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ABSTRACT

Multiplex single-molecule fluorescent in situ hy-
bridization (smFISH) is a powerful method for val-
idating RNA sequencing and emerging spatial tran-
scriptomic data, but quantification remains a compu-
tational challenge. We present a framework for gener-
ating and analyzing smFISH data in complex tissues
while overcoming autofluorescence and increas-
ing multiplexing capacity. We developed dotdot-
dot (https://github.com/LieberInstitute/dotdotdot) as
a corresponding software package to quantify RNA
transcripts in single nuclei and perform differen-
tial expression analysis. We first demonstrate ro-
bustness of our platform in single mouse neurons
by quantifying differential expression of activity-
regulated genes. We then quantify spatial gene ex-
pression in human dorsolateral prefrontal cortex
(DLPFC) using spectral imaging and dotdotdot to
mask lipofuscin autofluorescence. We lastly apply
machine learning to predict cell types and perform
downstream cell type-specific expression analysis.
In summary, we provide experimental workflows,
imaging acquisition and analytic strategies for quan-
tification and biological interpretation of smFISH
data in complex tissues.

INTRODUCTION

In the age of rapidly advancing Next Generation Sequenc-
ing technologies, such as single cell RNA-sequencing
(RNA-seq) and spatial transcriptomics (1,2), single-

molecule fluorescent in situ hybridization (smFISH) has
emerged as a potential gold standard for validating and
extending findings derived from large scale transcriptomic
data. The widespread generation of single-cell RNA-seq
data sets in the neurosciences has fueled a resurgence of
smFISH approaches to validate cell type-specific molecular
profiles by visualizing individual transcripts at cellular
resolution (3,4). Information from single-cell RNA-seq
data has revealed increasingly complex transcriptomic
signatures for functionally distinct cell types, including the
recently identified Rosehip neurons in cortical layer one (5)
and cells with neurogenic potential in the dentate gyrus of
the hippocampus (6,7), such that molecular definition of
these cells necessitates combinatorial labeling with multiple
probes to confirm both presence and absence of specific
transcripts within a spatially-defined context.

While chromogenic and fluorescent in situ hybridiza-
tion methodologies have been utilized for decades (8,9), re-
cent advances in hybridization/probe technologies, imaging
techniques, and data analysis tools have streamlined sm-
FISH assays and improved sensitivity and specificity (10–
12). Despite these methodological advances, multiplexing in
complex tissues with extensive cellular heterogeneity, such
as post-mortem human brain, remains a significant chal-
lenge. Studying human brain tissue is also complicated by
high levels of autofluorescence due to lipofuscin granules
(13,14). Indeed, to avoid confounding signals from lipofus-
cin, the majority of smFISH investigations in post-mortem
human brain have been limited to single or duplex chro-
mogenic approaches (6,7,15–17).

While studies have begun to incorporate multiplex fluo-
rescent approaches in post-mortem human brain tissue, no
consistent strategy for eliminating, masking, or subtract-
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ing lipofuscin autofluorescence has been described (3,5,18–
22). Some studies have characterized lipofuscin autofluo-
rescence based on size and intensity or utilized custom fil-
ter cubes (3,4,21), but these reports do not document how
these approaches impact quantification of fluorescent sig-
nals from probe hybridization. An image processing ap-
proach in non-human primate brain tissue using spectral
imaging and linear unmixing showed promise for character-
izing and removing lipofuscin autofluorescence (23). How-
ever, this approach has not yet been validated and widely
implemented in post-mortem human brain. Furthermore,
the four dimensional data sets acquired using multispectral
imaging across a tissue depth add additional computational
hurdles for automating image analysis and quantifying sin-
gle transcripts.

Several microscopy-based methodologies for single cell,
spatially resolved transcriptomics have been developed (24–
28). However, these highly specialized platforms still rely on
the availability and accuracy of algorithms for fluorescence
segmentation, and often require sophisticated microscopy
equipment and reagents that are not readily available to the
majority of laboratories. Commercially available smFISH
platforms have the capacity for higher-order multiplexing
and can, in theory, be used for differential expression analy-
sis within molecularly and spatially defined cell types. How-
ever, the downstream computational tools for analyzing
these types of data have lagged behind their widespread use,
and those tools that have been developed remain largely in-
accessible to most neurobiology labs without strong compu-
tational expertise. Hence, the majority of current smFISH
applications have been qualitative, rather than quantitative,
and have therefore not maximized the utility of these poten-
tially rich imaging datasets.

To address this need, we developed an intuitive and
adaptable computational workflow called dotdotdot to
quantify individual RNA transcripts at single cell resolu-
tion in intact tissues and performed differential expression
analysis of smFISH data. We validate the accuracy of dot-
dotdot for quantifying RNA transcripts in both mouse and
post-mortem human brain and use differential expression
and machine learning approaches, such as K-means clus-
tering and Classification and Regression Trees (CART), to
answer biological questions about gene co-expression and
molecular cell type based on quantitative analysis of spatial
gene expression. In summary, we present an imaging plat-
form coupled with computational tools for smFISH data
that can be readily implemented in most laboratories with-
out need for highly specialized expertise or equipment to
elevate spatial analyses of gene expression and complement
growing single cell and spatial transcriptomic data sets in
the field of neuroscience and beyond.

MATERIALS AND METHODS

Animals and electroconvulsive seizure (ECS) treatment

Six-week old male mice (C57BL/6J) were administered
either Sham or ECS treatment as previously described
(29,30). Briefly, ECS was delivered with an Ugo Basile pulse
generator using a corneal electrode fork placed over the
frontal cortex (model #57800-001, shock parameters: 100
pulse/s frequency, 0.3 ms pulse width, 1 s shock duration

and 50 mA current). The stimulation parameters were cho-
sen because they reliably induced tonic-clonic convulsions.
Mice were administered inhaled isoflurane anesthesia prior
to ECS sessions, and remained anesthetized for the proce-
dure. Each mouse received a single session of Sham or ECS
and was euthanized 90 min following the treatment. All ani-
mal experiments were approved by the SoBran Institutional
Animal Care and Use Committee.

Post-mortem human tissue samples

Post-mortem human brain tissue from two donors (both
male: one 17 years old of African American ancestry and
the other 25 years old with European ancestry) was ob-
tained by autopsy primarily from the Offices of the Chief
Medical Examiner of the District of Columbia, and of the
Commonwealth of Virginia, Northern District, all with in-
formed consent from the legal next of kin (protocol 90-
M-0142 approved by the NIMH/NIH Institutional Review
Board). Clinical characterization, diagnoses, and macro-
and microscopic neuropathological examinations were per-
formed on all samples using a standardized paradigm,
and subjects with evidence of macro- or microscopic neu-
ropathology were excluded. Details of tissue acquisition,
handling, processing, dissection, clinical characterization,
diagnoses, neuropathological examinations, RNA extrac-
tion and quality control measures have been described pre-
viously (31).

3-Plex smFISH and image acquisition in mouse tissue

Mice (n = 3 Sham and n = 4 ECS-treated) were cervi-
cally dislocated and brains were removed from the skull,
flash frozen in isopentane, and stored at −80◦C. Brain tis-
sue was equilibrated to −20◦C in a cryostat (Leica, Wet-
zlar, Germany) and serial sections of piriform cortex were
collected at 16 �m (four sections per slide). Sections were
stored at −80◦C until completion of the smFISH assay.
For mouse studies (Figure 1A), in situ hybridization as-
says were performed with RNAscope technology utiliz-
ing the RNAscope Fluorescent Multiplex Kit V1 (Cat #
320850 Advanced Cell Diagnostics [ACD], Hayward, CA,
USA) according to manufacturer’s instructions as previ-
ously described (32). Briefly, tissue sections were fixed with
a 10% neutral buffered formalin solution (Cat # HT501128
Sigma-Aldrich, St. Louis, MO, USA) for 20 min at room
temperature (RT), series dehydrated with ethanol, and pre-
treated with protease IV for 20 min. Sections were incu-
bated with a custom-designed probe for Bdnf exon IV (Cat
# 482981-C3, ACD) and commercially available probes
for Bdnf exon I and Arc (Cat #457321-C2 and #316911,
ACD, Hayward, CA, USA). Probes were fluorescently la-
beled with orange (excitation 550 nm), green (excitation
488 nm), or far red (excitation 647) fluorophores using the
Amp 4 Alt B-FL and stained with DAPI (4′,6-diamidino-
2-phenylindole) to demarcate the nucleus. Confocal images
were acquired in z-series using a Zeiss LSM700 confocal mi-
croscope. For each mouse (biological replicate), two images
were randomly captured in the piriform cortex per section
(four sections; eight images total).
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Figure 1. Experimental workflows and imaging protocols for smFISH in mouse and human tissues. (A) Brains were extracted from wild-type (WT) mice
90 min following electroconvulsive seizures (ECS) or Sham treatment and sectioned on a cryostat. Gene targets were visualized with the RNAscope
Multiplex Fluorescence V1 kit. RNAscope technology uses hybridization of two independent probes (double Z probes), referred to as a ‘ZZ pair,’ that
must bind to the target sequence in tandem for signal amplification to proceed via the subsequent binding of preamplifiers, amplifiers, and fluorescent
detection molecules. Approximately 5–30 ZZ pairs are designed for each target gene. After completion of the RNAscope V1 assay, slides are imaged in x,
y and z-dimensions using confocal microscopy. (B) Fresh frozen post-mortem human tissue was sectioned on a cryostat and gene targets were visualized
using the RNAscope Multiplex Fluorescence V2 kit. The V2 assay uses the same RNAscope technology with added TSA technology for customization
of dyes/concentrations and the ability to include a fourth gene target. The V2 assay is also better suited for tissues with autofluorescence, such as post-
mortem human brain tissue, which contains an abundance of highly autofluorescent lipofuscin granules. Multispectral imaging and linear unmixing were
used to separate individual probe signals and lipofuscin autofluorescence. Lipofuscin signals served as a mask during downstream analysis to exclude pixels
confounded by autofluorescence.

4-Plex smFISH and image acquisition in post-mortem human
tissue

Two blocks of fresh frozen dorsolateral prefrontal cortex
(DLPFC) from neurotypical control individuals ages 24 and
17 were sectioned at 10�m and stored at −80◦C. RNA
integrity numbers (RINS) were 8.4 and 8.8, respectively.
For post-mortem human studies (Figure 1B), in situ hy-
bridization assays were performed with RNAscope tech-
nology utilizing the RNAscope Fluorescent Multiplex Kit
V2 and 4-plex Ancillary Kit (Cat # 323100, 323120 ACD,
Hayward, CA, USA) according to manufacturer’s instruc-
tions. Briefly, tissue sections were fixed with a 10% neu-
tral buffered formalin solution (Cat # HT501128 Sigma-
Aldrich, St. Louis, MO, USA) for 30 min at RT, series
dehydrated in ethanol, pretreated with hydrogen peroxide
for 10 min at RT, and treated with protease IV for 30
min. Sections were incubated with probes for SNAP25,
SLC17A7, GAD1, and MBP (Cat #518851, 415611-C2,
573061-C3, 573051-C4, ACD, Hayward, CA, USA) and
stored overnight in 4x SSC (saline-sodium citrate) buffer.
Probes were fluorescently labeled with Opal Dyes (Perkin
Elmer, Waltham, MA; Opal690 diluted at 1:1000 and as-
signed to SNAP25; Opal570 diluted at 1:1500 and assigned
to SLC17A7; Opal620 diluted at 1:500 and assigned to
GAD1; Opal520 diluted at 1:1500 and assigned to MBP)
and stained with DAPI (4′,6-diamidino-2-phenylindole) to
label the nucleus.

For experiments with SNX19, sections were incubated
with probes for SLC17A7, GAD1 and SNX19 (Cat
#415611-C3, Cat #404031, Cat #518861-C2, ACD, Hay-
ward, CA) and stored overnight in 4× SSC buffer. Probes
were fluorescently labeled with Opal Dyes (Opal690 diluted
at 1:1500 and assigned to SLC17A7; Opal570 diluted at
1:500 and assigned to SNX19; Opal520 diluted at 1:1000

and assigned to GAD1) and stained with DAPI to label the
nucleus

Lambda stacks were acquired in z-series using a Zeiss
LSM780 confocal microscope equipped with 20× 1.4 NA
and 63× 1.4NA objectives, a GaAsP spectral detector, and
405, 488, 555 and 647 lasers. All lambda stacks were ac-
quired with the same imaging settings and laser power in-
tensities. For each subject, two cortical strips were tile im-
aged at 20× to capture layers I to VI (Figure 5). Layer II/II
and layer VI were identified by measuring 20–30% and 80–
90% of the cortical layer thickness, respectively. This strat-
egy reliability delineated layer II/III and VI across 10 in-
dividuals and cortical strips with varying absolute thick-
nesses. After demarcation of cortical layers, the positions
feature in Zen software was used to randomly select six
fields per layer per strip (n = 12 layer II/III and n = 12
layer VI in two different cortical strips per subject) for high
magnification imaging at 63×. Following image acquisi-
tion, lambda stacks in z-series were linearly unmixed in Zen
software (weighted; no autoscale) using reference emission
spectral profiles previously created in Zen (see below) and
saved as Carl Zeiss Image ‘.czi’ files.

Generation of reference emission spectral profiles

Reference emission spectral profiles, or ‘fingerprints,’ were
created for each Opal dye in Zen software. Briefly, four sin-
gle positive slides were generated in mouse tissue using the
RNAscope Fluorescent Multiplex Kit V2 and 4-plex An-
cillary Kit (Cat # 323100, 323120 ACD, Hayward, Cali-
fornia) and a control probe against the housekeeping gene
POLR2A according to manufacturer’s instructions as de-
scribed above (Supplementary Figure S6). Mouse tissue was
used in place of human tissue due to lower tissue autofluo-
rescence (i.e. the absence of confounding lipofuscin signals).
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For each single positive slide, POLR2A was labeled with
either Opal520, Opal570, Opal620 or Opal690 dye. A sin-
gle positive slide was generated for DAPI using the same
pretreatment conditions, but omission of probe hybridiza-
tion steps. To generate a reference emission spectral profile
for lipofuscin autofluorescence, a negative control slide was
generated in post-mortem DLPFC tissue using a 4-plex neg-
ative control probe against 4 bacterial genes (Cat #321831,
ACD, Hayward, CA) in which all Opal dyes were applied,
but no probe signal was amplified.

Automated imaging analysis

dotdotdot is a MATLAB-based command line toolbox for
automated nuclei and transcript segmentation and quan-
tification. Confocal images are processed in MATLAB, but
downstream data analyses can be performed in R (as done
here), MATLAB, python or any statistical software. Briefly,
the processing pipeline involves smoothing/filtering raw im-
ages, thresholding, watershed segmentation, autofluores-
cence masking and extracting dot metrics. The analysis
pipeline involves k-means clustering for classifying nuclei
expression (low, medium and high) and CART (Classifica-
tion and Regression Trees) for classifying cell types (astro-
cytes, oligodendrocytes, GABAergic or glutamatergic neu-
rons). Bio-formats toolbox ‘bfmatlab’ is used to read the
image data into a MATLAB structure with fields contain-
ing gene data, DAPI and lipofuscin. Processing techniques
for human nuclei, mouse nuclei and transcript channels are
different, as described below.

Mouse nuclei segmentation. Processing and segmentation
of mouse nuclei is performed using the MATLAB toolbox
called ‘CellSegm’ (33). The toolbox provides the user with
several input options for smoothing (coherence enhancing
diffusion, edge enhancing diffusion, gaussian) and thresh-
olding (iterative thresholding, adaptive thresholding, gra-
dient thresholding, ridge enhancement). A 2D planewise
gaussian smoothing with default settings (filter size = [5 5],
standard deviation = 2) was used to filter the raw images (X
= Y = 512 pixels) (Supplementary Figure S1.A1). Adaptive
thresholding with an average filter (size = [42 42]) followed
by several morphological operations (like imopen, imerode,
imfill) were performed on the gaussian smoothed images
(Supplementary Figure S1.B1) to obtain the binary image
(Supplementary Figure S1.C1). The irregularly large ob-
jects in the binary image are then split into smaller segments
using watershed segmentation based on local maxima and
the euclidean distances (Supplementary Figure S1.D1).

Human nuclei segmentation. A 3D median filter (size =
[19 19 3]) is used to smooth (Supplementary Figure S2.B1)
the intensity irregularities in the raw image (X = Y = 1024
pixels) (Supplementary Figure S2.A1) that are produced
from heterogeneously-stained nuclei. An intensity thresh-
old from the image histogram is then used to segment the
DAPI stained nuclei from the background. A technique
called ‘minima imposition’ is applied to the binary image
(Supplementary Figure S2.C1) before watershed transform
to filter the tiny local minima that might cause over-splitting
of large segmented nuclei blobs. A modified distance trans-
form of the binary image is then computed for the water-

shed segmentation on the maximum z projection (Supple-
mentary Figure S2.D1).

Transcript segmentation and lipofuscin masking. Back-
ground noise (i.e. potential bleed-through from adjacent
wavelengths) in the gene channels is eliminated using the
function ‘imhmin’ (34). Here all the minima in the grayscale
image whose depth is less than the standard deviation of the
image is suppressed (Supplementary Figures S1.B2, S2.B2).
A histogram-based intensity threshold is used to segment
the RNA signal (Supplementary Figures S1.C2, S2.C2).
Watershed segmentation based on the minima of the image
is then performed to split the detected pixel clusters in each
channel into identified transcripts (Supplementary Figures
S1.D2, S2.D2). Lipofuscin segmentation is similar, except it
does not include the background suppression step (Supple-
mentary Figure S2.Lipofuscin channel).

Extract nuclei and transcript metrics. Custom MATLAB
functions (regionprops3 function in Image Processing tool-
box) were then used to calculate relevant metrics (count,
size, location, intensity) of detected nuclei and transcripts
(Supplementary Figures S1.E(1,2), S2.E(1,2)). For human
data, before transcript quantification, the segmented RNA
channels (Supplementary Figure S2.D2) are masked (Sup-
plementary Figure S2.E3) with the segmented lipofuscin
channel (Supplementary Figure S2.C3). Nuclei and tran-
script colocalization data (Supplementary Figure S1.Data
analysis.1, Supplementary Figure S2.Data analysis.1) are
then obtained by assigning each transcript to a cell based on
its position in three dimensions. For gene expression anal-
ysis (mouse data) a dot is assigned to a nucleus if its center
falls within the boundary of the nucleus and for cell type
classification (human data) each segmented gene pixel is
considered as a transcript and is assigned to nucleus if it
is within the boundary of the nucleus.

Downstream data analysis. (a) Gene expression analysis
(Supplementary Figure S1.F): all the nuclei are clustered
into low, medium and high expressers for each gene type
by the k-means clustering method (Supplementary Figure
S1.F.2) based on the total transcript count and the aver-
age transcript size per nuclei. The choice of k=3 here was
biologically motivated, but can be a flexible parameter de-
pendent on the underlying study design and research ques-
tion. Nuclei with at least one transcript are recruited for k-
means clustering, and the nuclei with zero transcripts are
explicitly labeled as low expressers. (b) Cell type classifica-
tion (Supplementary Figure S2.F): the proportion of each
type of transcript in individual nuclei is used by Classifica-
tion and Regression Trees (CART) to predict the underlying
cell type (Supplementary Figure S2.F.3). The initial CART
model was built on a test and train dataset created from 89
manually annotated nuclei (60 random ROIs were used to
train the model and the rest were used to test) from five ran-
dom images (Supplementary Figure S2.F.2) from the whole
dataset. The predictions from this model were used to clas-
sify the rest of the data into predefined categories. This strat-
egy can be used to develop other analogous classification
models for other cell and tissue types.
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Statistics

All statistical analyses were performed in R. For mouse data
analyses, we used linear mixed effects modeling with the
lmerTest package to analyze nuclei size, total number of nu-
clei in an image, gene expression (Bdnf Ex1, Bdnf Ex4, Arc)
differences for each group (low, medium and high) as a func-
tion of the treatment main effect (Sham versus ECS) and
three nested groups as random intercepts: animal ID, brain
section and the image/scan ID. For human data analysis,
we also used linear mixed effects modeling for the analysis
of nuclei size, total number of nuclei in image, proportions
of cell types in an image as a function of brain layer (layer
II/III versus layer VI) as a main effect and three nested ran-
dom intercepts of: brain donor, strip number, and the im-
age ID. For the validation of SNAP25 enrichment in GAD1
and SLC17A7 positive cells, GAD1 and SLC17A7 cells were
combined into one group and compared to the MBP and
negative labelled cells. The analysis was performed using the
linear mixed effects model with main effects as the predicted
cell labels and random intercepts being the same variables
as above.

RESULTS

The dotdotdot framework for image acquisition and data
analysis

We first introduce the dotdotdot framework, which involves
(i) image acquisition using confocal microscopy or spectral
imaging/linear unmixing, (ii) image processing to extract
nuclei/regions of interest (ROIs) and quantitative transcript
abundances and (iii) transcript colocalization analysis to
classify cell types and (iv) differential expression analysis.
To localize and quantify single transcripts in individual nu-
clei, we developed parallel gene-labeling, fluorescence mi-
croscopy, and image analysis workflows for mouse and hu-
man brain tissues. The general workflows for mouse (Figure
1A) and human (Figure 1B) tissues are similar, but they in-
clude optimized conditions for sample preparation (i.e. sec-
tion thickness, fixation, protease treatment), smFISH label-
ing (i.e. V1 versus V2 RNAscope Multiplex Fluorescence
Technology, number of gene targets, fluorophores), fluo-
rescent imaging (i.e. confocal microscopy vs. multispectral
imaging/linear unmixing), and image analysis (segmenta-
tion, dot/transcript detection). Differences in image pro-
cessing and data analysis workflows in mouse (Supplemen-
tary Figure S1) and human (Supplementary Figure S2) tis-
sues arose from the need to address a challenge specifically
associated with fluorescent imaging in post-mortem human
brain tissue––lipofuscin autofluorescence. In addition, be-
cause post-mortem human brain tissue is a highly limited
resource, we sought to maximize multiplexing capabilities
by utilizing V2 4-plex RNAscope technology, which allowed
for visualization of an additional gene target compared to
the V1 3-plex technology used for mouse tissues. For the
human workflow (Figure 1B), we used four different fluo-
rophores (Opal520, Opal570, Opal620 and Opal690) to la-
bel four distinct gene targets. Importantly, the number as-
sociated with each Opal dye corresponds to its maximum
emission wavelength ([520 nm] green, [570 nm] orange, [620
nm] red, [690 nm] far red, respectively). Following image ac-

Figure 2. Dotdotdot image processing and data analysis workflow: (A) Raw
‘.czi’ images of nuclei and gene channels. (B) Final segmented images of nu-
clei and gene channels (Processing* involves gaussian smoothening, adap-
tive thresholding and watershed segmentation of nuclei channel, Process-
ing+ involves background filtering, histogram-based thresholding and wa-
tershed segmentation of transcript channel). (C) Data analysis steps (for
example, K-means) that are executed based on metrics from segmented
images. (D) Predictions from data analysis steps are used to produce final
results.

quisition, raw fluorescent data are processed in MATLAB
using dotdotdot. This toolbox and example vignettes are
available at: https://github.com/LieberInstitute/dotdotdot.
We demonstrate the utility of this framework (Figure 2) and
software using several experimental examples across diverse
applications in mouse and human tissues.

https://github.com/LieberInstitute/dotdotdot
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dotdotdot quantifies dynamics of two activity-regulated genes
at cellular resolution following induction of widespread neural
activity

We first conducted a proof-of-concept experiment in mouse
tissue examining the expression of two well-established
activity-regulated genes in piriform cortex following brain
stimulation to establish and validate the robustness of
dotdotdot for quantifying smFISH data acquired with
RNAscope technology. Mice were administered electrocon-
vulsive seizures (ECS) to induce widespread neural activ-
ity and subsequent upregulation of activity-regulated genes
(35). After 90 min, brains from ECS- and Sham-treated an-
imals were collected, snap frozen, and processed through
our smFISH workflow for mouse tissue to visualize indi-
vidual transcripts for activity regulated cytoskeleton asso-
ciated protein (Arc) and brain-derived neurotrophic fac-
tor (Bdnf) splice variants (Figure 1A). Bdnf transcription is
initiated from one of nine promoters upstream of individ-
ual 5′-untranslated regions that are spliced to a common
coding exon (36,37). We previously designed and validated
RNAscope probes for Bdnf splice variants containing un-
translated exons 1 (Ex1) and 4 (Ex4), which are strongly
induced by neural activity (32,38,39). As expected, confo-
cal images show a qualitative upregulation of Arc, Bdnf Ex1
and Bdnf Ex4 transcripts following induction of neural ac-
tivity (Figure 3A and B).

To quantitatively analyze increases in these activity-
regulated gene transcripts (n = 3 Sham mice, 24 images,
2543 nuclei; n = 4 ECS mice, 32 images and 3102 nu-
clei), dotdotdot first uses nuclear segmentation in x, y and
z-dimensions to define nuclei regions of interest (ROIs)
based on DAPI staining (Supplementary Figures S1, S3A–
C). Here, we focus on nuclear mRNA expression due to
the ambiguity of defining cell boundaries in brain tissue
based solely on RNA expression. While RNA expression
is lower in the nucleus than the cytoplasm, several stud-
ies have shown that these measures are highly correlated
(40,41). As expected, quantification of nuclei/ROI number
and size reveals similar metrics between Sham and ECS im-
ages (nuclei size: P = 0.7, total nuclei: P = 0.47; Supplemen-
tary Figure S3D-E), demonstrating accurate and effective
automated three-dimensional nuclear segmentation. After
defining ROIs, dotdotdot next performs transcript segmen-
tation for each gene in x, y, and z-dimensions (Supplemen-
tary Figures S1, S4A–L). Metrics such as dot location, size,
fluorescence intensity and total number are extracted per
image for each transcript channel. Using dot number met-
rics, analysis of total, nuclear (co-localizing with DAPI),
and non-nuclear (not co-localizing with DAPI) Arc, Bdnf
Ex1, and Bdnf Ex4 transcripts per image reveals increases
in these activity-regulated genes following electroconvul-
sive seizures (Supplementary Figure S4M-O). Quantifica-
tion showed significant increases in Bdnf Ex1 and Ex4 tran-
scripts in both nuclear and non-nuclear (cytoplasmic) com-
partments (Bdnf Ex1 nuc: P = 5.05e–4, cyt: P = 9.53e–4;
Bdnf Ex4 nuc: P = 1.63e–4, cyt: P = 0.022) following ECS
administration. Interestingly, we see specific increases in cy-
toplasmic, but not nuclear, Arc transcripts following activity
induction, which is consistent with the rapid transportation
of newly synthesized Arc mRNA to dendrites and recently
activated synapses (42–44) (nuc: P = 0.782, cyt: P = 0.0658).

While increases in these activity-regulated genes follow-
ing induction of widespread neural activity have been ap-
preciated for decades, two questions have remained out-
standing in the field. First, are global increases in activity-
induced gene transcription mediated by small increases in
transcript abundance across many cells or large increases
in transcript abundance in a sub-population of ‘expresser’
cells? Second, do individual neurons differentially express
and utilize distinct Bdnf splice variants as their source
of activity-dependent BDNF? Definitively answering these
questions requires quantifying transcript levels at single
cell resolution. Rather than arbitrarily thresholding sig-
nal from each gene, we instead performed k-means clus-
tering using both dot count and size metrics. We selected 3
groups/clusters a priori and the algorithm used the under-
lying dot-level metrics to classify each nucleus into one of
three groups, corresponding approximately to low, medium,
and high expressers for each activity-regulated gene (Sup-
plementary Figure S5). Expression cutoffs for each gene
were therefore based on minimizing the distance between
dot-level metrics between all ROIs in the same cluster, and
maximizing distance between ROIs in different clusters.
For example, Bdnf Ex1 low expressers had <11 dots (tran-
scripts) with an average dot size of less than 17 pixels, while
Bdnf Ex1 high expressers had >25 dots. We then examined
the proportion of low, medium, and high expressers be-
tween Sham and electroconvulsive seizure treatment (Fig-
ure 3C-E) using linear mixed effects modeling to account
for high similarity between ROIs measured in the same im-
age from the same tissue sections and animals. For both
activity-regulated genes, we saw shifts in the proportions
of low to medium and high expressers following activity-
induction. This was especially true for Bdnf Ex 4 (low: P
= 0.00717, medium P = 0.0135, high P = 0.00984, Fig-
ure 3E). Pooling the proportion of high and medium ex-
pressers further demonstrated increased Bdnf transcription
in single cells following electroconvulsive seizures (Figure
3F, Bdnf Ex1: P = 0.0122, Bdnf Ex4 P = 0.00717). Sur-
prisingly, co-expression analysis of these activity-regulated
genes in high and medium expressers following Sham or
ECS showed that Arc and Bdnf splice variants are differen-
tially expressed in single cells at baseline and following ac-
tivity (Figure 3G). While there is extensive overlap among
ROIs expressing Arc, Bdnf Ex1 and Bdnf Ex4, there are sev-
eral ROIs that express only one or both transcripts suggest-
ing that these activity-regulated genes can be dynamically
regulated in single cells. These data validate the robustness
of dotdotdot for transcript segmentation and quantification,
and illustrate its utility to provide novel biological insights
by analyzing data at cellular resolution.

Visualization and quantification of single transcripts in post-
mortem human brain tissue using spectral imaging, linear un-
mixing and dotdotdot

Extensive efforts are underway to more fully characterize
the human brain transcriptome within and across cell types
to better understand changes in RNA expression associated
with brain development and aging, developmental or psy-
chiatric brain disorders, and local genetic variation. Many
of these studies incorporate smFISH in post-mortem hu-
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Figure 3. Image analysis with dotdotdot captures differential expression of two activity-regulated gene (ARG) transcripts in single cells of mouse cortex
following activity induction. (A) Maximum intensity confocal projections of piriform cortex depicting expression of transcripts for Arc (A), Bdnf Ex1,
(A’) Bdnf Ex4 (A”), and merged (A”’) from a mouse receiving Sham treatment. (B) Maximum intensity confocal projections of piriform cortex depicting
expression of transcripts for Arc (B), Bdnf Ex1, (B’) Bdnf Ex4 (B”), and merged (B”’) 90 min after an acute ECS treatment. (C–E) Proportion of cortical
cells expressing low, medium and high levels of Arc (C), Bdnf Ex1 (D) and Bdnf Ex4 (E) in Sham vs. ECS treatment (n = 3 mice, 24 images, 2543 nuclei and
n = 4 mice, 32 images and 3102 nuclei, respectively). (F) Proportion of cortical cells expressing medium/high levels of Arc, Bdnf Ex1, Bdnf Ex4 following
ECS treatment. (G) Venn diagrams showing co-expression of different ARGs in high/medium expressers following Sham or ECS (n = 867 high/medium
ROIs out of 2543 total ROIs with n = 1676 low expressers excluded for Sham, n = 1133 high/medium ROIs out of 3102 total ROIs for ECS with n = 1969
low expressers). Yellow arrows highlight cells preferentially expressing Bdnf Ex4 compared to Bdnf Ex1. Cyan arrows highlight cells expressing Arc, but
not Bdnf. Pink arrows highlight cells enriched in Bdnf Ex1, which often co-express Bdnf Ex4 and Arc. Scale bar is 20um.
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man brain to validate RNA-seq findings. However, post-
mortem human brain tissue contains abundant lipofuscin, a
highly autofluorescent product of lysosomal digestion that
confounds quantification of smFISH signals (13,14,23). To
address this problem, we employed multispectral imaging
and linear unmixing to isolate and exclude lipofuscin aut-
ofluorescence from analysis (Figure 4A–C). In addition to
allowing for isolation of lipofuscin autofluorescence, this
strategy also allows precise separation of spectrally overlap-
ping fluorophores (i.e. orange [Opal570] and red [Opal620]),
which is necessary for utilizing 4-plex technology.

To validate spectral imaging and linear unmixing pa-
rameters in post-mortem human brain, we used probes
targeting canonical cell type markers in dorsolateral pre-
frontal cortex (DLPFC), including synaptosome associ-
ated protein 5 (SNAP25), solute carrier family 17 mem-
ber 7 (SLC17A7), glutamate decarboxylase 1 (GAD1) and
myelin basic protein (MBP), which identify neurons, exci-
tatory neurons, inhibitory neurons, and oligodendrocytes,
respectively (3) (Figure 4). For fluorescence visualization,
we assigned Opal690 to SNAP25, Opal570 to SLC17A7,
Opal620 to GAD1 and Opal520 to MBP and co-labeled
samples with DAPI (maximum emission wavelength at 461
nm). We then performed spectral imaging across multiple
z planes to generate a matrix of mixed fluorescent signals
spanning the tissue depth (Figure 4A). For a given z-plane,
we captured a spectral image stack, or a lambda stack,
which is a collection of images of the same field of view (x,
y) captured at different wavelengths (Figure 4B). This four-
dimensional matrix of mixed fluorescent signals (x, y, z,
lambda; Figure 4A) was decoded, or ‘unmixed,’ (Figure 4C)
using a linear unmixing algorithm in Zen software, which
separates signals from individual probes and lipofuscin aut-
ofluorescence using reference emission spectral profiles, or
emission ‘fingerprints,’ for each fluorophore (Supplemen-
tary Figure S6) and lipofuscin (Supplementary Figure S7).
A single Opal dye, regardless of its degree of spectral over-
lap with other Opal dyes and DAPI, has a unique spectral
signature that can be cataloged and used to assign the spa-
tial contribution of that fluorophore to individual pixels in
a lambda stack during linear unmixing.

Given that reference emission spectral profiles are criti-
cal for accurate unmixing, we carefully generated and vali-
dated fingerprints for DAPI (Supplementary Figure S6A),
Opal520 (Supplementary Figure S6B), Opal570, (Supple-
mentary Figure S6C), Opal620 (Supplementary Figure
S6D), and Opal690 (Supplementary Figure S6E) in mouse
tissue, which lacks lipofuscin autofluorescence. Finger-
prints were created in Zen software for each of the Opal
fluorophores using a series of 4 ‘single positive’ slides of
mouse brain tissue hybridized with a positive control probe
against the ‘house-keeping’ gene, POLR2A. For the DAPI
fingerprint, mouse brain tissue was subjected to pretreat-
ment conditions, but no additional probe labeling before
incubation with DAPI. Linear unmixing of single posi-
tive slides with all fingerprints (DAPI, Opal520, Opal570,
Opal620 and Opal690) verified that reference emission
spectral profiles are highly specific for the targeted fluo-
rophore. For example, when POLR2A is labeled with the
Opal570 fluorophore (Supplementary Figure S6C), unmix-
ing with the Opal570 fingerprint captures Opal570 fluores-

cence, while no fluorescent signals are captured with other
fingerprints, including the spectrally overlapping Opal620
fingerprint. Transcript segmentation with dotdotdot simi-
larly captures fluorescent signals in the appropriate spec-
tral range for each single positive slide. Quantification of
dot count, intensity, and size further demonstrates the speci-
ficity of reference emission spectral profiles used for linear
unmixing of lambda stacks (Supplementary Figure S6).

In addition to validating robust emission fingerprints for
DAPI and each Opal dye, we also generated and validated
a spectral signature for lipofuscin autofluorescence in post-
mortem human dorsolateral prefrontal cortex (Supplemen-
tary Figure S7A, B). Here, we hybridized tissue from a rep-
resentative subject with a negative control probe against
the bacterial gene dapB. As there was no probe binding,
fluorescent signals were attributed exclusively to lipofus-
cin autofluorescence, and a lipofuscin fingerprint was cre-
ated in Zen software. Using fingerprints for DAPI, Opal520,
Opal570, Opal690 and lipofuscin, we performed linear un-
mixing of eight lambda stacks acquired from negative con-
trol slides from four different subjects (Supplementary Fig-
ure S7C). The lipofuscin fingerprint was equally effective
in detecting lipofuscin autofluorescence across subjects. For
all images, segregated lipofuscin signals were used to suc-
cessfully mask and excludes pixels confounded by autoflu-
orescence across the electromagnetic spectrum (Supplemen-
tary Figure S7C).

After linear unmixing with our validated reference emis-
sion spectra, we qualitatively observed co-localization of
SLC17A7 (excitatory neurons) and GAD1 (inhibitory neu-
rons) with SNAP25 (pan-neuronal) as expected. Simi-
larly, we saw no overlap of MBP (oligodendrocytes) with
SNAP25 (neurons), and exclusive expression of either
SLC17A7 (excitatory) or GAD1 (inhibitory) in SNAP25+
neurons (Figure 4C). Nuclear and transcript segmenta-
tion with dodotdot faithfully represented fluorescence sig-
nals (Figure 4D-E), and masking with lipofuscin signals
removed background autofluorescence (Figure 4F). For
quantitative analysis of unmixed spectral data using dotdot-
dot, we acquired a set of images at 63× magnification in
layers II/III and VI of post-mortem dorsolateral prefrontal
cortex (n = 2 subjects, n = 2 cortical strips per subject, n =
6 images per layer per strip, Figures 4C, 5A–G). Given dif-
ferences in the density and arrangement of nuclei in mouse
and human tissue, we first optimized nuclear segmenta-
tion for human tissue (Supplementary Figure S8A–C), and
demonstrated successful identification of nuclei/ROIs. We
observed a similar number and size of nuclei in layer II/III
versus layer VI (Supplementary Figure S8D-E, nuclei num-
ber P = 0.376, nuclei size P = 0.592).

Following transcript segmentation and lipofuscin mask-
ing with dotdotdot, we quantified the number, size, and
fluorescence intensity of SNAP25, MBP, SLC17A7 and
GAD1 dots and used these data to predict the cell type of
each nucleus/ROI using a classification and regression tree
(CART) model (Supplementary Figure S9). Given the close
spatial proximity of nuclei/ROIs that may represent differ-
ent cell types (i.e. MBP+ oligodendrocytes situated next to
SLC17A7+ neurons), this type of model accommodates po-
tentially conflicting signals (i.e. cytoplasm of SLC17A7+
neuron overlapping the nuclear ROI of MBP+ oligoden-
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Figure 4. Visualization and quantification of single transcripts in post-mortem human brain tissue using spectral imaging/linear unmixing and dotdotdot.
(A) Matrix of raw confocal images acquired during spectral imaging in z-series of a single field of post-mortem human cortex at 63x magnification. A
lambda stack is captured at each z-plane detecting expression of SNAP25, SLC17A7, GAD1, MBP (labeled using Opal690 [emission maximum at 690nm],
Opal570 [emission maximum at 570 nm], Opal620 [emission maximum at 620 nm], and Opal 520 [emission maximum at 520 nm] dyes, respectively),
and lipofuscin autofluorescence. (B) Representative lambda stack depicting a single z-plane acquired at different wavelength bands, each spanning a
limited spectral region (∼8.7 nm). (C) Combined emission signals across the lambda stack in each z-plane are linearly unmixed using reference emission
spectral profiles from each Opal dye and lipofuscin to separate the contribution of individual fluorescent gene probes. Unmixed data is then projected
across the z-axis. Single transcripts for SNAP25 (C), SLC17A7 (C’), GAD1 (C”) and MBP (C”’) (canonical markers for neurons, excitatory neurons,
inhibitory neurons, and oligodendrocytes, respectively) can be separated from each other and from lipofuscin autofluorescence (C””). (D) Segmentation of
unmixed fluorescent signals using dotdotdot. (E) Nuclear segmentation overlaid with transcript segmentation. (F) Masking with lipofuscin signal removes
pixels confounded by autofluorescence from analysis. Green arrows highlight MBP+/SNAP25-/SLC17A7-/GAD1- oligodendrocytes. Red arrows highlight
MBP-/SNAP25+/SLC17A7+/GAD1- excitatory neurons. Pink arrows highlight MBP-/SNAP25+/SLC17A7-/GAD1+ inhibitory neurons. Cyan double
arrows highlight lipofuscin. Scale bar is 20um.
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Figure 5. Layer-specific cell type analysis in post-mortem human DLPFC demonstrates sensitivity and specificity of dotdotdot for transcript quantification.
(A–G) Maximum z-projection of unmixed and stitched lambda stacks acquired across a single cortical strip (layer I to VI) of post-mortem human DLPFC
depicting expression of DAPI (A), SNAP25 (B), SLC17A7 (C), GAD1 (D), MBP (E), lipofuscin (F) and merged (G). High magnification (63×) images
used for analysis were randomly acquired within a strip in layer II/III (80–90% of strip thickness; n = 24 images total) or layer VI (20–30% of strip
thickness; n = 24 images total) from 2 individuals from 2 different strips (see Figure 3 for representative 63x image). (H) Validation of cell type calling
using CART analysis demonstrating an enrichment of SNAP25 transcripts in predicted excitatory (SLC17A7) and inhibitory (GAD1) neurons compared
to oligodendrocytes (MBP) and SLC17A7-/GAD1-/MBP- cells (likely astrocytes and microglia). Color represents different subjects and shape represents
different layers (circle = layer II/III and triangle = layer VI). (I) Proportion of cortical cells expressing markers for neurons, excitatory neurons, inhibitory
neurons, and oligodendrocytes in layer II/III versus layer VI of DLPFC (n = 519 ROIs layer II/III and n = 442 ROIs layer VI). Scale bar is 200 um.

drocyte) allowing accurate cell type calling. We gave the
model 60 random nuclei/ROIs from 11 manually anno-
tated images as training data and built a classification tree
for defining SLC17A7+, MBP+, GAD1+ or triple negative
ROIs (Supplementary Figure S9A). The confusion matrix
for all 201 manually annotated ROIs demonstrates high ac-
curacy between predicted and actual (manual) cell type call-

ing (182 correctly predicted out of 201; Supplementary Fig-
ure S9B). For example, the classifier identifies 31 MBP+
ROIs out of 35 actual MBP+ ROIs. Of these 31 identi-
fied MBP+ ROIs, 30 are correctly predicted and 1 is mis-
labeled as negative. Plotting the manual and predicted cell
type for each ROI against the proportion of the ROI posi-
tive for GAD1, SLC17A7, and MBP demonstrates the high
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sensitivity, specificity, and precision of the classifier, which
has a 90.5% accuracy (Supplementary Figure S9C). Fur-
thermore, for the 961 ROIs identified in layer II/III and
layer VI, we confirmed that cells predicted to be excitatory
and inhibitory neurons (SLC17A7+ and GAD1+, respec-
tively) were highly enriched for the pan-neuronal marker
SNAP25 (SLC17A7 and GAD1 versus Neg, P = <2e–16;
SLC17A7 and GAD1 versus MBP, P = <2e–16, Figure
5H). Consistent with a predicted glial cell type, ROIs clas-
sified as oligodendrocytes (MBP+) or negative for MBP,
SLC17A7 and GAD1 (likely astrocyte and microglia popu-
lations) showed low or zero levels of SNAP25. Further sup-
porting the accuracy of transcript quantification with dot-
dotdot and subsequent cell type calling with CART analysis,
we observed a higher proportion of excitatory neurons com-
pared to inhibitory neurons in both layers of dorsolateral
prefrontal cortex and a higher proportion of oligodendro-
cytes in layer VI compared to layer II/III (Figure 5I, MBP:
P = 3.97e–05, SLC17A7: P = 0.029, GAD1: P = 0.0493,
Neg: P = 0.859874). Taken together, we show robust anal-
ysis of gene expression in post-mortem human dorsolateral
prefrontal cortex using 4-plex RNAscope technology and
spectral imaging/linear unmixing in combination with dot-
dotdot and machine learning.

dotdotdot accommodates hi-plex smFISH data acquired with
alternative imaging acquisition parameters and saved in di-
verse file formats

To demonstrate the utility of our image acquisition and
analysis workflow, we enabled flexible solutions for users
who may be unable to image lipofuscin autofluorescence
with spectral imaging or who may acquire images in al-
ternative file formats. First, we evaluated whether a nar-
rower spectral range, such as the range detected by the
Opal520 fingerprint, could be used for lipofuscin detection
and masking. This would allow users to sacrifice data col-
lection for one gene target in order to capture lipofuscin
autofluorescence in the available spectral range (i.e. use the
spectral range of one fluorophore to capture lipofuscin in-
stead of a gene target).

To evaluate this possibility, we hybridized post-mortem
human dorsolateral prefrontal cortex with probes targeting
SLC17A7 (Opal690), GAD1 (Opal620) and SNX19 (sort-
ing nexin 19, Opal570), a gene associated with genetic risk
for schizophrenia (45) (Supplementary Figure S10). As the
Opal520 fluorophore was not used to detect a probe tar-
get, signals unmixed with the Opal520 fingerprint repre-
sented autofluorescence due to lipofuscin (Supplementary
Figure S10A). Unmixing with the Opal520 fingerprint as a
proxy for the lipofuscin fingerprint captured the majority
of autofluorescence. However, unmixing the same lambda
stack with the custom lipofuscin fingerprint was more com-
prehensive and captured a larger number of autofluores-
cent pixels (Supplementary Figure S10B). Quantification
of fluorescent pixels assigned to each gene demonstrated
that more confounding autofluorescent pixels were removed
from gene channels when unmixing with the lipofuscin
compared to Opal520 fingerprint (Supplementary Figure
S10C). However, masking with either Opal520 or lipofus-
cin unmixed signals removed a substantial portion of back-

ground autofluorescence (Supplementary Figure S10A, B),
suggesting that a more narrow spectral range can be used
to detect and monitor lipofuscin autofluorescence if imag-
ing capabilities are limited.

Next, given the diversity of imaging file formats for sm-
FISH data, we evaluated the performance of dotdotdot on
images acquired and saved using a different microscope sys-
tem and customized file format (Nikon ‘.nd2’ files versus
Zeiss ‘.czi’ files). For three distinct combinations of probe
targets hybridized to post-mortem human cortical tissue
(images courtesy of Jennie Close and Ed Lein at the Allen
Brain Institute), we show accurate segmentation of fluores-
cent RNAscope signals (Supplementary Figure S11). dot-
dotdot is compatible with several additional file formats, in-
cluding those supported by Zeiss, Leica, Nikon, Olympus
and MetaMorph systems.

Finally, as chemistry for higher order multiplexing is
rapidly coming online, we evaluated the performance of dot-
dotdot on higher order multiplexed images acquired using
the RNAscope Hi-plex assay, which visualizes up to 12 gene
targets in a single tissue slice with several rounds of hy-
bridization and stripping (Supplementary Figure S12). dot-
dotdot faithfully segments fluorescent signals from 12 pos-
itive control probes against different ’house-keeping’ genes
in the same brain section of mouse tissue (image courtesy
of Advanced Cell Diagnostics).

DISCUSSION

This manuscript reports a robust, flexible, and automated
approach for quantification of multiplex single molecule flu-
orescent in situ hybridization (smFISH) images in complex
tissues, including post-mortem human brain. For smFISH
analysis, we present and validate dotdotdot, a versatile com-
putational tool for quantitative analysis of smFISH data. In
combination with spectral imaging workflows and machine
learning strategies, we demonstrate robustness of this soft-
ware for quantifying gene expression in single cells in mouse
brain as well as post-mortem human brain. Importantly,
we develop imaging acquisition and analysis strategies for
detecting and removing tissue autofluorescence in smFISH
data to improve the accuracy of transcript quantification.
Furthermore, we demonstrate that quantitative segmenta-
tion data can be used in combination with machine learning
approaches to define cell types in a systematic and unbiased
manner. Finally, we demonstrate the flexibility of dotdotdot
for diverse data file formats, imaging acquisition parame-
ters, and multiplexed experiments thereby increasing its util-
ity for different types of smFISH data.

dotdotdot confers several advantages for quantitative analysis
of smFISH data

We developed dotdotdot to address several challenges cur-
rently facing users attempting to quantify smFISH data ac-
quired in complex tissues using RNAscope. A major goal
of our project was to design user-friendly software that can
process multidimensional images at high throughput, and
provide several unbiased quantitative measures of smFISH
data while controlling for tissue autofluorescence.

A major roadblock hindering the ability of standard bi-
ological laboratories to effectively quantify smFISH data is
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the lack of accessible and intuitive software for image seg-
mentation and quantification. While a number of commer-
cial platforms are available (e.g. HALO; Indica Labs and
Aperio; Leica), for smFISH data analysis, these softwares
are only accessible through purchase and utilize proprietary
algorithms that offer less flexibility for segmentation, cus-
tomization, and autofluorescence masking. To provide a
more accessible alternative (Supplementary Table S1), our
platform, dotdotdot is an open source tool that can be im-
plemented and customized by any MATLAB user. We have
provided code, tutorials, and example images to make our
software user-friendly and adaptable for different applica-
tions, images, and tissues.

The multidimensionality associated with smFISH data
is an additional, significant challenge for quantifying
images. Typical smFISH experiments include multiple
genes/probes/channels, image planes (i.e. z-stacks), objects
(nuclei and transcript dots), and parameters for analysis
(dot size, intensity, and number). We designed dotdotdot to
accommodate all of these dimensions simultaneously, al-
lowing users more flexibility in their data analysis. dotdot-
dot is compatible with data acquired from several smFISH
workflows, including RNAscope Multiplex Fluorescent V1,
V2, and Hi-plex assays (Figure 1). We demonstrate analy-
sis of six separate fluorescent signals using spectral imaging
and linear unmixing (Figure 5). However, there is no limit to
the number of gene targets or fluorescent signals (i.e. DAPI
or lipofuscin) that dotdotdot can process in parallel. Indeed,
using RNAscope Hi-plex data, we demonstrate the utility
of dotdotdot for accurately segmenting 12 different probes
in the same tissue slice (Supplementary Figure S12).

Importantly, dotdotdot readily accommodates z-stacks
and retains unique z-information in the same x, y coor-
dinate for images with densely packed transcripts or cells.
dotdotdot can also handle tiled z-stacks containing mul-
tiple fields of view over the tissue depth. This is in con-
trast to other commercially available softwares and open-
source platforms, such as FISH-quant (12), which perform
nuclear segmentation on two-dimensional images. More-
over, dotdotdot provides several quantitative metrics, includ-
ing dot size, number and intensity, that can be incorporated
into computational data analysis strategies such as K-means
clustering and Classification and Regression Trees (CART).
This is an advantage to other programs, such as Count Nu-
clear Foci-ImageJ (46), that are tailored to one metric (i.e.
nuclei number) that may not fully capture the dimensional-
ity of the dataset.

Finally, it is important to note that other open-source
platforms require manual adjustment of several parameters
per image or have limited documentation to implement the
software, which makes it challenging to automate for batch
processing or utilize for multidimensional RNAscope data
(46–49). While other high throughput, programs/pipelines
for cell segmentation and spot counting are in various stages
of development, including Allen Cell Structure Segmenter
(50) and Starfish (51), these softwares still have limitations
for rapid analysis of RNAscope data, including require-
ments of human selected ground truth images for iterative
deep learning or reformatting of microscopy data to com-
plex SpaceTx format. We developed dotdotdot to meet the
needs of the standard biological laboratory aiming to quan-
titatively analyze multidimensional smFISH data with a

rapid and unbiased approach to answer hypothesis-driven
questions about gene expression and co-localization.

Quantifying spatial gene expression at single cell resolution
with dotdotdot delivers novel biological insights

We confirmed the accuracy of dotdotdot by quantifying ex-
pression of the activity-regulated genes Arc and Bdnf, which
are expected to increase following brain stimulation with
electroconvulsive seizures (35,52–55). While induction of
Arc and Bdnf in response to electroconvulsive seizures has
long been appreciated (30), it has remained unclear whether
activity-induced increases are driven by increased transcrip-
tion in a stable population of cell ‘expressers,’ recruitment
of additional neurons that become transcriptionally active,
or a combination of both. Furthermore, whether multiple
Bdnf isoforms can be induced within an individual BDNF-
expressing cell in vivo has been difficult to demonstrate.
While the necessary spatial and cellular resolution to an-
swer these questions is lost in bulk homogenate analysis of
gene expression, it can be resolved with quantitative analy-
sis of smFISH data.

Using dotdotdot, we identify distinct ensembles of neu-
rons expressing activity-regulated genes following electro-
convulsive seizures. While the majority of cells upregulate
Arc and Bdnf upon activity, we identify some cells that
appear to selectively upregulate Arc, and some that pref-
erentially upregulate specific Bdnf isoforms. The dynam-
ics in regulation of these activity-regulated genes follow-
ing activity have important implications for studies using
activity-induced promoters (e.g. Arc and Fos) to tag en-
sembles of activated neurons (56,57). These data suggest
that ‘activated’ ensembles may not be a homogenous pop-
ulation as some activity-tagged cells may have the capac-
ity to release BDNF and engage downstream plasticity cas-
cades, while others may not. Similarly, our results suggest
that activity-induced, BDNF-expressing neurons are likely
not a uniform population as some BDNF-expressing neu-
rons may preferentially utilize one isoform over another. Be-
cause Bdnf isoforms show distinct expression kinetics and
subcellular targeting (58–60), it is likely that differences in
upregulation between single cells impact neuron structure
and function. Future studies should aim to link differences
in activity-regulated gene expression that occur in response
to induction of neural activity or behavioral experiences to
correlates of cell function, including morphology and activ-
ity, to better understand how dynamic, activity-dependent
gene expression impacts network function.

dodotdot overcomes tissue autofluorescence to accurately
profile post-mortem human brain tissue

Post-mortem human brain poses several intrinsic and ex-
trinsic challenges for quantifying smFISH data, including
extensive cellular heterogeneity (61), high lipofuscin aut-
ofluorescence (13), and RNA degradation due to the in-
terval between death and brain extraction and processing.
To overcome these challenges, we carefully optimized the
RNAscope assay as well as imaging acquisition and analy-
sis parameters. We found that RNAscope Multiplex Flu-
orescence V2 reagents afforded higher signal-to-noise in
post-mortem human brain tissue, especially for moderate or
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low expressing gene targets, such as SNX19 (Supplementary
Figure S10). Flexibility to dilute fluorophore concentra-
tions for higher expressing gene targets, such as SLC17A7
(Figure 4), also facilitated more accurate target labeling and
quantification. While we utilized RNAscope technology for
fluorescent probe labeling, non-commercial smFISH tech-
nologies have also proven successful in post-mortem human
brain tissue (4). However, RNAscope offers a rapid, robust,
and universal approach that has now been replicated by sev-
eral groups for qualitative validation of RNA-seq data in
post-mortem human brain tissue (3–5,18).

For quantitative analysis of smFISH signals in post-
mortem human brain tissue, it is necessary to identify and
remove fluorescent pixels derived from lipofuscin autoflu-
orescence. There are several lipophilic reagents marketed
to quench tissue autofluorescence that can be incorporated
into the RNAscope assay (23,62). However, dye-based ap-
proaches proved ineffective in mitigating lipofuscin sig-
nals in our hands. While we did not explore optical tissue
clearing methods to remove lipofuscin granules, several ap-
proaches, such as CLARITY, have been utilized in conjunc-
tion with smFISH (28,63,64) and may be compatible with
the RNAScope assay.

Given the persistence of lipofuscin in our human brain
samples, we employed a spectral imaging/linear unmixing
approach to isolate and mask autofluorescent pixels at-
tributed to lipofuscin and other tissue artifacts (23). This
approach also allowed us to conduct 4-plex labeling as we
were able to separate signals arising from spectrally over-
lapping fluorophores (Opal570 and Opal620). We carefully
validated reference emission profiles used for linear un-
mixing of fluorescent probe signals (Supplementary Figure
S6) and lipofuscin autofluorescence (Supplementary Figure
S7). Importantly, we demonstrated that the spectral quality
of lipofuscin autofluorescence is comparable among sub-
jects close in age and a common lipofuscin fingerprint can
be employed for multiple subjects. However, studies exam-
ining gene expression across development may require age-
specific lipofuscin fingerprints as biochemical and autofluo-
rescent properties of lipofuscin are dynamic across the lifes-
pan (14). Although spectral imaging or a custom lipofus-
cin filter cube are superior imaging strategies for detect-
ing and masking lipofuscin autofluorescence (21,23), we
also demonstrate the feasibility of using a narrower spec-
tral range, such as that detected by Opal520 (or a stan-
dard FITC filter), to detect and mask lipofuscin fluores-
cence with dotdotdot. Given that neurons are more pro-
foundly affected by lipofuscin masking than glia (13), it is
important to consider whether removal of lipofuscin pixels
biases quantification of gene expression in particular cell
types. Our data suggest that neurons are not adversely af-
fected by lipofuscin masking as we detect the expected pro-
portions of neuronal and glial cell types in dorsolateral pre-
frontal cortex (65) (Figure 5).

dotdotdot complements growing computational approaches
for spatial analysis of genome-wide expression

We developed dotdotdot to faithfully segment fluores-
cent probe signals and provide quantitative information
on transcript/dot size, number, and fluorescence intensity.

While this quantitative output of dotdotdot can stand alone
to answer many biological questions (66), we provide ex-
amples of how further computational approaches can be
utilized to answer more complex questions about gene ex-
pression. First, in mouse tissue, we used K-means cluster-
ing (67) to identify groups of cells defined as high, medium,
and low expressers for individual genes based on transcript
dot size and number (Figure 3). Second, using thresholds
established with the K-means approach, we examined co-
localization of different activity-regulated genes to under-
stand co-regulation of activity-induced transcripts. A key
advantage of the K-means approach is that several features
of transcript segmentation, such as dot size and number, are
provided to offer a more comprehensive and unbiased inter-
pretation of gene expression. Finally, given the diversity and
intermingled spatial position of different cell types in post-
mortem human brain tissue, we used a machine learning
approach––CART, (68) to systematically assign cell types to
individual ROIs with 91% accuracy (Figure 5 and Supple-
mentary Figure S9). This model accommodated potentially
conflicting signals from mutually exclusive canonical cell
type markers (i.e. MBP and SLC17A7) to assign the most
likely cell type for each ROI. As molecular profiles of cell
types become more complex, machine learning approaches
such as CART may become increasingly necessary to inter-
pret overlapping patterns of gene expression (69). Regard-
less of the classification approach, we strongly suggest using
linear mixed effects models to analyze smFISH data that ac-
count for the nested nature of these data when combining
across many images and ROIs. Regular linear regression will
likely result in overly-liberal p-values for differential expres-
sion since it ignores the high similarity between ROIs/cells
in the same image.

Spatial analysis of genome-wide expression is a rapidly
emerging field (2,70–72). With the advent of spatial tran-
scriptomics (73) and Slide-seq (74), smFISH will continue
to be a gold standard for validating spatial RNA-seq ap-
proaches. dotdotdot is an intuitive computational tool that
can add quantitative dimensions to traditionally qualita-
tive smFISH data. Furthermore, as tools for integrating sm-
FISH and single cell RNA-seq data continue to develop
(75,76), dotdotdot can augment these approaches by extract-
ing quantitative information from existing datasets for inte-
gration with spatial gene expression databases.

In summary, we present a computational tool for sm-
FISH data that can be readily implemented in wet-bench
laboratories to elevate spatial analyses of gene expression
and complement growing single cell and spatial transcrip-
tomic data sets in the field of neuroscience (77) and beyond
(78).
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(2019) Spatiotemporal dynamics of molecular pathology in
amyotrophic lateral sclerosis. Science, 364, 89–93.

78. Moncada,R., Barkley,D., Wagner,F., Chiodin,M., Devlin,J.C.,
Baron,M., Hajdu,C.H., Simeone,D.M. and Yanai,I. (2020)
Integrating microarray-based spatial transcriptomics and single-cell
RNA-seq reveals tissue architecture in pancreatic ductal
adenocarcinomas. Nat. Biotechnol., 38, 333–342.


