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The cytochrome P450 (CYP) ω-hydroxylases are a subfamily of CYP enzymes. While CYPs
are the main metabolic enzymes that mediate the oxidation reactions of many endogenous
and exogenous compounds in the human body, CYP ω-hydroxylases mediate the
metabolism of multiple fatty acids and their metabolites via the addition of a hydroxyl
group to the ω- or (ω-1)-C atom of the substrates. The substrates of CYP ω-hydroxylases
include but not limited to arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid,
epoxyeicosatrienoic acids, leukotrienes, and prostaglandins. The CYP ω-hydroxylases-
mediated metabolites, such as 20-hyroxyleicosatrienoic acid (20-HETE), 19-HETE, 20-
hydroxyl leukotriene B4 (20-OH-LTB4), and many ω-hydroxylated prostaglandins, have
pleiotropic effects in inflammation and many inflammation-associated diseases. Here we
reviewed the classification, tissue distribution of CYP ω-hydroxylases and the role of their
hydroxylated metabolites in inflammation-associated diseases. We described up-
regulation of CYP ω-hydroxylases may be a pathogenic mechanism of many
inflammation-associated diseases and thus CYP ω-hydroxylases may be a therapeutic
target for these diseases. CYP ω-hydroxylases-mediated eicosanods play important roles
in inflammation as pro-inflammatory or anti-inflammatory mediators, participating in the
process stimulated by cytokines and/or the process stimulating the production of multiple
cytokines. However, most previous studies focused on 20-HETE,and further studies are
needed for the function and mechanisms of other CYP ω-hydroxylases-mediated
eicosanoids. We believe that our studies of CYP ω-hydroxylases and their associated
eicosanoids will advance the translational and clinal use of CYP ω-hydroxylases inhibitors
and activators in many diseases.
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INTRODUCTION

Cytochrome P450 (CYP) enzymes, discovered in the early 1960s, are a superfamily of heme
containing membrane bound monoxygenases which is available in microorganisms, plants,
animals, and humans (Guengerich et al., 2016; Elfaki et al., 2018). About 300,000 CYP
sequences have been collected from public and private sources (Nelson, 2018). The common
reactions catalyzed by CYPs include hydroxylation, heteroatom oxygenation and release,
epoxidation, and oxidation of double, triple, or aromatic π-bonds (Guengerich, 2001; McIntosh
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et al., 2014; Ortiz de Montellano, 2019). Mammalian CYP
enzymes are distributed in a variety of tissues and organs of
organisms, and play a core role in cell metabolism tomaintain cell
homeostasis mainly by mediating the metabolism of a large
number of xenobiotic and endobiotic molecules, including but
not limited to drugs, industrial toxins, steroids, cholic acid, and
fatty acids through regio-, chemo- and stereospecific oxidation,
peroxidation and reduction (Urlacher and Girhard, 2012;
Manikandan and Nagini, 2018). There are 57 CYP genes and
58 pseudogenes in human and are divided into 18 families and 43
subfamilies (Waring, 2020), which are mainly present in the
kidney, small intestine and liver tissues (Elfaki et al., 2018). The

CYP ω-hydroxylases, are a group of subfamilies of CYPs that
mediate the metabolism of multiple fatty acids via the addition of
a hydroxyl group to the ω- or (ω-1)-C atom of the substrates. This
includes polyunsaturated fatty acids (PUFAs), such as
arachidonic acid (AA), eicosapentaenoic acid (EPA),
docosahexaenoic acid (DHA) and their derivatives (Figure 1).
Those metabolites derived from AA, EPA and DHA are the
members of eicosanoids and function as inflammatory mediators,
which play an important role in the occurrence and progression
of many pathological conditions like cardiovascular disease,
cancer and diabetes (Westphal et al., 2011; Schunck et al.,
2018; Colombero et al., 2020). This article reviews the activity

FIGURE 1 | Simplified cascade of CYP ω-hydroxylases-mediated substrates and associated metabolites. The compounds with the same color indicate they are derived
from the same substrates. AA, arachidonic acid; AS, N-arachidonoylserine; COX, cyclooxygenase; CYP, cytochrome P450; DHA, docosahexaenoic acid; EET,
epoxyeicosatrienoic acid; EEQ, epoxyeicosatetreaenoic acid; EDPs, epoxydocosapentaenoic acid; EPA, eicosapentaenoic acid; HEPEs, hydroxyeicosapentaenoic acid; HEETs,
hydroxyepoxyeicosatrienoic acids; HPDHA, hydroperoxydocosahexaenoic acid; HpEPE, hydroperoxyeicosapentaenoic acid; HETE, hydroxyeicosatetraenoic acid; HDoHE,
hydroxydocosahexaenoic acid; LOX, lipoxygenase; LTA4, leukotriene A4; LTB4, leukotriene B4; PGH2, prostaglandin H2; PGE3, prostaglandin E3.
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and expression changes of CYP ω-hydroxylase in inflammation-
related diseases, and the enzyme-mediated metabolites, such as
20-HETE, which trigger the downstream signaling pathway and
induce more pathological changes.

METABOLISM OF N-3 AND N-6 PUFAS

As shown in Figure 1, PUFAs can undergo three main enzymatic
pathways: cyclooxygenase (COXs), CYP and lipoxygenase
(LOXs). COXs convert EPA, DHA and AA into PGH2, PGE3,
prostaglandin E3 (PGE3), 17(R)-hydroperoxydocosahexaenoic

acid (17(R)HPDHA) and prostaglandin H2 (PGH2) (Smith
and Song, 2002; Johnson et al., 2015). PGH2 can be further
hydroxylated by CYP4F8 to 19-OH-PGH2. Human have six
different kinds of LOXs (5-LOX, 12-LOX, 12/15-LOX, 15-LOX
type 2, 12(R)-LOX, and epidermal LOX), and 5-LOX is a key
enzyme in leukotriene biosynthesis in health and disease
(Rådmark et al., 2015). EPA, DHA and AA can be
metabolized by 5-LOX to 5-hydroperoxyeicosapentaenoic acid
(5-HpEPE), 17(S)HPDHA and leukotriene A4 (LTA4),
respectively. The metabolism by CYP pathways has been
described in detail in our previous review and will not be
included here (Luo and Liu, 2020).

FIGURE 2 | A putative schematic diagram of molecular mechanisms of CYP ω-hydroxylases-mediated eicosanoids on inflammation. * 19-HETE may take a pro-
inflammatory role in chronic kidney disease. However, it may also act as an anti-inflammatory mediator since it antagonized 20-HETE-induced inflammation. In addition,
19(S)-HETE was reported to be more active than 19(R)-HETE against Ang II-cell hypertrophy.

FIGURE 3 | Schematic of signaling cascades involving 20-HETE in inflammation disease. ↑: up-regulation; ↓: down-regulation. IL, interleukin; LOX, MAPK/ERK, the
mitogen-activated protein kinase/extracellular signal-regulated kinase; NF-κB, nuclear factor-kappa B; TNF-α, tumor necrosis factor alpha; EGFR, epidermal growth
factor receptor, VEGF, vascular endothelial growth factor; ROS, reactive oxygen species; PI3K, phosphoinositide 3-Kinases.
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CLASSIFICATION, TISSUE DISTRIBUTION,
AND BIOLOGICAL CHARACTERISTICS OF
CYTOCHROME P450 OMEGA
HYDROXYLASES

The human CYP enzymes that catalyze ω-hydroxylation of fatty
acids include CYP4A, CYP4B, CYP4F, and CYP2U1 (Chuang
et al., 2004; Hardwick, 2008) (Table1). These CYP enzymes can

hydroxylate saturated fatty acids, branched fatty acids,
unsaturated fatty acids, and some eicosanoids (Figure 1).

The CYP4A subfamilies are found in mammals, including
human, rat, and mice, and are mainly expressed in the liver and
kidney (Simpson, 1997). The mouse Cyp4a subfamily includes
Cyp4a10, Cyp4a1a, Cyp4a12b, and Cyp4a14. In mice, Cyp4a
mRNA expression levels in the liver and kidney are regulated
by sex hormones and/or growth hormones (Zhang and Klaassen,
2013). In human, there are two highly homologous CYP4A genes

TABLE 1 | CYP ω-hydroxylase orthologous genes expressed in various mouse and human organs.

Human Organs Cell type
specificity

Mouse Organs Cell type
specificity

References

4A11 liver, kidney, small intestine, lung,
heart, skin, adrenal, prostate, testis,
uterus, mammary, placenta

hepatocytes, proximal
tubular cells

4a10 liver, kidney Hrycay and Bandiera,
(2009)

4A22 liver, kidney hepatocytes 4a12a liver, kidney smooth muscle cell
embryonic fibroblast

Hrycay and Bandiera.
(2009); Yue et al. (2014)4a12b liver, kidney, lung

4a14 liver, kidney
4a29 testis, thmus
4a30b colon, testis
4a31 kidney, liver
4a32 kidney, liver

4B1 small intestine, lung, kidney, heart,
skin, spleen, thymus, pancreas,
skeletal muscle, eye, adrenal,
prostate, urinary bladder, testis,
uterus, mammary, placenta

alveolar cells type 1,
ciliated cells, club cells

4b1 liver, kidney, lung, brain,
skeletal muscle, spleen,
testis, small intestine

Hrycay and Bandiera.
(2009); Yue et al. (2014)

4F2 liver, small intestine, kidney, brain,
skin, prostate, testis

hepatocytes 4f13 liver, kidney, lung, heart, testis Choudhary et al. (2003);
Hrycay and Bandiera.
(2009)

4F3 liver, small intestine, trachea,
kidney, prostate

hepatocytes 4f14 liver, kidney, brain, testis Hrycay and Bandiera,
(2009)

4F8 small intestine, lung, stomach,
kidney, skin, eye, adrenal, prostate,
urinary bladder, testis, uterus.

urothelial cells,
glandular cells,
granulocytes

4f15 liver, kidney, lung, brain astrocyte, mesodermal
cells

Hrycay and Bandiera,
(2009)

4F11 liver, colon, heart, brain, skeletal
muscle, ovary, placenta, kidney

hepatocytes, ductal
cells, urothelial cells

4f16 liver, kidney, lung, brain,
heart, spleen

Hrycay and Bandiera,
(2009)

4F12 liver, small intestine, stomach,
colon, kidney, heart, skin, prostate,
ovary, placenta

enterocytes, paneth
cells, undifferentiated
cells

4f17 ubiquitous expression in
subcutaneous fat pad adult,
ovary and 26 other tissues

smooth muscle cells,
cardiomyocytes,
astrocyte

Hrycay and Bandiera,
(2009)

4F22 liver, small intestine, kidney, brain,
skin, skeletal muscle, testis,
placenta

granulocytes,
Suprabasal

4f18 liver, kidney, lung, spleen,
ovary

Hrycay and Bandiera.
(2009); Yue et al. (2014)

keratinocytes,
glandular cells

4f37 duodenum, large intestine
and 20 other tissues

skin langerhans cells,
spermatid, dendritic
cells

spermatogonia 4f39 stomach, testis, bladder,
kidney, lung

spermatid

4f40 testis, colon, duodenum embryonic stem cells
4V2 eye, ovary hepatocytes, muller

glia cells
4v3 liver, eye Hrycay and Bandiera,

(2009)
4X1 liver, small intestine, trachea, lung,

colon, kidney, heart, brain, skin,
spleen, thymus, pancreas, skeletal
muscle, prostate, testis, ovary,
uterus, mammary, placenta

ciliated cells 4x1 liver, kidney, lung, brain,
heart, spleen

Neuron Hrycay and Bandiera,
(2009)

4Z1 liver, kidney, skeletal muscle,
mammary, ovary

alveolar cells type 1 None Hrycay and Bandiera,
(2009)

2U1 thymus, heart, brain, bladder,
prostate, uterus, testis, kidney, liver,
lung, spleen, skeletal muscle,
trachea, salivary gland, skin,
pancreas, adrenal

melanocytes,
peritubular cells

2u1 thymus, brain, heart, liver,
testis, kidney, lung, skeletal
muscle, spleen, skin

Chuang et al. (2004);
Karlgren et al. (2004);
Choudhary et al. (2005)
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(CYP4A11 and CYP4A22) located on chromosome 1, and showed
96% sequence identity (Bellamine et al., 2003; Savas et al., 2003;
Hsu et al., 2007). However, rat CYP4 has four members (genes
Cyp4a1, Cyp4a2, Cyp4a3, and Cyp4a8). CYP4A subfamily
proteins metabolize arachidonic acid to produce 19-
hydroxyeicosatetraenoic acid (19-HETE) and 20-HETE,
playing an important role in lipid homeostasis related to fatty
acids and eicosanoic acids. Several studies have shown that
CYP4A11 contributes about 13 and 33% to the formation of
20-HETE by ω-hydroxylation of arachidonic acid in the human
liver and kidney (Powell et al., 1998; Lasker et al., 2000). The
functions of the CYP4A22 have not been elucidated fully.

The tissue distribution of CYP4B1 varies widely among species.
Cyp4b1 was originally discovered from the rabbit lung in the mid-
1970s (Arinç and Philpot, 1976). In mice, Cyp4b1 expression is
predominantly present in the brain, lung, and small intestine, while
low in the spleen, testis, liver, and skeletal muscle (Baer and Rettie,
2006). Human CYP4B1 is mainly found in lung microsomes,
accounting for 70% of the total, and remaining parts in the heart,
skeletal muscle, kidneys, and prostate glands (Choudhary et al., 2005).
CYP4B1 is specialized in the ω-hydroxylation of short-chain fatty
acids and themetabolismof exogenous compounds including valproic
acid, 3-methylindole, 4-ipomeanol, 3-methoxy-4-aminoazobenzene,
and many aromatic amines (Figure 1B) (Baer and Rettie, 2006). The
tissue specificity, genetic polymorphisms, andmetabolic capabilities of
human CYP4B1 are still under investigation because of the difficulty
in allogeneic expression of the human CYP4B1 gene.

Human has seven CYP4F enzymes encoded by six different
genes in the CYP4F gene cluster (19p13.1) on chromosome 19.
CYP4F2 enzyme, also known as leukotriene B4 (LTB4) omega-
hydroxylase, is located on chromosome 19 p13.11. CYP4F2 is
approximately 20 kbp, consisting of 13 exons and 12 introns
encoding 520 amino acids (Kikuta et al., 1999). It is mainly
distributed in tissues and organs such as liver, kidney, lung, white
blood cells, and particularly endoplasmic reticulum (Hsu et al.,
2007; Hirani et al., 2008). CYP4F2 is a monooxygenase that
catalyzes many reactions, including drug metabolism, the
synthesis and metabolism of lipids, steroids, and cholesterol. It
can affect the metabolism of AA and catalyze LTB4., a metabolite
of AA mediated by (5-LOX), serving as the main ω-hydroxylase
of AA and LTB4. Eun et al. found that the mRNA expression
levels of CYP4F2 and CYP4F12 in hepatocellular carcinoma
tissues were significantly lower than those in normal liver
tissues, which was closely related to the overall survival rate of
patients with hepatocellular carcinoma (Eun et al., 2018).
CYP4F3, an unusual human CYP gene, was initially identified
as the ω-oxidase that catalyzes LTB4 in human neutrophils (Shak
and Goldstein, 1984; Kikuta et al., 1993; Christmas et al., 2001).
Christmas et al. subsequently identified an alternative splice form
of CYP4F3 in the liver and specified two subtypes, CYP4F3A and
CYP4F3B (Christmas et al., 2001). CYP4F3A is expressed in
neutrophils but not in the liver and has a very high affinity to
LTB4. In contrast, CYP4F3B is mainly expressed in the human
liver and kidney, but not in myeloid cells, which is more active in
the hydroxylation of AA and other ω-3 polyunsaturated fatty
acids (PUFA) than in hydroxylating LTB4 (Fer et al., 2008). In rat,
Cyp4f6 converts LTB4 to form 19- and 18-hydroxy-LTB4 with an

apparent K(m) of 26 M and Cyp4f5 converts LTB4
predominantly to 18-hydroxy-LTB4 with an apparent K(m) of
9.7 M (Figure 1C). CYP4F5 and CYP4F6 are active in the lung
and to some extent in the brain, kidney and testis. CYP4F5 and
CYP4F6, due to their ability to metabolize LTB4, may play an
important role in regulating the inflammatory response in these
organs (Bylund et al., 2003).

Human CYP4V2 protein is expressed in eye, ovary, and liver
(Li et al., 2004), while mouse Cyp4v3 is mainly detected in the
liver and retina (Jenkins et al., 2006; Liu et al., 2006). Human
CYP4X1 is very widely expressed transcriptionally in adult
human tissues, predominantly in skeletal muscle, trachea, and
aorta (Hsu et al., 2007). Al-Anizy et al. reported that Cyp4x1 was
a major CYP protein in mouse brain (Al-Anizy et al., 2006).
CYP4Z1 gene is a unique CYP4 gene in human, and no
orthologous gene has been found in mice at present. CYP4Z1
is mainly distributed in human liver, kidney, skeletal muscle,
testis, and mammary, and is highly expressed in breast cancer,
and a regulator of tumor angiogenesis and growth of breast
cancer (Yu et al., 2012; Wang et al., 2016; Nunna et al., 2017;
Yang et al., 2017). The substrates of CYP4Z1 and associated
metabolism have not been fully understood.

CYP2U1 is an “orphan” enzyme which was originally
identified as a member of CYP2 subfamily by Chuang et al.
(2004) and Karlgren et al. (2004). To date, the CYP2U1 gene, the
only reported member of the CYP2U subfamily, is over 18 kb
long and located on chromosome 4q25 (Devos et al., 2010).
Human CYP2U1 shares 89 and 83% amino acid sequence identity
with rat and mouse Cyp2u1, respectively (Dhers et al., 2017).
Studies have shown that human CYP2U1 mRNA is expressed
predominantly in thymus and cerebellum, and similar findings
were observed in rat andmice (Chuang et al., 2004; Karlgren et al.,
2004; Dhers et al., 2017). However, human CYP2U1 protein was
only detected in brain, platelets and megakaryocytic Dami cells
(Dhers et al., 2017). Likewise, in rat Cyp2u1 protein was also
present only in the cerebellum and thymus (Karlgren et al., 2004).
CYP2U1 showed hydroxylase activity for fatty acids and
N-arachidonoylserine (AS) (Figure 1D) (Dhers et al., 2017).
Although CYP2U1 has been shown to be involved in some
diseases such as breast cancer and hereditary spastic
paraplegia, the biological role is still largely unknown (Luo
et al., 2020). The cell-specific distribution of CYP ω-hydrolases
is key to the local pro-inflammatory effects observed across
various diseases. While a systemic study of the cell-specific
distribution of these enzymes was lacked, CYP4A, CYP4F, and
CYP4B1 have been frequently investigated in epithelial cells,
endothelial cells, platelet and immunocytes (Table 1) (Kikuta
et al., 2002; Kikuta et al., 2004; Cheng et al., 2014; Li et al., 2015;
Chen et al., 2019).

ORTHOLOGOUS CYTOCHROME
P450 ω-HYDROXYLASE GENES IN HUMAN
AND MICE
Many different species share homology of genes. Generally, two
genes are homologous genes when their sequence similarities are
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over 80%. Homologous sequences can be further divided into two
types: orthology and paralogy (Koonin, 2005). A recent study
showed that 84% of mouse-human orthologous genes have been
conservatively evolved in the expression profiles (Hrycay and
Bandiera, 2009). Thirty six pairs of orthologous CYP genes have
been found to perform similar or identical functions in human
and mice, which facilitates to study the functions of human CYPs
by using murine models (Nelson et al., 2004). The CYP
ω-hydroxylase orthologous genes in human and mice are
shown in Table1.

EFFECTS OF GENDER ON CYTOCHROME
P450 ω-HYDROXYLASE

The expression of CYP ω-hydroxylases has gender differences.
Cyp4a10 is expressed in both male and female mice, while
Cyp4a12a is male-specific and regulated by androgen, and
Cyp4a14 is strongly expressed in female mice (Wu et al.,
2013). Cyp4a14 (−/−) mice have been found to exhibit male-
specific hypertension. Whereas administration of androgens to
male or female rat or mice results in hypertension (Holla et al.,
2001). Both 20-HETE and androgens have been found to be
strongly associated with hypertension and other cardiovascular
diseases (Reckelhoff, 2005; Ward et al., 2005). However, the
connection and potential mechanism between Both 20-HETE
and androgens have not been clarified.

CYTOCHROME P450 ω-HYDROXYLASES
AND INFLAMMATION

CYP4A, CYP4B, CYP4F, and CYP2U1 are the subfamilies of CYP
ω-hydroxylases that catalyze the hydroxylation of AA, other
medium- and long-chain fatty acids, and the derivatives of
fatty acids like LTB4, EETs, and prostaglandins. The CYP
ω-hydroxylases-mediated metabolites derived from above-
mentioned substrates, particularly 20-HETE, have been shown
to play a vital role in inflammatory diseases. Here, we discuss the
role of CYP ω-hydroxylases in inflammation.

Recent studies have shown that inflammation could
significantly decrease the expression of CYP monooxygenases
in the heart, kidney, and liver, while increase the expression of
CYP ω-hydroxylases. As a result, CYP ω-hydroxylase mediated
conversion of the corresponding metabolites of EETs were
decreased, while 20-HETE was increased. These changes may
participate in the onset and progression of various diseases
through inflammatory response (Anwar-mohamed et al.,
2010). In an in-vivo study, salidroside can facilitate
reprogramming of CYP4A-mediated arachidonic acid
metabolism in macrophages in the treatment of monosodium
urate crystal-induced gouty arthritis. The study reported that
salidroside could reduce the production of inflammatory factors
TNF-α and IL-1β by down-regulating CYP4A to polarize
macrophages away from the M1 phenotype, and ameliorate
inflammation (Liu et al., 2019). Ashkar et al. found that
retinoic acid induces corneal epithelial CYP4B1 gene

expression and stimulates the synthesis of inflammatory 12-
hydroxyeicosanoic acid (Ashkar et al., 2004).

In a rodent model of lipopolysaccharide (LPS)-induced
inflammatory infection and injury, the mRNA expressions of
Cyp4f4 and Cyp4f5 were decreased by 50 and 40%, respectively,
in the liver, while the concentrations of leukotrienes and
prostaglandins were increased. When Cyp4f was up-regulated,
leukotrienes and prostaglandin mediators were decreased, thus
alleviating inflammation (Cui et al., 2003). The decrease in
leukotrienes and prostaglandins caused by upregulation of
Cyp4f may be accounted for the metabolic shunting among
CYPs, COXs, and LOXs, and/or Cyp4f-mediated metabolism of
leukotrienes and prostaglandins. In addition, Kalsotra et al.
reported that in a rat model of traumatic brain injury,
inflammatory cells in the airway and alveolar space migrated
extensively, and further secondary damage could be relieved by
reducing LTB4 via activating LTB4 decomposition by induced
CYP4Fs, which opened up new possibilities for the treatment of
post-traumatic pulmonary inflammation (Kalsotra et al.,
2007b). CYP4F2, the major LTB4 hydroxylase expressed in
human liver, may play an important role in regulating the
circulation and liver levels of LTB4 (Johnson et al., 2015). In
addition to LTB4, it was also found that lipoxin A4 (LXA4) and
hydroxyeicosanoic acid in rodent hepatocytes could be
degraded via the ω-hydroxylation by recombinant CYP4Fs.
Proinflammatory cytokines, such as IL-1β, IL-6, and TNF-α,
induce CYP4Fs via STAT3 signaling. The anti-inflammatory
factor IL-10 inhibits the expression of CYP4F (Kalsotra et al.,
2007a).

With the continuous innovation and development of
biotechnology, research tools of chemical synthesis and gene
editing continue to expand, research efficiency of CYP
ω-hydroxylase is greatly improved. The associations of CYP
ω-hydroxylases with pathogenesis of diseases are gradually
discovered. Currently, activators and inhibitors of CYP
ω-hydroxylase isomers, and CYP ω-hydroxylase knockout
(KO) and transgenic mice are gradually being utilized in many
studies. Tables 2, 3 summarizes the commonly used inhibitors
and inducers of CYP ω-hydroxylase and CYP ω-hydroxylase KO
and transgenic mice models.

THE ROLES OF CYTOCHROME P450
ω-HYDROXYLASE-MEDIATED
EICOSANOIDS IN
INFLAMMATION-ASSOCIATED DISEASES

Eiconanoids have different modulating inflammation effects on
cardiovascular system, brain, liver, and lung during pathological
condition. Here, we summarized the effects of eiconanoids on
inflammatory diseases in different tissues (Table 4). When these
organs are damaged by inflammation caused by a variety of
pathogenic factors, excessive inflammatory mediators including
eicosanoids will be released locally, which can mediate the
inflammatory reactions in local tissues (Wallace, 2019; Yao
and Narumiya, 2019; Calder, 2020).
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20-HETE is the major metabolite of arachidonic acid mediated
by CYP ω-hydroxylase, which plays an important role in the
regulation of cardiovascular disease, renal function disorder,
carcinogenic condition, and other inflammatory diseases.
CYP4A11 and CYP4F2 are the primary enzymes that mediate
the formation of 20-HETE in human liver and kidney
microsomes (Lasker et al., 2000). Vascular inflammation plays
an important role in the occurrence of many diseases, including
atherosclerosis, hypertension, and vascular remodeling. 20-HETE
can promote vascular inflammation by increasing adhesion
molecules and inflammatory cytokines due to endothelial cell
activation (Hoopes et al., 2015). 20-HETE can activate nuclear

factor-kappa B (NF-κB) and stimulate the production of
inflammatory cytokines in human endothelial cells (Ishizuka
et al., 2008). Recent studies have proved that 20-HETE could
bind to the G-protein coupled receptor 75 (GPR75) to promote
c-Src-mediated-EGFR and trigger the downstream MAPK
pathway to induce ACE expression and endothelial
dysfunction in human endothelial cells (Garcia et al., 2017;
Pascale et al., 2021). 20-HETE/GPR75 also triggered PI3K/
AKT pathway to promote vascular smooth muscle cells
migration, hypertrophy. Moreover, 20-HETE/GPR75 is
involved in the activation of intracellular signaling in prostate
cancer cells, leading to the more aggressive phenotypic

TABLE 2 | The inhibitors and inducers of CYP ω-hydroxylase.

Drug Inhibitor/Inducer References

N-hydroxy-N’-(4-butyl-2-methylphenyl)-formamidine (HET0016) selective inhibitor of 4A Sato et al. (2001); Guo et al. (2005)
12,12-dibromododec-11-enoic acid (DBDD) selective inhibitor of 20-HETE synthesis Kroetz and Xu, (2005)
10-undecynyl sulfate (10-SUYS) selective inhibitor of 20-HETE synthesis Kroetz and Xu, (2005)
N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS) selective inhibitor of 20-HETE synthesis Kroetz and Xu, (2005)
TS-011 selective inhibitor of 20-HETE synthesis Miyata et al. (2005); Edson and Rettie, (2013)
Flavonoid (FLA-16) selective inhibitor of 4A Wang et al. (2017)
Terminal acetylenic fatty acids (17- ODYA) nonselective inhibitor Kroetz and Xu, (2005)
1-aminobenzotriazole (ABT) nonselective inhibitor Kroetz and Xu, (2005); Sun et al. (2011)
Acetylshikonin nonselective inhibitor Shon et al. (2017)
Fibrates inducer of 4A11 Edson and Rettie, (2013)
Rifampicin inducer of 4F12 Hariparsad et al. (2009)
Lovastatin inducer of 4F2 Edson and Rettie, (2013)
Mevastatin inducer of 4F2 Edson and Rettie, (2013)
Genistein inducer of 4F2 Hsu et al. (2011); Edson and Rettie, (2013)
AICAR inducer of 4F2 Bumpus and Johnson, (2011)
Resveratrol inducer of 4F2 Edson and Rettie, (2013)

TABLE 3 | CYP ω-hydroxylase KO and transgenic mouse modela.

Gene Strain name References

Cyp4b1 C57BL/6N -Cyp4b1tm1a(KOMP)Wtsi Baldarelli et al. (2021)
C57BL/6N-Cyp4b1tm1b(KOMP)Wtsi

Cyp4f13 Cyp4f13Gt(OST14770)Lex

Cyp4f14 C57BL/6N-Cyp4f14tm1a(EUCOMM)Hmgu/Ieg

C57BL/6N-Cyp4f14tm1b(EUCOMM)Hmgu/Ieg

Cyp4f16 C57BL/6N-Cyp4f16tm1a(EUCOMM)Wtsi/BayMmucd

C57BL/6N-Cyp4f16tm1b(EUCOMM)Hmgu/BayMmucd

C57BL/6N-Cyp4f16tm1b(KOMP)Wtsi/H

C57BL/6NTac-Cyp4f16tm1a(KOMP)Wtsi/H

Cyp4f18 B6.Cg-Cyp4f18tm1.1Pchr

B6.Cg-Cyp4f18tm1.2Pchr

B6.Cg-Cyp4f18tm1.1Pchr/Mmmh

C57BL/6N-Cyp4f18em1(IMPC)Wtsi/WtsiCnrm

Cyp4v3 B6(Cg)-Cyp4v3tm1(KOMP)Vlcg

C57BL/6NCrl-Cyp4v3em1(IMPC)Mbp/Mmucd
Cyp4x1 B6;129S5-Cyp4x1tm1Lex/Mmucd

B6;129S5-Cyp4x1tm1Lex/Tac
C57BL/6-Cyp4x1tm1Beld/H

Cyp2u1 B6N(Cg)-Cyp2u1tm1b(EUCOMM)Wtsi/J
B6N(Cg)-Cyp2u1tm1a(EUCOMM)Wtsi/J
C57BL/6N-Atm1Brd Cyp2u1tm1a(EUCOMM)Wtsi/IcsOrl
C57BL/6N-Atm1Brd Cyp2u1tm1a(EUCOMM)Wtsi/ JMmucd
C57BL/6N-Atm1Brd Cyp2u1tm1b(EUCOMM)Wtsi/ JMmucd

aThe information was collected from http://www.informatics.jax.org/.
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differentiation of PC-3 cells (Cárdenas et al., 2020). In endothelial
cells, 20-HETE can promote reactive oxygen species (ROS)
production through NADPH oxidase to activate the L-type
Ca2+channel (Medhora et al., 2008; Zeng et al., 2010; Bou-
Fakhredin et al., 2021). In the ischemia-reperfusion injury,
inhibition of 20-HETE synthesis reduced oxidative stress and
the expression of vascular TNFα, IL-1β and IL-6 (Regner et al.,
2009; Hoff et al., 2011). In addition, Han et al. found that the use of
20-HETE synthesis inhibitor HET0016 to inhibit the synthesis of
20-HETE can reduce the volume of brain injury and neurological
deficit, alleviating neuronal death, ROS production, gelation
activity, and inflammatory reaction, which indicates that
inhibition of 20-HETE synthesis protects brain injury after
intracerebral hemorrhage without inhibiting angiogenesis (Han
et al., 2019; Cui et al., 2021). Inhibition of 20-HETE production can
also attenuate kidney injury in a rodent model of acute kidney
injury (AKI) induced by ischemia/reperfusion (I/R) (Hoff et al.,
2011; Hoff et al., 2019). 20-HETE promotes tumor angiogenesis
and metastasis by upregulation of VEGF andMMP-9 via PI3K and
ERK1/2 signaling in the human NSCLC cells (Yu et al., 2011).
Increased expression of CYP4A and CYP4F enzymes in human
cancer tissues and the use of 20-HETE inhibitors and antagonists
in the treatment of cancer have been reported (Amet et al., 1998).

In humans, 19-HETE is mainly synthesized by the
CYP2C19 and CYP2E1 pathways, with less synthesis by the
CYP ω-hydroxylase pathway (Shoieb et al., 2019). In normal
physiology, 19-HETE can function as an endogenous
antagonist of 20-HETE in mediating renal vasoconstriction
by blocking the vasoconstriction of renal arterioles caused by
20-HETE (Shoieb et al., 2019). It has been reported that CYP-
mediated 19-HETE has a strong correlation with
cardiovascular events and can act as a prognostic marker
for patients with acute coronary syndrome (Shoieb et al.,
2019). It should be noted that 19-HETE was usually
investigated as a racemic mixture, however, 19(S)-HETE
was reported more active than 19(R)-HETE against Ang II-
cell hypertrophy (Shoieb and El-Kadi, 2018). In the heart, 19-
HETE is the major subterminal HETE formed in the cardiac
tissue of rat, which not only plays a protective role in cardiac
hypertrophy, but also participates in the pathogenesis of
chronic kidney diseases (Kajiwara et al., 2013; El-Sherbeni
and El-Kadi, 2014; Shoieb et al., 2019).

CYTOCHROME P450
ω-HYDROXYLASE-MEDIATED PRODUCTS
OF LTB4

LTB4 is an inflammatory mediator involved in inflammatory diseases
such as rheumatoid arthritis, asthma and Alzheimer’s disease, which
can bemetabolized by CYP4F2, CYP4F3A and CYP4F3B to form 20-
OH-LTB4 (Kalsotra and Strobel, 2006) (Lorenzetti et al., 2019) (Brain
andWilliams, 1990; Wang et al., 2008). LTB4 is converted by CYP4F
to the more polar 20-OH-LTB4 in human polymorphonuclear
leukocytes (PMN) (Soberman et al., 1988). However, 20-OH-LTB4
expressed similar functional activity to LTB4, and similar binding
characteristics with human PMN to LTB4. This indicated that the
arachidonic acid metabolite oxidized at ω-site of LTB4 may be a more
important inflammatory factor than LTB4 (Clancy et al., 1984).
Analysis of peritoneal metabolites in patients with purulent
peritonitis or non-performatives appendicitis revealed that 20-OH-
LTB4 might be involved in the pathophysiological mechanisms of
suppurative inflammation (Kikawa et al., 1986). A recent study
showed that 20-OH-LTB4 might function as a potential biomarker
for the diagnosis and risk assessment of intracerebral hemorrhage
stroke (ICH) to distinguish the patients with ICH from healthy people
and the patients with acute ischemic stroke (AIS). This finding
provides a new strategy for the diagnosis, prevention and
treatment of ICH (Zhang et al., 2021). In mouse myeloid cells,
Cyp4f18 (the functional orthologue of human PMN CYP4F3A)
catalyzes the conversion of LTB4 to 19-OH-LTB4. Inhibition of
Cyp4f18 led to a 220% increase in the PMN chemotaxis to LTB4
inmice (Christmas et al., 2006).While theω-hydroxylated products of
LTB4 play different physiological roles in some diseases, the
mechanisms in inflammation are still unclear, which needs
further study.

CYTOCHROME P450
ω-HYDROXYLASE-MEDIATED PRODUCTS
OF EPOXYEICOSATRIENOIC ACID
In vivo, EETs are not only hydrolyzed by sEH and mEH, but also
metabolized by CYP ω-hydroxylases. EETs are one of the best
endogenous substrates for rat Cyp4a subtypes so far. 8(9)-,
11(12)- and 14(15)-EET could be metabolized by rat Cyp4a

TABLE 4 | Eicosanoids roles in inflammatory diseases.

Eicosanoids Tissue Effects Disease References

20-HETE cardiovascular
system

stimulation of smooth muscle cell contractility, migration,
proliferation activation of endothelial cell dysfunction and
inflammation

Hypertension, cardiac hypertrophy and
myocardial infarction

Fan et al. (2016)

kidney inhibits sodium transport, blocks Na/K-ATPase and
potassium channels, interacts with ANG II, dopamine,
endothelin, and parathyroid hormone

Polycystic kidney disease, acute renal failure
(AKI), and chronic kidney disease (CKD)

Imig, (2013); Fan and
Roman, (2017)

brain regulates cerebral vascular tone Stroke, subarachnoid hemorrhage (SAH) Elshenawy et al. (2017)
lung contributes to the regulation of airway resistance and

pulmonary vascular tone
obstructive airway diseases and asthma Fan et al. (2016);

Elshenawy et al. (2017)
19(S)-HETE cardiovascular

system
protects against angiotensin II (Ang II)-induced cardiac
hypertrophy

Cardiac Hypertrophy Elkhatali et al. (2015)

20-OH-LBT4 bronchus unknown nonallergic asthma Bruijnzeel et al. (1993)
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into corresponding 19- and 20-hydroxylated EET (HEET)
(Cowart et al., 2002). Cyp4a1 showed a higher affinity for
8(9)-EET, while Cyp4a2, Cyp4a3, and Cyp4a8 have a higher
hydroxylase activity for 11 (12)-EET (Cowart et al., 2002).
ω-HEETs could also serve as endogenous PPARα ligands
(Muller et al., 2004). Muller et al. reported that CYP-
dependent production of EET/HEET might be an anti-
inflammatory index (Muller et al., 2004). However, there is no
evidence to show the functions of ω-hydroxylation of EET in
humans (Xu et al., 2011).

CYTOCHROME P450
ω-HYDROXYLASE-MEDIATED PRODUCTS
OF PROSTAGLANDINS
Since 1971, a series of studies have identified the Cyp4a
hydroxylase family from multiple organs in rabbit and mouse
liver (Kikuta et al., 2002). These enzymes catalyze the
hydroxylation of multiple prostaglandins (PGE1, PGE2, PGF2,
PGD2, PGA1, and PGA2) as well as ω- and (ω-1)-hydroxylation of
palmitate. In humans, CYP4A11 can hydroxylate three PGH2

analogs (U51605, U44069, U46619), although it cannot
hydroxylate PGH2 (Oliw et al., 2001). Moreover, PGH2 could
be converted by CYP4F8 into 19(R)-OH-PGH2 in prostate,
seminal vesicles, and several extrahepatic tissues (Oliw et al.,
1988; Hardwick, 2008). PGE2 is closely related to the production
of cytokines in antigen presenting cells and plays an important
role in the stage of inflammatory regression, while 19(R)-OH-
PGE2 is an agonist of PGE2 receptor (Serhan et al., 2007). At
present, PGs have been studied extensively but little is known
about the function of their hydroxylated products, and further
studies are required to determine the function in various tissues
and species.

CYTOCHROME P450
ω-HYDROXYLASE-MEDIATED
EICOSANOIDS AND CYTOKINES
CYP ω-hydroxylase-mediated eicosanoids are also involved in
the regulation of cytokines, especially 20-HETE in
cardiovascular inflammation has been widely studied. Cheng
et al. found that 20-HETE could mediate the endothelial nitric
oxide synthase (eNOS) uncoupling and endothelial dysfunction
through activating tyrosine kinase, MAPK and IKK in bovine
aortic endothelial cells (Cheng et al., 2010). In addition, 20-
HETE can also stimulate NF-κB and MAPK/ERK to increase
protein expression levels of IL-8 and adhesion molecule ICAM,
leading to endothelial cell activation (Ishizuka et al., 2008;
Cheng et al., 2010). In the spontaneously hypertensive rat
model, the inhibition of 20-HETE by HET006 (CYP
ω-hydroxylase inhibitor) could significantly reduce oxidative
stress and the mRNA expression of TNFα and IL-1β, and the
NF-κB activation (Toth et al., 2013). Cheng et al. developed a
new constitutively stimulated 20-HETE biosynthesis mouse
model, the Tie2-CYP4F2-Tr mouse. By activating the

NADPH oxidase and VEGF pathway, the model has the
phenotypic characteristics of oxidative stress, increased
expression of NADPH oxidase and IL-6, and increased cell
proliferation and angiogenesis, which can be used to further
study the physiopathological effect of 20-HETE in the
cardiovascular system (Cheng et al., 2014).

CONCLUSION

CYP ω-hydroxylase and metabolite have been reported to play an
important role in the inflammatory process (Figure 2). In a
variety of inflammatory diseases, the activity of CYP
ω-hydroxylase is regulated by inflammatory factors. Pro-
inflammatory cytokines, IL-1β, IL-6 and TNF-α, can increase
CYP ω-hydroxylase activity, whereas anti-inflammatory
cytokines such as IL-10 can inhibit CTP hydroxylase
expression. Therefore, the production of metabolites of these
hydroxylases are affected accordingly. At present, a large number
of studies showed that 20-HETE could modulate inflammatory
processes (Figure 3). However, little is known about the role of
other CYP hydroxylated products in inflammation. 20-HETE can
increase the production of adhesion molecules and inflammatory
cytokines as well as ROS level through the activation of NF-κB,
MAPK pathway, and NADPH oxidase, to activate endothelial cell
activation, promote cell proliferation and regulate endothelial
dysfunction. The accumulation of inflammatory factors will also
affect the activity of CYP ω-hydroxylases to promote the
metabolism of eicosanoids and form a positive feedback
regulation, further affecting the progress of cardiovascular
diseases, cancer, inflammation and other diseases. Elucidation
of the effects of inflammation and infection on the metabolism of
CYP hydroxylase and eicosanoids and the relationship between
specific cytokines and their mediated of CYP enzymes will help
in-depth understanding about the pathogenesis of many diseases
and update therapeutic strategies. However, due to the
complexity of the cytokines involved in the inflammatory
process and their signaling pathways, there has not been a
consensus on its potential mechanism. Regulation of the
expression or activity of CYP ω-hydroxylase may play a role
in the treatment of inflammatory diseases. For the translational
and clinical research of CYP-ω-hydroxylase, inducers and
inhibitors of CYP-ω- hydroxylase may be novel therapeutic
strategies for many clinical inflammatory diseases. In addition,
CYP-ω-hydroxyase also could be used as the marker for the
diagnosis of related difficult and complicated diseases, improving
the existing diagnostic methods. Therefore, more researches are
needed to further clarify the mechanism of CYP ω-hydroxylase to
advance the translational and clinical studies of CYP
ω-hydroxylases.
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GLOSSARY

AA arachidonic acid

ACE angiotensin converting enzyme

COX cyclooxygenase

CYP cytochrome P450

DHA docosahexaenoic acid

DHET dihydroxyeicosatrienoic acid

DiHOME dihydroxyoctadecenoic acid

EDPs epoxydocosapentaenoic acid

EEQ epoxyeicosatetreaenoic acid

EET epoxyeicosatrienoic acid

EGFR epidermal growth factor receptor

EPA eicosapentaenoic acid

HDoHE hydroxydocosahexaenoic acid

HEETs hydroxyepoxyeicosatrienoic acids

HEPEs hydroxyeicosapentaenoic acid

HETE hydroxyeicosatetraenoic acid

HPDHA hydroperoxydocosahexaenoic acid

HPEPE hydroperoxy-eicosapentaenoic acid

IL nterleukin

LOX lipoxygenase

LPS ipopolysaccharide

LTA4 eukotriene A4

LTB4 leukotriene B4

LXs Lipoxin

MAPK/ERK the mitogen-activated protein kinase/extracellular signal-
regulated kinase

NF-α tumor necrosis factor alpha,

NF-κB nuclear factor-kappa B

PGE3 prostaglandin E3

PGH2 prostaglandin H2

PI3K phosphoinositide 3-Kinases.

PLA2 phospholipase A2

PPAR peroxisome proliferator-activated receptor

PUFA polyunsaturated fatty acid

ROS reactive oxygen species

sEH soluble epoxide hydrolaseT

VEGF vascular endothelial growth factor
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