiation
of Tregs versus Th17 cells by expressing different microRNA
signature profile in a model of DTH (190). In humans, the
addition of an AhR ligand to naïve T cells differentiated in the
presence of TGF-b induces suppressive FOXP3+ Tregs.
Furthermore, AhR activation promotes the expression of
CD39, an ectonucleotidase that hydrolyzes ATP and mediates
the suppressive activity of Treg (191).

IL-7
It appears that the regulatory effect of IL-7 is prominent on
specialized subpopulations of Tregs rather than on the whole cell
lineage. Therefore, contradictory results have been presented
regarding the effects of IL-7 on Tregs in the periphery (170).
Interestingly, in a murine skin inflammation model, high CD127
(IL-7 receptor a chain) expression correlated with Treg
activation. Furthermore, two groups have demonstrated the
critical role of IL-7 in the survival of CD127hi Tregs in the
skin (192, 193). On the other hand, the percentage of CD4
+CD25+CD127- cells, likely Treg cells, increased in T cells from
DRESS/DIHS skin lesions compared with those from SJS/TEN
(32). Thus, the role of IL-7 in Tregs may differ depending on the
type of cutaneous adverse drug reaction and require
further exploration.

IL-15
Optimal Treg differentiation requires sensing of IL-2, with some
compensatory contributions from IL-15 (194). A unique
population of CD25-FOXP3+ T cells appears to depend on IL-
15 for survival and maturation into Tregs in mice (195). Tregs in
human skin proliferate when cultured in contact with dermal
fibroblasts and IL-15 (196). However, our recent work on IL-15
has not only linked its elevation in serum to disease severity of
SJS/TEN but also demonstrated its ability to induce the
production of pathogenic TNF-a, granulysin and GzmB (197).
Since IL-15 is vital for maintaining functions of APCs, memory T
cells as well as NK cells (198–200), it may not be surprising that
antagonizing against IL-15 has been found to inhibit DTH (201).
Provided with the multifaceted influences of IL-15 on DTH,
more research is warranted to approach the net effect of IL-15
under different circumstances.

IL-33
IL-33 is an IL-1-like cytokine that is constitutively expressed by
epithelial cells at barrier sites, which functions as an alarmin that
is released in response to tissue damage. In a model of murine
CHS, disruption of the epidermal barrier induced Tregs via IL-33
(202). Although its precise role is yet to be elucidated, serum IL-
33 elevation has been observed in SJS/TEN (203).

Costimulatory Receptors: ICOS, CD27, and OX40
The core of the CD28 gene family is composed of CD28, CTLA-
4, and inducible T cell costimulator (ICOS) (204). ICOS is the
most consistent marker for Treg activation which promotes the
Frontiers in Immunology | www.frontiersin.org 11
survival and improves the suppressive function of Tregs (193,
205). In a murine model of CHS, a population of CD4+CD25
+FOXP3+ T cells upregulated ICOS on in vivo sensitization and
specifically suppressed hapten-reactive CD8+ T cells both in vivo
and in vitro (206). Langerhans cells also seem to prevent the
development of CHS by activating ICOS+CD4+FOXP3+ Tregs
(207). Intriguingly, two TNFRSF members, CD27 and OX40, are
preferentially expressed by skin-resident Tregs. Both CD27 and
OX40 signaling suppress the expression of Th17-associated
genes from Tregs in vitro and in vivo. Tregs that lack both
CD27 and OX40 are compromised in terms of controlling skin
inflammation and expressed high levels of IL-17A (208).
Therefore, the potential roles of CD27 and OX40 on Tregs and
the Treg/Th17 axis in SCARs may deserve future investigation.
COINHIBITORY RECEPTORS

Besides the inhibitory Treg, various coinhibitory receptors also
prevent T cells from being activated under different conditions.
Thus, coinhibitory receptors involved in hypersensitivity
immune responses also deserve detailed investigation to
identify potential druggable targets (Table 2).

CTLA-4 and PD-1
The most well-known coinhibitory receptors are perhaps CTLA-
4 and PD-1 due to the application of checkpoint blockade in
cancer immunotherapy (221, 222). CTLA-4 and CD28 are
homologous receptors expressed on both CD4+ and CD8+ T
cells that bind to CD80/CD86 on APCs; but unlike CD28, CTLA-
4 serves to ultimately inhibit T-cell responses (223, 224). There
have been several proposed cell-intrinsic and cell-extrinsic
immunosuppressive mechanisms of CTLA-4, which suppress
the cell carrying CTLA-4 or the cell carrying CD80/CD86,
respectively (225). Thus, enhancing CTLA-4 activity may be
beneficial in attenuating unwanted immune responses.
Regarding the role of CTLA-4 in DTH, one murine study has
found that CTLA-4-Immunoglobulin (Ig) provided long-term
immunosuppression against both DNFB- and oxazolone-
induced CHS in a dose-dependent manner. Inhibited
activation of T cells in the draining lymph node and
maturation of DCs and B cells, reduced infiltration of activated
CD8+ T cells into inflamed tissue, and decreased cytokines and
acute-phase proteins at the inflamed tissue and in circulation
demonstrate the immunosuppressive function of CTLA-4-Ig
both locally and systemically (214). The CTLA-4–Ig fusion
protein, abatacept, has shown promise in treating rheumatoid
arthritis in humans (226), while its use in various autoimmune
diseases is being tested in clinical trials (227).

Not surprisingly, CTLA-4 mutations or polymorphisms have
been observed in patients with autoimmune diseases and patients
with Efavirenz and nonsteroidal anti-inflammatory drug
hypersensitivity (210, 211, 228, 229), suggesting CTLA-4　
alteration may disrupt homeostatic function, resulting in the
observed disease phenotype. Indeed, deprivation of CTLA-4
leads to an enhanced immune response to drugs, as seen in the
following studies. PD-1 knockout mice treated with amodiaquine
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and anti-CTLA-4 demonstrated liver injury similar to
idiosyncratic drug-induced liver injury (IDILI) in humans with
increased portal infiltration of lymphocytes and perforin and
granzyme (215). Idiosyncratic drug reaction to isoniazid and
nevirapine manifesting as delayed-type liver injury has been also
been suggested by this model of PD-1 knockout mice treated
with anti-CTLA-4 (216, 217). In the presence of CTLA-4
blocking antibodies, enhanced naïve T cell proliferative
response and memory drug antigen-specific responses to SMX-
NO are observed in an in vitro assay (124).

PD-1, as mentioned previously, is a checkpoint receptor
mainly expressed on activated CD4+ T cells, activated CD8+ T
cells, and B cells in the periphery, and it similarly transmits an
immunosuppressive signal during ligation, inhibiting the
proliferation, cytokine generation and release, and cytotoxicity
of T cells (144, 230). Its ligand PD-L1 is expressed on T cells, B
cells, DCs, macrophages, and non-hematopoietic cells, while
another of its ligand, PD-L2, is expressed mainly on APCs
(231). PD-1 is known to regulate T cell effector functions
during various physiological responses, including acute and
chronic infection, cancer, autoimmunity, and in immune
homeostasis (232). In fact, agonist antibodies to PD-1 and
other coinhibitory receptors have demonstrated promise in
treating animal models of autoimmune diseases (233).

The blockade of the PD-1/PD-L1 axis has also been
demonstrated to play a role in contact and drug
hypersensitivity. In a murine study using the experimental
model of CHS to DNFB, epidermal CD8+ tissue-resident
memory T (Trm) cells expressing PD-1 seem to ameliorate
CHS. Blocking PD-1 in vitro with anti–PD-1 monoclonal
antibodies increased the reactivity of epidermal CD8+ Trm
cells and their capacity to produce IFN-g and GzmB on ex vivo
reactivation. Furthermore, when animals with DNFB allergy
were depleted of circulating CD8+ T cells, blockade of PD-1
Frontiers in Immunology | www.frontiersin.org 12
triggered severe flare-up CHS reactions after low-dose DNFB re-
exposure (219). Another study using PBMCs from human
donors demonstrated that priming of drug-naive CD4+ and
CD8+ T cells against drug antigens was more effective when
PD-L1 signaling was blocked (114). However, memory T cell
responses to drug antigens were not similarly enhanced by PD-
L1 blockade (124).

We previously discussed that checkpoint receptor blockade
may lead to disequilibrium of the immune system manifesting as
boosted T cell response. In a case series of four melanoma
patients, increased risk of sulfasalazine-induced cutaneous
hypersensitivity was observed after treatment with the anti-
PD-1 inhibitor pembrolizumab and/or the anti-CTLA-4
inhibitor ipilimumab (119). One patient developed fever with
erythematous maculopapular rash and liver injury while another
developed fever with unspecified rash and facial edema, though
skin biopsy was not obtained for suspected SCAR. In another
recent study, one patient developed TEN one month after
discontinuing nivolumab. Her lymphocyte stimulation tests
were simultaneously positive for several concomitant drugs
while elevated levels of autoantibodies were noted (123). These
observations suggest that checkpoint inhibitors may render
patients more vulnerable to developing hypersensitivity to
other drugs and autoimmunity. On the other hand, checkpoint
inhibitors, though quite successful in treating various cancers,
have autoinflammatory side effects termed immune-related
adverse events (irAEs), including the commonly seen
cutaneous toxicities (234). Although pruritus and MPE are
more common, severe forms of cutaneous manifestations such
as SJS/TEN, DRESS/DIHS, and Sweet’s Syndrome can occur on
rare occasions (209, 218, 235, 236). In a melanoma patient
treated with ipilimumab and nivolumab, morbilliform eruption
progressed to TEN over 3 months. During the course of
treatment, an increase of CD8+ T cells within the dermal-
TABLE 2 | Coinhibitory molecules involved in delayed-type hypersensitivity.

Coinhibitory
molecule

Implicated cells in
DTH

Ligand/
receptor

Ligand/recep-
tor expression

Type of DTH Study designs

CTLA-4 Tregs, activated T
cells

CD80,
CD86

APCs CHS; irAE; efavirenz and NSAID hypersensitivity;
SMX-NO-induced hypersensitivity; delayed type
liver injury to isoniazid, nevirapine, and
amodiaquine

retrospective cohort study (209); case control
(210, 211); case series (119, 212); case report
(213); animal study (214–217); in vitro study
(124)

PD-1 Tregs, activated T
cells, CD8+ Trm
cells

PD-L1 Tregs,
conventional T
cells, APCs

CHS; irAE; SMX-NO-induced hypersensitivity;
delayed type liver injury to isoniazid, nevirapine,
and amodiaquine

Retrospective cohort (209) study; case series
(119); case report (123, 213, 218); animal study
(215–217, 219); in vitro study (114, 124)

TIM-3 Tregs, activated T
cells, CD8+ Trm
cells

Galectin
9

APCs SMX-NO-induced hypersensitivity; MPE; CHS Case control (141); animal study (219); in vitro
study (124)

LAG-3 Activated T cells,
Tregs

MHC II APCs Tuberculin-induced DTH Animal study (162)

TIGIT T cells (including
Tregs), NK cells

CD155 APCs, T cells Keyhole limpet hemocyanin-induced DTH Animal study (166)

BTLA T cells HVEM APCs, T cells,
NK cells

CHS Animal study (220)
DTH, delayed type hypersensitivity; CTLA-4, cytotoxic T lymphocyte-associated antigen-4; Treg, regulatory T cells; APC, antigen-presenting cell; CHS, contact hypersensitivity; irAE,
immune-related adverse events; NSAID, non-steroid anti-inflammatory drugs; SMX-NO, nitroso sulfamethoxazole; PD-1, programmed cell death 1; Trm cells, tissue-resident memory T
cells; TIM-3, T-cell immunoglobulin mucin-3; MPE, maculopapular exanthema; LAG-3, lymphocyte activation gene-3; MHC, major histocompatibility complex; TIGIT, T cell immunoglobulin
and ITIM domain; BTLA, B and T lymphocyte attenuator; HVEM, herpesvirus-entry mediator.
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epidermal junction and an increase of PD-L1 expression in both
T cells and keratinocytes were noted on skin biopsy (213).
Similarly, one case series reported that 22% of the 68 patients
on pembrolizumab or nivolumab developed inflammatory skin
lesions ranging from mild maculopapular rash to SJS-like lesions
with expression of PD-1 on skin-infiltrating T cells and
keratinocytes by immunohistochemistry. Further gene
expression analysis of lesional skin revealed a profile
resembling SJS/TEN (212). Together, these data suggest that
proper PD-1/PD-L1 functions are important in maintaining
epidermal integrity while T-cell, antibody, and cytokine
responses are likely involved in irAE pathogenesis (237).
Although the complex mechanism of severe cutaneous
reactions in patients using checkpoint inhibitors has yet to be
revealed, the pivotal role of CTLA-4 and PD-1/PD-L1 in their
pathogenesis has been sufficiently demonstrated.

TIM-3
In addition to CTLA-4 and PD-1, “second-generation”
coinhibitory receptors and ligands that belong to the B7 family
are emerging as potential new targets in cancer immunotherapy
(238). One of these receptors is T cell immunoglobulin-3 (TIM-
3). TIM-3 mediates the T cell function through binding to
galectin-9 (Gal-9), leading to the death of predominantly Th1-
specific T-cells, which has been shown to be defective in patients
with drug‐induced MPE (124, 141). These patients exhibited
reduced levels of TIM-3 in Th1 cells and impaired expression of
Gal-9 in PBMCs and dendritic cells, while the addition of
exogenous Gal-9 significant ly reduced Tim3+ Th1
proliferation. However, another study has found that blocking
TIM-3 did not enhance the proliferative response of SMX-NO-
primed naïve or memory T-cells from any human donors (124).
In a murine model of CHS, in vitro TIM-3 blockade, similar to
PD-1 blockade, increased the activity of epidermal CD8+ Trm
cell activity and cytokine production, though the effect was more
modest compared to that of PD-1 (219). It appears that the effect
of blocking TIM-3 variably dampened the immune response
depending on the type of DTH and the study species. Therefore,
the net effect of TIM-3 on DTH in the interplay of different co-
signaling receptors is still warranted, especially in the
insufficiently explored area of SCARs.

LAG-3
Lymphocyte activation gene-3 (LAG-3) is expressed on activated
CD4+ and CD8+ T cells, natural killer cells, and myeloid cells
(239). A recent study has suggested that LAG-3 preferentially
suppresses T cells responsive to stable complexes of peptide and
MHC class II by transducing inhibitory signals via its
intracellular region (240). LAG-3 suppresses T cell activation
and cytokine secretion and seems to work synergistically with
PD-1 to inhibit immune responses, making anti-LAG-3 an
important player in cancer immunotherapy (241). A study has
demonstrated that depleting activated T cells with a LAG-3
cytotoxic antibody prevented T cell-driven skin inflammation
in a preclinical DTH model in non-human primates (162). The
result from this study highlights that antibody-mediated
Frontiers in Immunology | www.frontiersin.org 13
depletion of LAG-3-activated T cells might have therapeutic
potential in DTH, which deserves future validation in humans.

TIGIT
TIGIT a coinhibitory receptor highly expressed on Tregs, as
mentioned previously in section 4.2.3. However, it is also
expressed on other T cells and even NK cells (166). TIGIT
expression varies with different diseases, and its expression has
been shown to be upregulated in T cells and causes dysfunction
independent of PD-1 and TIM-3 in leukemic patients (242, 243).
While its potential as a therapeutic target in cancer is being
explored, its role in DTH remains elusive. One murine study
previously demonstrated that less ear swelling was seen in
keyhole limpit hemocyanin-(KLH-) treated mice immunized
with the TIGIT-Fc or CTLA-4–Fc fusion protein. However,
TIGIT-Fc’s inhibition of DTH was not observed in IL-10
knockout mice, suggesting that IL-10 is involved in TIGIT
function (166). Results from this study suggested the
differential regulatory mechanisms of each coinhibitory receptor.

BTLA
B and T lymphocyte attenuator (BTLA) is a coinhibitory receptor
which belongs to the Ig superfamily and resembles PD-1 and
CTLA-4 (244). BTLA is expressed on CD4+ and CD8+ T cells, B
cells, and other APCs (245). The ligation of BTLA by the
herpesvirus-entry mediator (HVEM) on APCs attenuates T cell
proliferation (246). BTLA signaling pathway is also defective in T
cells in autoimmune diseases, such as systemic lupus erythematosus
(247). Regarding its potential role in CHS, BTLA−/− mice display
enhanced DNFB-induced CHS and CD8+ T cell proliferation and
IFN-g production compared with the wild-typemice. Consequently,
in vivo injection of agonist anti-BTLA antibody is able to suppress
DNFB-induced CHS and IFN-g production, suggesting that
stimulation of BTLA has therapeutic potential in CHS (220).
However, in the previously mentioned study by Gamradt et al.
unlike PD-1 and TIM-3, BTLA expression was not detected in
epidermal CD8+ Trm cells in mice with CHS (219). Therefore, the
expression profile of BTLA deserves further investigation to verify
its potential role in regulating the immune response to drug and
contact antigen.
CONCLUSION

DTH manifesting as SJS/TEN and DRESS/DIHS are potentially
lethal due to the involvement of internal organs, generating an
overwhelming systemic inflammatory storm in addition to
affecting the skin. It is therefore imperative to preceisly
understand the complex pathogenesis of SCARs for
appropriate treatment. As we have outlined in this review, a
variety of costimulatory and coinhibitory receptors have been
suggested by different studies to play a role in DTH.
Unfortunately, the caveat is that research in this area is still in
its early stage, such that much of what is currently known about
co-signaling receptors in DTH is largely based on murine
models, in vitro studies, or small retrospective studies.
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Additionally, while individual contributions of each co-signaling
receptor or Treg has been suggested, the interplay between them
in the formation of the disease phenotype is largely unexplored.
All in all, future research should embrace a multi-faceted
approach in order to explore the interplay between a variety of
co-signaling pathways while also aim at clinical-based studies
since animal models may not fully represent the pathogenesis
in human.
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