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Existing methods to infer the relative roles of age groups in epidemic
transmission can normally only accommodate a few age classes, and/or
require data that are highly specific for the disease being studied. Here, sym-
bolic transfer entropy (STE), a measure developed to identify asymmetric
transfer of information between stochastic processes, is presented as a way to
reveal asymmetric transmission patterns between age groups in an epidemic.
STE provides a ranking of which age groups may dominate transmission,
rather than a reconstruction of the explicit between-age-group transmission
matrix. Using simulations, we establish that STE can identify which age
groups dominate transmission even when there are differences in reporting
rates between age groups and even if the data are noisy. Then, the pairwise
STE is calculated between time series of influenza-like illness for 12 age
groups in 884 US cities during the autumn of 2009. Elevated STE from 5 to
19 year-olds indicates that school-aged childrenwere likely themost important
transmitters of infection during the autumn wave of the 2009 pandemic in the
USA. The results may be partially confounded by higher rates of physician-
seeking behaviour in children compared to adults, but it is unlikely that
differences in reporting rates can explain the observed differences in STE.
1. Introduction
Age is a key predictor of a person’s rate of both acquiring [1–6] and transmitting
[1,7,8] influenza. Children tend to contribute more to influenza transmission than
adults do [1,4,7], but the precise epidemiological roles of different age groups can
shift from season to season [9] andmay changemarkedly in pandemic years [10].
From a public health perspective, untangling the relative roles of different age
groups could help guide targeted vaccination strategies [7,11–13] and other
age-related interventions, like the selective closure of schools [14–16]. However,
data with sufficient resolution to identify detailed epidemiological relationships
between age groups have so far been scarce, and even when such data exist,
current methods are insufficient for reliably uncovering those relationships.

Electronic medical records (EMRs) help address the issue of data scarcity by
providing high-volume influenza-like illness (ILI) incidence data with detailed
age structure [17]. EMRs are routinely produced by physicians for insurance
purposes during themajority of outpatient visits in theUSA [17]. Since EMRs gen-
erally contain syndromic illness classifications, EMR-based estimates of influenza
incidence are subject to noise from non-ILI respiratory infection. EMR-based dis-
ease incidence estimates are also subject to geographical and demographic
variation in physician-seeking behaviour. Laboratory-confirmed influenza cases,
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as collected routinely by the Centers for Disease Control and
Prevention (CDC) [18], providemore specific estimates of influ-
enza incidence, but at substantially lower volume. Influenza
incidence estimates from online search platforms and social
media websites like Google [19] and Twitter [20] can provide
massive amounts of data, but the reliability of these sources
has been called into question, and they lack detailed age infor-
mation [21]. Dedicated online platforms such as FluNearYou in
the USA and FluSurvey in the UK, which gather reports of ILI
symptoms from community volunteers [22,23], hold some
promise for supplementing traditional ILI data streams
[24–26], but represent a relatively small convenience sample
of the population. So, while other data sources exist, EMRs
offer a relatively promising and so-far underused source of
fine-scale data on influenza incidence in the USA [17,21].

Previous attempts to infer the relative importance of different
age groups for the transmission of influenza have sought
to either reconstruct the explicit next-generation matrix (NGM)
[3,27,28] or to infer the relative risk of infection between age
groups [4]. The NGM-based methods have only been applied
to scenarios with at most two age groups (children and
adults), in part because they require strong assumptions about
the structure of the NGMwhich become increasingly unrealistic
as the number of age classes grows. The relative risk method
[4,29,30] has been used to rank the importance of five age
groups for the transmission of influenza, but requires data
with high specificity for influenza, effectively precluding ILI
data streams and the use of EMRs in particular. These methods
are generally aimed at identifying optimal vaccine allocation
strategies using data from the initial phase of an epidemic.

Symbolic transfer entropy (STE) [31] offers away to infer the
relative transmission importance of possibly many age groups
from ILI data. STE is an extension of transfer entropy (TE)
[32], which measures the amount of information the past
states of one stochastic process provide about the transition
probabilities of another. Intuitively, the TE is a measure of the
amount of information ‘transferred’ from one stochastic process
to another. To compute the STE, a time series is symbolized
using a scheme that encodes its qualitative structure in a low-
dimensional space, and then the TE is calculated from the
relative frequencies of these symbols. The symbolization
scheme makes the STE robust to moderate observational noise
and to systematic shifts in amplitude, which in the context of
EMR ILI data might arise from the presence of non-influenza
ILI cases and from differences in reporting rate between age
groups. These benefits comewith the trade-off of requiring rela-
tively large amounts of data compared to existing methods for
inferring the age structure of disease transmission and provid-
ing only a relative ranking of transmission importance. STE has
been used to study epileptogenic neural signals and the dis-
semination of information through social networks [31,33],
but to our knowledge has not been systematically evaluated
as a means of providing insight into infectious disease trans-
mission. TE and STE are similar to other model-free methods
that measure how information is shared and transferred
between possibly coupled dynamic processes, including
mutual information [32], Granger causality [34], and conver-
gent cross mapping (CCM) [35]. Permutation entropy, a
related measure, has recently been used to quantify the predict-
ability of infectious disease outbreaks [36]. Compared to these
alternatives, STE offers the advantage of applying in stochastic
settings with nonlinear dynamics and moderate observational
noise to reveal asymmetric flows of information.
Here, we use influenza-like outbreak simulations to
demonstrate that STE reliably identifies asymmetries in
transmission strength between age groups. Then, we use an
EMR-based dataset capturing ILI incidence from 884 ZIP
(postal) codes and 12 age classes across the USA to rank
the relative importance of the various age groups in the trans-
mission of the autumn wave of the 2009 A/H1N1pdm
influenza pandemic in that country. We conclude that
school-aged children (5–19 year-olds) were disproportio-
nately responsible for transmitting influenza to infants
through working-age adults in the autumn of 2009, in
broad agreement with other findings. Our work demon-
strates that STE could serve as an important tool for the
detailed epidemiological analysis of age structure, especially
as EMR data become more prevalent.
2. Material and methods
2.1. Data
The data consist of a convenience sample of CMS-1500 electronic
medical claims forms submitted by primary care physicians
across the US and maintained by SDI health (now IQVIA). Each
claim is associated with a single outpatient visit, and includes
one or more ICD-9 codes [37] listed by the physician that describes
the patient’s illness. The overall sample captures over 50% of all
outpatient visits in the USA in 2009 [17]. The records are binned
weekly and aggregated geographically by the first three digits of
the ZIP (postal) code of the practice fromwhich they are submitted
[38]. Time series of weekly ILI incidence are created by extracting
claims with a direct mention of influenza, or fever combined
with a respiratory symptom, or febrile viral illness (ICD-9 487-
488 OR [780.6 and (462 or 786.2)] OR 079.99), following Viboud
et al. (2014) [17]. For each ZIP, the number of ILI cases in each
week is divided by the total number of patientswhovisited a phys-
ician in that ZIP during that week, yielding an ‘ILI ratio’ time
series. There are 884 ILI ratio time series, one for each ZIP in
the lower 48 US states, each spanning 52 weeks from the week
commencing 4 January 2009 through the week commencing
27 December 2009. The correspondence between the SDI-ILI
dataset and reference influenza surveillance data from the US
CDC is described in depth by Viboud et al. [17].

2.2. Symbolic transfer entropy
If I and J are discrete-state and discrete-time random processes
such that it and jt are the states of processes I and J at time t,
then the TE from process J to process I is defined as

TJ!I ¼
X
VI ,VJ

p(itþ1, i(k)t , j(l)t ) log

 
p(itþ1ji(k)t , j(l)t )
p(itþ1ji(k)t )

!
, (2:1)

where i(k)t is shorthand notation for the k-step history of process i,
(it,…, it−k+1), and similarly j(l)t ¼ (jt, . . . , jt�lþ1), such that
p(itþ1, i(k)t , j(l)t ) is the joint probability of observing it+1, i(k)t , and
j(l)t ; p(itþ1ji(k)t , j(l)t ) is the probability of observing it+1 conditioned
on i(k)t and j(l)t ; and p(itþ1ji(k)t ) is the probability of observing it+1
conditioned only on i(k)t . The logarithm has base 2, so that the
TE is measured in bits. The sum is over all possible combinations
of states (itþ1, i(k)t , j(l)t ), where it+1, i(k)t [ VI and j(l)t [ VJ , and ΩI

and Ωj are the state spaces for processes I and J. Equation (2.1)
is a Kullback–Leibler divergence that measures how much pro-
cess I deviates from the generalized Markov property
p(itþ1jit, . . . , i1) ¼ p(itþ1ji(k)t ), given the last l states of process J.
In practice, the histories are often fixed at length 1 (k= l= 1)
and the probabilities are estimated from simple counts of the
observed data [32].
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Figure 1. Mean (95% CI) Group 1→ 2 (blue) and Group 2→ 1 (black) STE values as the coupling between the two groups ranges from none to fully symmetric
(a,c), and from fully symmetric to strongly driven by Group 1 (b,d ). The curves are produced by simulating 100 ensembles of 800 epidemics each from the stochastic
SIR model (a,b) or the Poisson model (c,d ) for each value of za and zb between 0 and 1 in steps of 0.1, and then calculating the between-group STE for each
ensemble. The relative reproduction matrices that capture these two coupling scenarios are given in equations (3.1) and (3.2).
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The TE is limited in that it is only defined for stochastic
processes with a discrete state space. Staniek & Lehnertz [31] intro-
duce STE as a way to calculate information transfer between time
series processes that have continuous- or near-continuous state
spaces. Motivated by the insight that the relative amplitudes of
subsequent observations from these sorts of processes may pro-
vide enough information to reveal interactions between them,
they propose symbolizing the time series based on ordered
m-tuples of observations (electronic supplementary material,
figure S1). This reduces the (near-)continuous state space of
the original stochastic process to a discrete set of m! symbols.
In practice, m is often chosen to be 2 or 3, giving a state space of
two or six symbols, respectively. For m=3, we also tested the
effect of collapsing the two concave-up and the two concave-
down symbols into a single symbol each, resulting in a smaller
state space (four versus six symbols) while capturing a similar
level of qualitative detail. Details on the symbolization of time
series and the empirical calculation of the STE are provided in
the electronic supplementary material.
2.3. SIR epidemic simulation model
For simulations with just two age classes, we use a stochastic SIR
model implemented using the Gillespie algorithm [39]. For all
simulations, the basic reproduction number R0 is set at 1.5, consist-
ent with estimates of the basic reproduction number of 2009
A/H1N1 pandemic influenza [40,41]. We consider a population
size of N=1000 split evenly between classes 1 and 2, so that N1 =
N2 = 500 (age groups with different population sizes are also con-
sidered in the electronic supplementary material). The expected
time to recovery 1/γ is assumed constant for all age groups and
is set at 7 days, which is consistent with estimates of the infectious
period for 2009 pandemic influenza [41]. We consider a range of
between-group transmission strengths. Electronic supplementary
material, table S1 gives the rates at which individuals of each
class stochastically progress from susceptible to infected to recov-
ered. Infections are binned into week-long intervals, and Poisson
noise is added to simulate non-influenza ILI. Electronic
supplementary material, figure S7 depicts five incidence time
series produced using the model. Full details on the model and
simulation procedure are given in the electronic supplementary
material.
2.4. Poisson epidemic simulation model
Formore than twoage classes, the full stochastic SIRmodel becomes
too computationally demanding for repeated simulations to be
practical. So, we also define an outbreak simulation model based
on a self-exciting Poisson process, similar to [42]. We choose
the time units t to match the mean generation interval of the infec-
tion, which we set at 3.5 days [43]. To generate epidemics, we
use a stepwise-constant effective reproduction number Rt, such
that Rt=1.5 for the first four weeks (eight generations) of the
outbreak and Rt=0.8 thereafter. Infections are binned from the
half-week generations into week-long intervals, and additional
Poisson noise is added to each bin to simulate non-influenza ILI.
For simulations with two age classes, the Poisson model yields epi-
demics of similar length and magnitude as the two-age-class SIR
model (compare electronic supplementary material, figures S7 and
S8), andyields comparable STE inferences (figure 1),which suggests
that the Poisson model is an acceptable approximation to the
stochastic SIR model. Full details on the implementation of the
Poisson model are given in the electronic supplementary material.
2.5. Reporting rates
Only a fraction of influenza cases are represented in the SDI-ILI
dataset, since many people do not seek medical care for their
symptoms. The tendency to seek medical care given infection
with an ILI can vary by age group [44]. To factor this into the out-
break simulations, we introduce a reporting rate vector c in which
element ci gives the expected proportion of individuals in age class
i who seek medical care when infected with an ILI. It is then
possible to simulate a ‘reported’ disease incidence time series

Yobs
i,t � binomial (Yi,t, ci), (2:2)
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where Yi,t is the simulated number of infected individuals in age
class i at time t (under either model) and Yobs

i,t is the simulated
reported number of infections in age class i at time t.
lsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20190628
3. Results
3.1. Symbolic transfer entropy reveals transmission

asymmetries between two coupled age groups
We first calculate the STE between two age groups as the
within- and between-group reproduction ratios vary. We con-
sider between-group transmission that ranges from (a) fully
decoupled to fully symmetric, and (b) fully symmetric to
strongly driven by Group 1. The between-group infectiousness
is specified using a ‘relative reproduction matrix’ r, which is a
scaled version of the NGM [27], such that NGM= (R0/ρ)r,
where ρ is the maximum eigenvalue of r and R0 is the basic
reproduction number. The elements of r define the relative
infectiousness of various population groups, such that ri,j/rk,j
gives the proportional difference in group j’s infectiousness
for group i versus group j. For example, if ri,j/rk,j=2, then a
member of group j is expected to infect twice asmanymembers
of group i than of group k. The population sizes of the various
groups are assumed to be equal, though deviations from this
assumption are considered in the electronic supplemen-
tary material. Scenario (a) is encapsulated by the relative
reproduction matrix

ra ¼ 1 za
za 1

� �
, (3:1)

where za∈ [0, 1]. Scenario (b) is encapsulated by the relative
reproduction matrix

rb ¼ 1þ 3zb 1
1þ zb 1

� �
, (3:2)

where zb∈ [0, 1].
Figure 1 depicts the change in STE under these two trans-

mission scenarios, calculated from epidemics simulated using
the stochastic SIR model (figure 1a–b) and the Poisson model
(figure 1c–d ). Each pane in figure 1 is produced using 100
ensembles of 800 simulated epidemics for each value of za
and zb between 0 and 1 in steps of size 0.1. For each ensemble,
the 800 simulated incidence time series are symbolized using
symbols of length m=3, and then the between-group transfer
entropies are estimated using the relative symbol frequencies
(see electronic supplementary material, figure S3), producing
100 STE estimates for each value of za and zb. The solid blue
(black) lines in figure 1 depict the mean Group 1→ 2 (Group
2→ 1) STE for each value of za and zb across the 100 ensembles.
The shaded blue (black) bands depict the range of the middle
95 Group 1→ 2 (Group 2→ 1) STE estimates for each value of
za and zb across the 100 ensembles, analogous to a 95% confi-
dence interval. Under both the stochastic SIR and the
Poisson models, the between-group STE increases steadily as
the transmission coupling ranges from none to symmetric
(figure 1a,c). Once Group 1 begins to dominate transmission,
the Group 1→ 2 STE increases and the Group 2→ 1 STE
decreases (figure 1b,d ), accurately capturing the transmission
relationship between the age groups.

When Group 1 drives transmission, the Poisson model
yields a smaller difference in the STE between the two age
groups than the stochastic SIR model does (figure 1b,d ).
Visual inspection suggests that the simulated time series pro-
duced using the stochastic SIR model tend to feature more
stochastic fluctuations than the time series produced using
the Poisson model (electronic supplementary material, figures
S7 and S8). Since STE is effectively a measure of how these sto-
chastic fluctuations transmit from one age group to another,
this may explain why the differences in STE calculated using
the Poisson model are relatively less pronounced. Overall, the
qualitative similarity between the STE estimates from the two
transmission models suggests that the Poisson model is an
acceptable approximation to the stochastic SIR model, and
that simulations from the Poisson model tend to produce
more conservative estimates of the difference in STE between
age groups than the stochastic SIR model.

3.2. Symbolic transfer entropy reveals transmission
asymmetries despite incomplete reporting

Next, we evaluate how incomplete reporting influences the
detection of asymmetries in transmission strength. Figure 2
depicts the mean estimated STE across 100 ensembles of 800
epidemics each for reporting rates ci=0.1, ci=0.5 and ci=1
with equal reporting rates across all age groups (see also
electronic supplementary material, figure S9). The epidemic
simulations are produced using the Poisson model with
relative reproduction matrix

r ¼
1 2 1 1
1 4 1 1
1 2 1 1
1 1 1 1

2
664

3
775, (3:3)

which could represent ‘children’ (Group 2) having strong
within-group transmission (r2,2 = 4) and intermediate trans-
mission to ‘infants’ (Group 1) and ‘adults’ (Group 3) (r1,2 =
r3,2 = 2). Even for reporting rates as low as 0.1, the STE values
from Group 2 are higher than those from any other group.
As the reporting rates increase, the differences become more
pronounced, accurately capturing the transmission dominance
of Group 2 over the other groups. According to Biggerstaff et al.
[44], true reporting rates for ILI in the US during the 2009 pan-
demic were between 0.4 and 0.6 (scenario (B) in figure 2), for
which the transmission dominance of Group 2 is clear.

3.3. Symbolic transfer entropy reveals transmission
asymmetries between 12 coupled age groups

To test the ability of STE to identify transmission asymme-
tries from data on the scale of the SDI-ILI dataset, we use
the Poisson model to simulate 100 ensembles of 800 epi-
demics each with 12 age groups. We consider the scenarios
(a) with the 12 × 12 relative reproduction matrix electronic
supplementary material, Eq. S49, representing high trans-
mission from Groups 3–5 to Groups 3–5 (ri,j=4 for i, j∈ {3,
4, 5}), intermediate transmission from groups 3–5 to groups
1–2 and 6–9 (ri,j= 2 for i∈ {1, 2, 6, 7, 8, 9} and j∈ {3, 4, 5}), base-
line transmission (ri,j= 1) between all other groups, and
uniform 50% reporting rate across all groups, and (b) with
uniform transmission strength across all age groups (i.e. a
12 × 12 relative reproduction matrix with ‘1’ for all entries),
60% reporting rate for groups 1–5, and 40% reporting rate
for groups 6–12, following the estimates of Biggerstaff et al.
[44] for the ILI reporting rates in the USA during the 2009
influenza pandemic for children and adults, respectively.
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Figure 3 depicts the mean pairwise STE estimates
between the 12 age groups under both scenarios. The
square in row i and column j represents the STE from
Group j to Group i. Darker squares correspond to higher
STE. For the asymmetric transmission/uniform reporting
rate scenario (scenario (a), figure 3a), the STE clearly captures
the transmission dominance of Groups 3, 4 and 5. The pair-
wise STE does not simply reproduce the structure of
the relative reproduction matrix, as evidenced by the varia-
bility in mean pairwise STE for age groups other than
Groups 3–5. This is because the STE captures a ‘knock-on’
effect for which information transferred from a strongly driv-
ing age group can propagate through other age groups. For
the uniform transmission/variable reporting rate scenario
(scenario (b), figure 3b), it is evident that elevated reporting
rates can also lead to elevated STE, both to and from the
groups with elevated reporting rate (Groups 1–5). Overall,
the variability in STE due to differences in reporting rate
appears to be smaller than the variability in STE due to
differences in transmission strength. Further discussion on
the effect of reporting rates on STE may be found in the
electronic supplementary material.
3.4. School-aged children contributed
disproportionately to transmission during
the autumn 2009 A/H1N1pdm influenza
outbreak in the US

To estimate the pairwise STE between the 12 age groups rep-
resented in the SDI-ILI dataset during the 2009 A/H1N1pdm
influenza pandemic, we extract data from the 25 weeks
between 12 July 2009 and 27 December 2009 and symbolise
the ILI time series for each age group in each ZIP using a
symbol length of m=3. The pairwise STE values between all
age groups are depicted in figure 4. The STE is highest in the
columns representing 5–19 year-olds. This provides evidence
that there was systematically elevated transmission from
school-aged children to infants through adults. The adult-
adult STE is also moderately elevated, suggesting that adults
may have played a relatively important role in transmitting
the outbreak among themselves, though this could also be
explained by elevated transmission from children alone. Com-
pare, for example, to the left-hand plot in figure 3: in that
simulation, only transmission from children is elevated, but it
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causes a moderate elevation in the STE from adults and infants
to the other age groups due to the knock-on effect.

As a control, we also calculated the pairwise STE between
all age groups during 25 post-pandemic weeks, from 10 Janu-
ary 2010 through 27 June 2010. For these months, there is no
apparent age structure in transmission (see electronic sup-
plementary material). We also calculated the pairwise STE
between age groups for six previous influenza seasons (see
electronic supplementary material). For the 2009 pandemic,
there is a higher maximum pairwise STE and greater variation
in the pairwise STEs than for any previous season. This could
reflect differences in baseline ILI, which was likely lower
during the autumn 2009 pandemic wave than during
the seasonal outbreaks, due to the pandemic’s earlier timing.
A lower baseline ILI might have made pairwise differences in
STE easier to detect in 2009. However, the relatively higher
andmore heterogeneous STE values in 2009 are also consistent
with the hypothesis that school-aged children played a dispro-
portionately large role in the spread of the 2009 pandemic, as
has been described elsewhere [4].

It is unlikely that differences reporting rates alone can
account for the elevated STE from 5 to 19 year-olds to the
other age groups. The mean pairwise STE values computed
from simulations with uniform transmission rates and unequal
reporting rates in §3.3 range from 0.0057 to 0.0084 (see elec-
tronic supplementary material, Eq. S51), while the pairwise
STE values computed from the SDI-ILI data range from
0.0056 to 0.084 (see electronic supplementary material,
Eq. S52), an order of magnitude larger. The mean pairwise
STEvalues computed from simulationswith asymmetric trans-
mission and uniform reporting rates §3.3 range from 0.0047 to
0.014 (see electronic supplementarymaterial, Eq. S50), closer to
the range observed from the SDI-ILI data but still somewhat
smaller. This points towards a possible combined effect of
strong transmission driving from children plus elevated report-
ing in children. In addition, re-calculating the pairwise
STE using probabilistic reconstructions of the pre-reporting
SDI-ILI incidence time series (see electronic supplementary
material) indicate that the observed transmission dominance
of 5–19 year-olds persists even after adjusting for potential
differences in reporting rate between children and adults.
Furthermore, Biggerstaff et al. [44] report that 0–4 year-olds
had the highest reporting rates for ILI in the USA in 2009, yet
the STE from 0 to 4 year-olds is relatively low compared to
the other age groups. If reporting rates alone could explain
the observed differences in STE, the STE from infants should
be at least as high as the STE from school-aged children.

It is also unlikely that the unequal partitions of the age
groups can explain the observed patterns in the pairwise
STE. The age groups under 20 years are partitioned such that
they span fewer years, and thus contain fewer individuals,
than the age groups above 20 years. Direct calculations and
simulations (see electronic supplementary material) indicate
that, all else being equal, the out-going STE for a given group
tends to increase as the group’s population size increases rela-
tive to the sizes of the other groups. If differences in the groups’
population sizes were driving the observed pairwise STE
values, we would expect the age groups over 20 years to
appear to dominate transmission—which is the opposite of
what we observe here.
4. Discussion
Here, we propose STE as a means of ranking which age groups
contribute most to the transmission of infectious disease out-
breaks. STE is chosen over other extensions of TE due to its
robustness to point-wise noise and overall amplitude shifts in
time series, which especially affect the ILI data stream due to
non-influenza respiratory illness and incomplete reporting.
Simulation studies indicate that STE can correctly rank trans-
mission asymmetries between age groups. While such a
ranking does not provide definitive guidance for targeted
interventions, it can provide a useful starting point when
other epidemiological information is lacking, as is often the
case in emerging outbreaks. STE is positively associated with
reporting rates, which can partially confound estimates of
asymmetric transmission. STE estimates from ILI time-series
data from July–December 2009 in the USA suggest that the
transmission of the autumn wave of the A/H1N1pdm pan-
demic influenza outbreak was likely dominated by 5–19
year-olds. It is unlikely that this result can be explained by
differences in reporting rates alone.

The identification of elevated transmission from school-
aged children during the 2009 influenza pandemic agrees
with most other studies on age-specific transmission of both
seasonal and pandemic influenza [1,4,7,8]. Elevated trans-
mission from school-aged children is likely due in part to
the relatively high number of daily interpersonal contacts
made by members of these age groups. Mossong et al. [1]
for example estimate that 10–19 year-olds have more contacts
per day than any other age group, and conclude from a
modelling study based on empirical contact data that 5–19
year-olds are likely to both suffer the highest burden of disease
and to drive the early-stage transmission of an outbreak trans-
mitted by droplets through close contacts, like influenza. This
underscores the importance of monitoring children during
pandemic influenza outbreaks. We do not recommend using
STE alone to set vaccination priorities. STE is shown here to
reveal the population structure of transmission, but as a
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correlation-based measure [45], it does not provide conclusive
evidence that vaccinatinghigh-transmissiongroupswouldopti-
mally reduce overall transmission. If high-specificity (e.g.
laboratory-confirmed) data are available for a subset of the
population, we recommend using STE in tandem with existing
risk-based methods [4,29,30] to identify optimal intervention
strategies. For example, onemight use STE to identifyepidemio-
logically relevant partitions of the population (for the 2009
A/H1N1pdm influenza outbreak in the US, these might be
<5, 5–19, 20–59, and 60+ years). Then, using these demographic
partitions, one could calculate the relative risk of infection
between these coarser groups from the high-specificity data,
thereby leveraging the data to its fullest potential.

In this study,we have only considered a single demographic
variable—age—as the basis for examining asymmetric trans-
mission strengths. Age is known to be a key predictor of
influenza transmission [1,7,8]. For other infectious diseases,
different demographic variables will be necessary. In the con-
text of sexually transmitted infections, for example, one might
consider transmission asymmetries between individuals of
different racial/ethnic [46] or sexual behaviour [47] groups.
Our study supports the hypothesis that among all age groups,
but not necessarily among all possible demographic groups,
school-aged children were the strongest transmitters of influ-
enzaduring the autumn2009A/H1N1pdmoutbreak in theUS.

TE is closely linked tomutual information [32] andGranger
causality [34]. Unlike TE, mutual information is symmetric;
that is, it measures the probabilistic dependence between two
processes, but cannot determine the direction of information
transfer between them, if there is any [32]. Measuring the
delayed mutual information between two processes is one
way to introduce asymmetry. This takes a step towards infer-
ring whether one process influences another, by measuring
shared information between the present state of one process
and the past states of another [32]. While the lagged mutual
information describes how one process history predicts the
static probabilities of another, the TE measures how one pro-
cess history predicts the transition probabilities of another.
Because of this, the TE is less likely to be confounded by a
shared input signal, and is a better measure of stochastic ‘driv-
ing’ [32]. Section 2 of Kaiser & Schreiber [48] provides a
detailed description of the differences between TE and
mutual information. Granger causality, on the other hand, is
a special case of TE that arises when the stochastic processes
are jointly Gaussian distributed [49]. The TE is thus better
suited than Granger causality for making inferences on more
general, possibly nonlinear, processes, though this comes at
the expense of requiring more data and having no clear way
to test statistical significance [49].

CCM [35] was developed to solve a similar problem as
TE, but is based on somewhat different underlying theory.
CCM was developed to detect so-called causal relationships
in partially stochastic systems with underlying deterministic
structure. CCM relies on Takens’ theorem [50] to reconstruct
candidate manifolds of the underlying dynamical system
using lagged observations from two-time series. ‘Causality’ is
inferred if nearby points on one reconstructed manifold con-
sistently map to nearby points on the other reconstructed
manifold. CCM has been used to provide evidence that temp-
erature and absolute humidity fluctuations drive the timing of
global seasonal influenza outbreaks [51], though some contro-
versy surrounds these findings [52,53]. Nevertheless, it would
be interesting to see whether CCM can reveal asymmetric
epidemiological interactions between age groups, and to com-
pare its findings with those identified using TE. Lungarella
et al. [54] provide more detail on the relationships between
various methods that infer asymmetric relationships from
time-series data. As an aside, we prefer to avoid the term ‘caus-
ality’with respect to these methods, despite its frequent use in
the literature. Determination of so-called counterfactual causal-
ity, as distinguished from Granger-type causality, requires
intervention [55], which is normally not possible in retrospec-
tive epidemiological studies. Regardless of the vocabulary
used, the above-listed techniques have successfully revealed
fundamental structures in real-world coupled dynamic
processes [31,33,35,56–58].

Despite the apparent well-suitedness of STE for making
inferences from ILI data, its epidemiological relevance cur-
rently remains limited. The calculation of STE requires no
prior epidemiological information whatsoever, which makes
its success somewhat surprising. The NGM [27] is the key
object for characterizing age-structured, or more generally
population-structured, disease transmission dynamics, and
yet there is no obvious direct link between STE estimates
and the NGM. It is possible that further simulation studies
could help identify such a link; even though the STE values
seem to bear little mechanistic meaning apart from the relative
ordering of age groups that they yield, it is possible that regres-
sing the inferred STE values on an underlying known NGM
could connect the pairwise STE matrix with the NGM under
certain conditions. However, it appears unlikely that a
simple link exists, especially since STE can say nothing about
transmission within a single age group, which is necessary
for filling in the diagonal entries of the NGM. STE and related
methods such as CCM that do not explicitly incorporate
mechanistic descriptions of the underlying physical system
are unlikely to be able to reveal more than an approximate
hierarchy of transmission strengths. Nevertheless, such a
hierarchy can contain valuable information, especially if
developing and fitting a mechanistic model is too demanding
to be practicable. Certain extensions to STE could also enhance
its relevance for epidemiological inference. Local TE [59]
and state-dependent TE [60], like the contextual STE (see elec-
tronic supplementary material), are intended to make the TE
more flexible and general, by considering how information
transfer may change under varying conditions or ‘meta-
states’. Conditional TE [45,61] takes fuller account of the poss-
ible drivers of a given signal which could help to reveal
polyadic and synergistic relationships between demographic
groups. These extensions may yield better insight into
epidemic processes, which are inherently nonlinear and
context-dependent, than the more traditional measurements
of TE can provide.

Perhaps the most important challenge confronting the TE
and related measurements is deciding how to measure statisti-
cal power and significance. STE calculations rely on a middle
level of stochasticity in the underlying stochastic processes;
for a deterministic system, the STE will always be exactly
zero, while for a stochastic system with too much within-
sequence noise, the small-scale variation in amplitudes will
likelymask important patterns fromwhich the transfer of infor-
mation might be inferred. The acceptable range of stochasticity
has not been clearly defined. Similarly, it is unclear how best to
measure when a difference in STE should be called statistically
significant. Though this is recognized as an open and difficult
problem [49,52], it may be possible to make some progress by
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assuming that the underlying process follows certain
epidemiological, or otherwise well-specified, dynamics.
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