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Abstract: As an efficient method, genome-wide association study (GWAS) is used to identify the
association between genetic variation and pathological phenotypes, and many significant genetic
variations founded by GWAS are closely associated with human diseases. However, it is not enough
to mine only a single marker effect variation on complex biological phenotypes. Mining highly
correlated single nucleotide polymorphisms (SNP) is more meaningful for the study of Alzheimer's
disease (AD). In this paper, we used two frequent pattern mining (FPM) framework, the FP-Growth
and Eclat algorithms, to analyze the GWAS results of functional magnetic resonance imaging (fMRI)
phenotypes. Moreover, we applied the definition of confidence to FP-Growth and Eclat to enhance
the FPM framework. By calculating the conditional probability of identified SNPs, we obtained the
corresponding association rules to provide support confidence between these important SNPs. The
resulting SNPs showed close correlation with hippocampus, memory, and AD. The experimental
results also demonstrate that our framework is effective in identifying SNPs and provide candidate
SNPs for further research.

Keywords: vGWAS; FPM; Eclat; association rules; FI; Alzheimer’s disease

1. Introduction

The brain imaging genetics, as an emerging research field, provides a new approach to
study the effect of genetic variations on the brain. The imaging phenotype was regarded as
an intermediate phenotype between genetic variants and diagnosis. The imaging genomics
combining imaging data and genetic data was applied to explore the pathogenesis of
complex diseases, diagnose early diseases, and obtain the phenotypic characteristics of
lesions in a multi-modal, high-throughput, and non-invasive manner [1]. Moreover, the
relationship between genes and related brain changes can be captured in many studies [2].
Compared with pure genetic research, the combination of brain imaging phenotypes and
genetic data is more effective to analyze the genetic variation or assess genetic risks on
the brain.

Genome-wide association study (GWAS), proposed by Christopher et al., is a method
to find the associations between genetic variations and pathological phenotypes [3]. It
combines genetic variations at the single nucleotide polymorphism (SNP) level with imag-
ing phenotype and analyzed the associations between a region of interest (ROI) and SNPs
without any prior knowledge of pathology. At present, a large number of GWAS studies
have cataloged over 1200 risk alleles for common complex diseases and treats. Stein et al. [4]
proposed a voxel based GWAS (vGWAS) method to identify mutations in the entire human
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genome, reducing the probability of missing important genes and diseased brain regions.
The vGWAS was the first voxel based GWAS to find genetic variations associated with
brain structure in higher level of refinement. However, these methods were merely useful
to find single SNP associated with biological phenotypes [5]. In addition, most of these
variants are located in nongenetic regions, and further research is needed to determine
whether these variants directly cause the disease through affecting the regulatory factors,
or whether they are in a state of linkage disequilibrium with the pathogenic variants.

Since complex diseases were mostly caused by non-linear multiple genetic variations,
many methods for multiple SNPs analysis were derived [5–8]. By combining deep learning
stacked autoencoders and association rule mining, the SAERMA (stacked autoencoder
rule mining algorithm) method extended GWAS to explore significant SNPs associated
with extreme obesity [9]. Sofianita et al. [10] proposed a frequent pattern mining (FPM)
algorithm called iterative soft-thresholding (ISTA) algorithm to search frequent itemsets
(FIs) of SNPs on the level of individual genotyping data. Even though the studies focusing
on detecting meaningful SNP-sets attracted many researchers, there are still limitations on
the interpretation of the results [11]. Alzheimer’s disease (AD) is a kind of disease caused
by brain lesions and attracts the attention of more and more researchers [12]. To date, a lot
of studies imply that structural and functional abnormalities of the brain (e.g., phenotypic,
or molecular abnormalities associated with AD) are heritable [13–15]. FPM was a problem
worthy of intensive study because it was widely used on a series of data mining tasks such
as classification, clustering, and outlier analysis [16]. Identifying hidden patterns existing
in a dataset was the basic step of constructing association rules for data analysis. All these
studies were faced with the memory problems of runtime and computation effectively [17].

In this study, we proposed a framework to identify the SNPs that were highly related
to each other and analyzed the correlation of these SNPs with AD related phenotypes.
Firstly, to obtain the significance of voxel and SNP, we applied vGWAS to the genotyping
data and imaging data of 1515 participants. Then, we applied two algorithms, FP-Growth
and Eclat, in this research and used the association rules of hidden patterns sequentially
to mine closely connected frequent SNPs. Finally, we analyzed the correlation between
identified SNP frequent itemsets (FIs) and hippocampus, memory, and AD. Figure 1 shows
the workflow of this research.
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Figure 1. The workflow of this research. ADNI: Alzheimer’s Disease Neuroimaging Initiative;
MNI: Montreal Neurological Institute; SNP: single nucleotide polymorphism; GWAS: genome-wide
association study; FIs: frequent itemsets.

2. Materials and Methods
2.1. Data Source

We downloaded imaging and genotyping data from ADNI (Alzheimer’s Disease
Neuroimaging Initiative, adni.loni.usc.edu, accessed on 4 December 2021) dataset firstly.
A total of 1515 non-Hispanic white participants had high-quality genotype data and MRI
image data in ANDI database at the same time, so they were included in the study after
quality control [18] (Table 1).

Table 1. Demographic statistics of the participants in ADNI database.

Characters CN SMC EMCI LMCI AD

Number of samples 353 89 273 504 296
Gender(M/F) 187/166 36/53 153/120 309/195 166/130

Age (year, Mean ± SD) 74.9 ± 5.7 72.2 ± 5.7 71.3 ± 7.1 74.0 ± 7.6 74.7 ± 7.6
Education (year, Mean ± SD) 16.1 ± 2.7 16.8 ± 2.6 16.1 ± 2.6 16.0 ± 2.9 15.5 ± 2.9

CN: clinically normal; SMC: subjective memory concerns; EMCI: early mild cognitive impairment; LMCI: late
mild cognitive impairment; AD: mild Alzheimer’s disease dementia.

Then, MRI images of all 1515 samples were preprocessed with T1-weighted data
and standardized according to the Montreal Neurological Institute (MNI) space. Next, we
extracted all voxels’ volume using voxel-based morphometry. In short, the scan was aligned
with the T1-weighted template image, and divided into gray matter, white matter, and
cerebrospinal fluid, and scanned into the MNI space. Then, gray matter density (GMD) was
extracted and smoothed using an 8 mm FWHM kernel (182 × 218 × 182 scale). To reduce
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the calculation time, we down sampled the GMD image into 61 × 73 × 61 (271,633 voxels
totally). Finally, 49,900 voxels in the 116 AAL (Automated Anatomical Labeling) Atlas ROIs
were chosen for further analysis. The imaging data preprocessing workflow is shown in
Figure 2.

Figure 2. The workflow of imaging data pre-processing.

2.2. Data Processing and Correlation Matrix

In this study, we focused on 20 genes that were significantly associated with AD
(Supplementary Table S1) from large meta-analysis [19–22]. SNPs located in ±20 Kbps
of these 20 genes were extracted as candidate genetic variants. With the resulting 1784
SNPs (Hardy–Weinberg equilibrium test pHW ≥ 10−6), vGWAS was performed using
linear regression in plink (www.cog-genomics.org/plink/1.9/, accessed on 1 November
2021 [23]). Gender, age, education, and the top 4 principal component analysis results were
used as covariates. Then, the correlation matrix between SNPs and voxels was obtained.

Using GWAS results, we obtained the transactional dataset (TD, TD_num = 49,900 voxels)
consisted of significant items (here we just set p-value ≤ 0.05 as a threshold and ignored
the false discovery, for the latter frequency of occurrence could exclude some outliers of
SNPs). The support rate of an item li, (i = 1, 2, · · · , 1784) is defined as:

Support(li) = ∑TD_num
j=1 Identity(P(li) ≤ 0.05) (1)

Support_rate(li) =
Support(li)

TD_num
(2)

In Equation (1), Identity(.) is an indicator function. Support(li) is defined as the count
of transactions that contains the significant item li. In addition, the Support_rate(li) in
Equation (2) is the proportion of Equation (1) mentioned transactions to the total TD. Table 2
shows the first 10 frequent SNPs sorted by support rate of voxels on TD.

Table 2. Top 10 frequent SNPs sorted by coverage rate on 49,900 brain voxels.

NO. SNP Support Rate

1 rs6014724 0.46
2 rs11731587 0.39
3 rs7806 0.36
4 rs6024860 0.35
5 rs1060743 0.34
6 rs4243693 0.34
7 rs7790238 0.33
8 rs7219391 0.31
9 rs386274 0.30
10 rs6092321 0.30

2.3. Frequent Itemsets Mining

One of the urgent problems to solve in scientific research is how to mine meaningful
information from massive data rapidly and accurately [16]. Current frequent itemset mining
algorithms are summarized into 3 categories: join-based algorithms, tree-based algorithms,

www.cog-genomics.org/plink/1.9/
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and recursive suffix-growth algorithms [24]. In this study, we applied 2 methods, FP-
Growth and the Eclat algorithm, separately to identify SNPs and compare their performance
and the obtained results.

The FP-Growth [25] was an FPM algorithm with high counting efficiency and the cost
of its candidate generation process was relatively low. In the process, a chain of pointers
threads was used to store the items in the FP-Tree and these pointers were maintained to
form the conditional FP-Tree for an item. The FIs were extracted through the compressed
representation. The detailed process is summarized in Table 3.

Table 3. The FP-Growth algorithm process. (FP-Tree: FPT, current itemset suffix: P = φ, Support rate
threshold: s).

Begin:

If (FPT is a single path or empty):
For each subset of item in path (return FI and its support judge by s)

Else:
(

For each item i in chain of pointers
(

Generate conditional pattern base Pi = (i) ∪ P and get its support
Extract conditional FP-tree FPTi from chain of pointers in Pi
If (FPTi 6= ∅) recursion FP-Growth (FPTi, Pi, s)

)
)

end

Equivalence class transformation (Eclat) [26] was an algorithm to mine FIs using the
recursive intersection of vertical-form transaction list. Firstly, we obtained the frequent
1-itemsets according to the preset minimum support rate s. Subsequently, the frequent
(k + 1)-itemsets were generated by integrating the transactions of the frequent k-itemsets.
Finally, while all the FIs are different from each other and no other FIs can be found, this
repeating process ended. The database was scanned only once even when we want to
identify the (k + 1)-itemsets, so the running time was greatly reduced. The detailed process
is summarized in Table 4.

Table 4. The Eclat algorithm process. (frequent pattern itemset: FP, Support rate threshold: s).

Begin:

For each item li in FP
(

FPi = ∅
For each item li in FP and j > i
(

lij = li ∩ lj

Itemset
(

lij
)
= Itemset(li) ∩ Itemset

(
lj

)
If
(

Support_rate
(

lij
)
≥ s ) : add lij into FPi

Recurve Eclat(FPi, s)
)

)
end

2.4. Construct Confidence of Frequent Itemsets

We introduced the concepts of association rules and confidence into the FP-Growth
algorithm and Eclat algorithm, so that the frequent itemsets provided more information
about items (SNPs) in transactions (brain voxels). In order to measure the association
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between items in an FI, we defined a quantitative index of (A→B) named confidence as
Equation (3).

Con f idence(A→ B) =
Support(A ∩ B)

Support(A)
(3)

where Con f idence(A→ B) represents the confidence from A to B. Support(A ∩ B) repre-
sents the support of A and B; Support(A) represents the support of A. The relationship
between the association rules is determined by confidence, through which we identified
closely connected FIs.

We controlled the size of FIs by setting the experimental support rate threshold s.
Subsequently, we annotated 1-item FIs mined by the Eclat algorithm using SNPnexus (SNP
Annotation Tool (snp-nexus.org accessed on 1 November 2021)) [27] based on GRCh38
ensemble resources.

2.5. Statistical Analysis of SNPs

To assess the biological significance of identified FIs, we calculated the correlation be-
tween FIs and 4 different features closely related to AD (emotional responses, hippocampus,
memories, learning task) using NeuroSynth package (https://www.snp-nexus.org/v4/
accessed on 1 November 2021) [28]. This package takes thousands of published articles
reporting the results of fMRI studies, Interactive, it contains meta-analyses of 1334 terms,
and functional connectivity and coactivation maps for over 150,000 brain locations. We can
easily determine the association of a specific MRI image and term by this project.

For the FIs we discovered, epistasis analysis was applied to discover mutual effects
between two SNPs (PLINK v1.90b6.18, www.cog-genomics.org/plink/1.9/ accessed on 1
November 2021) [23]. Moreover, if two SNPs were in the same chromosome, we explored
the linkage disequilibrium (LD) between them.

3. Results

Figure 3 presents the number of FIs for 49,900 voxels in different support rate threshold
values. It showed that as the support rate thresholds increased, the number of FIs decreased
with the increase of support rate threshold s, and the 1-item numbers mined from different
algorithms are the same when the support rate threshold is 0.25. This indicates that our
mining results are consistent with algorithms.

Figure 3. Number of frequent itemsets (FIs) for 49,900 brain voxels in different support rate threshold
value using 2 algorithms.

https://www.snp-nexus.org/v4/
www.cog-genomics.org/plink/1.9/
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However, the number of FIs is approximately zero when the threshold is above
0.5. Because the 49,900 voxels were too large, we analyzed two smaller TDs: the right
hippocampus (302 voxels) and left hippocampus (281 voxels).

Since we used the smaller TDs, the number of FIs enlarged obviously (Figure 4). The
same as Figure 3, Figure 4 also showed that too strict a support rate threshold excluded FIs
that contained significant SNPs, while too loose a threshold included a large amount of
candidate FIs for testing. Moreover, the FIs number in the left hippocampus was larger than
that in the right hippocampus. This demonstrated that the significant SNPs aggregation
may exist in the left hippocampus. It is worth noting that the s is a support rate of an FI
in the full list, out final goal is to find closely connected items in the FIs, so the selection
of s should enable the later confidence between these frequent items to be relatively high
(>0.8 usually).

Figure 4. Number of 1-item FIs in different support rate threshold value for right hippocampus
(A) and left hippocampus (B).

Table 5 showed the top five k-item FIs sorted by support rate using the Eclat algo-
rithm (the complete results are in Figure 5 and Supplementary Table S2). The rs10277969,
rs10498633, and rs11731587 were all included in the top five k-item (k = 1, 2, 3, 4, 5) FIs of
right hippocampus and left hippocampus. In addition, 10 5-item FIs were found in the left
hippocampus totally while zero was found in the right hippocampus.

Table 5. k-item FIs ordered by support rate using Eclat algorithm. FI: frequent itemset.

Right Hippocampus Left Hippocampus

3-Item, 4-Item and 5-Item FIs (Top 5) Support Rate 3-Item, 4-Item and 5-Item FIs (Top 5) Support Rate

rs1047389, rs11731587, rs10277969 0.65 rs10277969, rs2242065, rs10498633 0.72
rs1047389, rs10498633, rs10277969 0.63 rs10277969, rs2242065, rs1047389 0.71
rs1047389, rs11731587, rs16881446 0.60 rs2242065, rs10498633, rs1047389 0.71
rs11731587, rs10498633, rs10277969 0.58 rs7563345, rs10498633, rs1047389 0.70
rs1047389, rs11731587, rs10498633 0.58 rs2242065, rs10498633, rs6082 0.70
rs1047389, rs11731587, rs10498633, rs10277969 0.56 rs10277969, rs2242065, rs10498633, rs6082 0.67
rs1047389, rs11731587, rs16881446, rs10277969 0.54 rs10277969, rs2242065, rs10498633, rs1047389 0.67
rs1047389, rs10277969, rs1918296, rs886969 0.53 rs7563345, rs2242065, rs10498633, rs6082 0.65
rs1047389, rs11731587, rs10277969, rs1918296 0.52 rs10277969, rs2242065, rs10498633, rs7563345 0.65
rs1047389, rs10498633, rs10277969, rs1918296 0.51 rs10277969, rs2242065, rs7000615, rs1047389 0.65
NULL NULL rs10277969, rs7563345, rs2242065, rs10498633, rs6082 0.63

rs10277969, rs1047389, rs2242065, rs10498633, rs6082 0.62
rs10277969, rs1047389, rs7563345, rs2242065, rs10498633 0.62
rs10277969, rs1047389, rs2242065, rs10498633, rs7000615 0.61
rs1047389, rs7563345, rs2242065, rs10498633, rs6082 0.61

Since we applied association rules and confidence into the Eclat algorithm, the associa-
tion rules of top five 2-item FIs in the right hippocampus are shown in Table 6. Notably, the
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confidence (defined by Equation (3)) of “rs1918296 to rs10277969” is 0.99, which means that
for voxels in ROI 37, 99% FIs that contain rs1918296 also contain rs10277969. There is high
confidence (≥0.90) in both “rs11731587 to rs1047389” and “rs1047389 to rs11731587”, which
indicates a strong relationship between the two items in one FI. A complete description of
association rules on FIs is in Supplementary Table S3.

Table 6. Association roles of 2-item FIs (top 5) and corresponding confidence.

2-Item FIs (Top 5)
in ROI 37 Confidence 2-Item FIs (Top 5)

in ROI 37 Confidence

rs10498633 to rs10277969 0.90 (0.74/0.82) rs10277969 to rs10498633 0.84 (0.74/0.88)
rs1047389 to rs10277969 0.94 (0.74/0.79) rs10277969 to rs1047389 0.84 (0.74/0.88)
rs11731587 to rs1047389 0.97 (0.71/0.73) rs1047389 to rs11731587 0.90 (0.71/0.79)

rs11731587 to rs10277969 0.92 (0.67/0.73) rs10277969 to rs11731587 0.76 (0.67/0.88)
rs10277969 to rs1918296 0.76 (0.67/0.88) rs1918296 to rs10277969 0.99 (0.67/0.68)

We annotated 21 frequent SNPs of right hippocampus and 20 of left hippocampus
derived from former mentioned FPM algorithms (Figure 5, Supplementary Table S2) using
SNPnexus, and the annotation results are shown in Figure 6. The predicted function
(Supplementary Table S4) of the SNP substitution [29] is based on its first nucleotide
location on the transcript. We find about 3/4 of these predicted functional ensemble
consequences located in intronic regions, and others in intronic (splice site), 5 utr, 3 utr,
5 upstream, and 3 downstream regions. This indicates that these SNPs play an important
role in functions such as transcription and translation.

Figure 5. Number of k-item FIs for s = 0.5 in right hippocampus and s = 0.6 in left hippocampus.
FI: frequent itemset.
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Figure 6. Predicted function of 21 frequent SNPs on right hippocampus (A) and 20 frequent SNPs on
left hippocampus (B).

To assess the biological significance of identified FIs, the correlations between four
AD-relating features and FIs were calculated, and the results are shown in Figure 7. We
observed that the correlation between “emotional responses” and FIs increases significantly
at 3-item in the right hippocampus and then stabilized. It also increases significantly
at 2-item in the left hippocampus and then returns to the same as 1-item. For the term
“hippocampus” and “memories”, their correlation with the right hippocampus dropped
(left hippocampus raised) notably when the item size of FI changed from 1 to 2 and then
gradually recovered with the item size increased to 3, 4, and 5. It is worth noting that the
feature “learning task” meets a great change of correlation with different item sizes and
different ROIs. Comparing with 1-item FI, the correlation between k-item FIs (k = 2, 3,
4) and “learning task” generally decreased, but that of 5-item FIs remained the same as
4-item FIs.

Figure 7. The growth rate of correlations between 4 features and identified FIs in right hippocam-
pus (A) and left hippocampus (B). The baseline 1-item FI is (rs10498633), 2-item FI is (rs10498633,
rs10277969), 3-item FI is (rs10498633, rs10277969, rs1047389), 4-item FI is (rs10498633, rs10277969,
rs1047389, rs11731587), 5-item FI is (rs10498633, rs10277969, rs1047389, rs11731587, rs2242065). Using
1-item as the benchmark, the growth rate of k-item (k = 2, 3, 4, 5) relative to 1-item was calculated.
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4. Discussion

In this study, we performed GWAS by jointly analyzing the genetic and imaging data
to explore their associations with AD. Then, two FPM methods (FP-Growth, and Eclat) and
association rules of FIs were used to mine multi-SNPs effects which were associated with
specific phenotypes. These two FPM methods have mined the same number of FIs, but the
Eclat algorithm has the highest mining efficiency and uses the least time (Supplementary
Table S5), which suits Chee et. al.’s research well [16]. In order to further explore the
associations between items in FI, we calculate the confidence and verify the rationality of
these FIs. In addition, functional annotations and feature-correlation are used to measure
SNPs’ additive influence on brain hippocampus.

From Jansen’s meta-GWAS study [30], seven SNPs were the significant genetic variants
(p-value ≤ 0.05) among the 21 frequent SNPs of right hippocampus derived from former
mentioned FPM algorithms (Figure 5, Supplementary Table S2), and the other 14 frequent
SNPs had poor correlation with AD. Similarly, we identified12 frequent SNPs that were in-
significant in GWAS study (p-value ≥ 0.05). Although these SNPs are not closely associated
with the overall pathology of AD, they have a wide range of influence on brain structural
variation, which are potential therapeutic targets for AD.

The hippocampus, located in the temporal lobe of cerebral cortex, was a cortical region
that regulated emotion, learn, motivation, and memory [31]. A lot of research works
have demonstrated the pathological effects of the hippocampal structural or functional
variation on human aging, AD, and dementia [32,33]. The volume of the hippocampus
changes when an individual has severe AD or dementia. So, we analyzed the frequent
itemsets in hippocampus in this study and some notable FIs were identified in right and left
hippocampus (Supplementary Table S2). Here, we discuss some FIs with high frequency.

4.1. 1-Item FI: (rs10498633)

The rs10498633 (chr14: 92926952, G>T) is located in the overlapped region of the
SLC24A4 and RIN3 gene. The support rate of this FI in the right hippocampus is 0.82 and
0.89 in the left hippocampus, which shows that rs10498633 has a wide range of effects on
the two brain regions. Yan et al. [34] found that rs10498633 in SLC24A4 significantly related
to the density and length of brain fibers connecting Cerebellum and Somato-Motor, Ventral
Attention and Cerebellum, Ventral Attention and Subcortical. In addition, rs10498633 has
an important effect on fiber anisotropy, length of fibers and the number of fibers. These
three indicators are three methods of brain connection measurement in Alzheimer's disease.
Moreover, Jun et al. [35] studied the association between rs10498633 and the gene encoding
tau protein. In the research of Tan et al. [36], SLC24A4 and RIN3 were associated with both
brain amyloidosis and tauopathy, implying that this SNP directly or indirectly contributes
to the risk of AD.

Georgios D. Mitsis et al. [37] proposed a definition that the top 20% voxels activated by
SNPs in a single-subject anatomical ROIs was a reliable and sensitive approach to represent
region of interest (ROI). For a frequent SNP, the top 20% voxels descending ranked by
heritability were kept, and if all their p-value were under 0.05, we determined that this ROI
was activated by the frequent SNP. Specifically, we counted the effects of a 1-item FI (the
rs10498633) on all 116 ROIs and 12 Hippocampus subregions. Table 7 presents the 10 Brain
ROIs and 6 Hippocampus subregions activated by rs10498633.
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Table 7. Brain ROIs and Hippocampus subregions activated by rs10498633.

Activated Brain ROIs: Activated Hippocampus Subregions:

NO. ROI NO. Subregion

1 Frontal_Inf_Orb 1 Hippocampal-amygdaloid Transition area
2 Olfactory 2 Cornu ammonis 1
3 Insula 3 Pre subiculum
4 Hippocampus 4 Cornu ammonis 4
5 Para Hippocampal 5 Para subiculum
6 Amygdala 6 Hippocampal fissure
7 Fusiform
8 Temporal_Pole_Sup
9 Temporal_Pole_Mid

10 Temporal_Inf

Previous research suggested that olfactory dysfunction in AD was associated with
pathological changes of tau protein in the olfactory bulb and olfactory projection area [38,39].
It was also confirmed that AD-related olfactory dysfunction was caused by pathological
changes of tau protein [40,41]. The insular cortex was a central brain region characterized
by multiple functions and extensive connections [42]. A recent study showed that the
insula was crucial in the human brain networks and affected many vulnerable regions of
AD [43]. In the review of Huri et.al, they summarized the insular cortex, AD, pathology,
and their effects on blood pressure variability [44].

Plenty of research on the activated six hippocampus subregions mentioned in Table 7,
Lora et al. [45] founded that Hippocampal-amygdaloid Transition area and Cornu ammonis
1 volume were biomarkers for dissociative amnesia. In the research of Christopher et al. [46],
disorder and depression symptom severities were negatively associated with each of HATA,
CA2/3, molecular layer, and CA4.

The reduction of hippocampal volume resulted in the memory loss of human, which
was a core feature of AD [47,48]. Anna et al. [49] presented the correlations between
hippocampal distance and AD using 7T MRI images. The amygdala, which collected
pathological proteins, was identified to play a crucial role in human brain as a central
communication system. In addition, this was considered to affect the progression and
diagnosis of many degenerative diseases, such as AD, chronic traumatic encephalopathy,
and Lewy body diseases [50,51]. In the research of Dingailu et al. [52], the fusiform gyrus
showed the epigenetic characteristics of AD. Mario et al. [53] reviewed the experimental
and humans studies, and summarized the evidence linking temporal epileptiform activity,
network hyperexcitability, and AD. In summary, the rs10498633 has an effect on AD
pathology in many brain ROIs.

4.2. k-Item FI: (k = 2, 3, 4, 5)

The 2-item FI (rs10498633, rs10277969) was found in both the right hippocampus
and left hippocampus. Their confidence level exceeds 0.8 (Table 8), indicating a high
dependence between the two SNPs. The rs10277969 (chr7: 148035192, A>G) is an Intron
Variant of the CNTNAP2 gene. Scharf, J. M., et al. conducted a meta-GWAS analysis of
Tourette’s syndrome (TS) and found that the rs10277969 in CNTNAP2 was an important
candidate SNP (P = 7.8 × 10−4) [54], and CNTNAP2 variants were associated with complex
disorders such as depression, schizophrenia, and dyslexia [55]. As shown in Figure 7, we
found that when the item size increased from 1 to 2, the correlation growth rates between
"learning tasks" and FIs in both regions increased. Nevertheless, the correlation growth
rate of “emotional responses” shows opposite trends in the two ROIs. This may be caused
by the different operating mechanisms and functions of the two regions.

For the 3-item FI (rs10498633, rs10277969, rs1047389), a new SNP is included (rs1047389,
chr4: 11401087, A>G, locate in Synonymous Variant gene HS3ST1). There is no research to
prove the influence of this SNP on AD or hippocampal morphological changes. However,
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when the new SNP “rs1047389” was added to FI, the correlations’ growth rate between
the identified FIs and four features (Figure 7) changed greatly, proving that it can greatly
affect the AD-related function. Moreover, Nicole et al. [56] found that the HS3ST2 gene, a
homologous gene of HS3ST1 [57], plays an important role in the pathology of tau associated
with Alzheimer’s disease.

Table 8. Association rules of some significant FIs.

Association Rules
Confidence

Right Hippocampus Left Hippocampus

rs10498633 to rs10277969 0.90 0.86
rs10498633, rs10277969 to rs1047389 0.85 0.91
rs10498633, rs10277969, rs1047389 to rs11731587 0.88 0.87
rs10498633, rs10277969, rs1047389, rs11731587 to
rs2242065 – * –

* The corresponding confidence is under 0.7.

The 4-item FI (rs10498633, rs10277969, rs1047389, rs11731587) was expanded from the
former mentioned 3-item FI (rs10498633, rs10277969, rs1047389). Its support rate is 0.56
in the right hippocampus and 0.60 in the left hippocampus (Table 5 and Supplementary
Table S3). Even though there is no direct evidence to support the role of rs11731587 (chr4:
11390069, G>A), the correlations between the identified FIs and four features (Figure 7)
prove that the new SNP “rs11731587” can greatly affect the “learning task”, and is negatively
correlated with the hippocampus. Therefore, we infer that this 4-item FI has an additive
effect and affects the structural features of the hippocampus.

In the 5-item FI (rs10498633, rs10277969, rs1047389, rs11731587, rs2242065), a new
phenomenon appears: as the item size rises to 5. Compared with other SNPs, the newly
added “rs2242065” (chr15: 58839298, C>T) has no obvious contribution to the growth rate
of correlation (Figure 7). In addition, rs2242065 has a low confidence with the previous
4-item FI “rs10498633, rs10277969, rs1047389, rs11731587” (Table 8). We can infer that a
larger FI is not always better, and too many SNPs in an FI will weaken the cumulative effect
of correlation.

The rs1047389 and rs11731587 were both located in chromosome 4 but not in a same
gene region as former mentioned, and the linkage disequilibrium (LD) between them was
calculated to be 0.447 (the other three variants are distributed on different chromosomes),
excluding the effect of LD and pleiotropism. From the epistasis analysis results in Supple-
mentary Table S6, we found a pair of significant epistasis SNPs, rs10498633 × rs10277969,
which further demonstrates and verifies the joint effect of the FI we mined.

5. Conclusions

In this study, we applied the Frequent itemset mining method into vGWAS and mined
a list of frequent SNP sets (rs10498633, rs10277969, rs1047389, rs11731587, rs2242065),
which were closely connected and several hippocampus features (i.e., emotional responses,
hippocampus, memories, and learning task) concerning Alzheimer’s disease. These closely
associated SNPs gave a novel comprehension of the progression and pathology for AD.
Moreover, our method provides a novel approach to discover genetic variants that have
widespread influence on a range of AD pathologic features.

Due to the interaction between genetic factors and environmental factors, complex
diseases have their complexity. As the item size increases, the identified FIs show an
additive trend of correlation with AD-related features. However, this trend disappears
when an FI contains too many items. There are also some limitations of our work. First, we
down sampled the MRI image before conducting GWAS analysis to save computational
costs, which may ignore some seemingly unimportant information. Second, although the
FIs results are derived from three different mining algorithms; further research is needed to
validate their effect in the pathological process of AD.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13020176/s1, Table S1: 20 genes associated with AD.
Table S2.1: FIs in ROI 37 (right hippocampus, s = 0.5). Table S2.2: ROI 38 (left hippocampus, s = 0.6).
Table S3.1: Association rules of FITs in ROI 37 (right hippocampus, confidence ≥ 0.7). Table S3.2:
Association rules of FITs in ROI 38 (left hippocampus, confidence≥ 0.7. Table S4.1: Predicted function
of the 21 SNPs (in ROI 37, right hippocampus,) substitution based on its location. Table S4.2: Predicted
function of the 20 SNPs (in ROI 38, left hippocampus) substitution based on its location. Table S5:
Calculate time of two algorithm under different s value. Table S6: Mutual epistasis effects between
SNPs. The complete code of data processing and frequent itemsets mining algorithms can be seen at
GitHub (https://github.com/CaoLuolong/FPM_on_GWAS, accessed on 4 December 2021).
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