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Activation of RidA chaperone function by
N-chlorination
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Escherichia coli RidA is a member of a structurally conserved, yet functionally highly diverse

protein family involved in translation inhibition (human), Hsp90-like chaperone activity (fruit

fly) and enamine/imine deamination (Salmonella enterica). Here, we show that E. coli RidA

modified with HOCl acts as a highly effective chaperone. Although activation of RidA is

reversed by treatment with DTT, ascorbic acid, the thioredoxin system and glutathione, it is

independent of cysteine modification. Instead, treatment with HOCl or chloramines decreases

the amino group content of RidA by reversibly N-chlorinating positively charged residues.

N-chlorination increases hydrophobicity of RidA and promotes binding to a wide spectrum of

unfolded cytosolic proteins. Deletion of ridA results in an HOCl-sensitive phenotype. HOCl-

mediated N-chlorination thus is a cysteine-independent post-translational modification that

reversibly turns RidA into an effective chaperone holdase, which plays a crucial role in the

protection of cytosolic proteins during oxidative stress.
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H
ypochlorous acid (HOCl) is not only a very potent
disinfectant, but functions as a physiological oxidant
released by neutrophils to fight infections (for a

comprehensive overview see ref. 1). Once activated, neutrophils
phagocytize pathogens and internalize them into the phagosome.
During the oxidative burst, neutrophils then generate large
amounts of superoxide anions (O2

�� ) and hydrogen peroxide
(H2O2) at the expense of oxygen by NADPH-oxidases.
Myeloperoxidase converts this H2O2 and chloride ions into
HOCl, which together with the other products of the respiratory
burst, is highly effective in killing microorganisms.

The mode of action of HOCl-dependent microbial killing
involves reactions with a variety of biological molecules, including
DNA, lipids, NADH, cholesterol, proteins and non-protein thiols
such as glutathione1. Due to their high cellular abundance,
however, proteins are considered to be the major targets of
HOCl-mediated modifications. Damage caused by HOCl includes
protein fragmentation, dimerization and side chain modification,
typically leading to protein inactivation and degradation by the
cellular protein quality control2–4. Methionine and cysteine
residues react most rapidly with HOCl, while its reactivity with
side chains of histidine, tryptophan, lysine, tyrosine and arginine
is two to five orders of magnitude lower4.

As HOCl does not only target microbial proteins, but readily
halogenates organic and inorganic primary amines present in the
phagosome, chloramines such as monochloramine (NH2Cl) and
N-chlorotaurine accumulate there as well4,5. Although being less
reactive and more stable than HOCl, chloramines share the
oxidizing and chlorinating properties of HOCl, making them
equally useful as disinfectants in drinking water supplies,
medicine and household settings6.

Pathogens have developed numerous strategies to successfully
escape the immune response during infection (see ref. 7 for a
comprehensive overview). Yet, HOCl-response mechanisms in
bacteria remain largely elusive. In Firmicutes, such as Bacillus
subtilis and Staphylococcus carnosus, inactivation of conserved
metabolic enzymes and essential proteins such as methionine
synthase and the redox-sensing repressor OhrR by
S-bacillithiolation mediates the HOCl stress response8,9.
Salmonella enterica specifically reduces the influx of HOCl
through ArcA-dependent downregulation of the outer membrane
porine OmpW in response to hypochlorite stress10. Escherichia
coli responds to hypochlorite stress using a number of
complementary strategies. Hydrogen peroxide and heat-shock
response genes were shown to be regulated in response to
hypochlorite stress11. The E. coli transcription factors NemR,
HypT and RclR are involved in hypochlorite tolerance by the
regulation of genes involved in electrophile detoxification, sulfur
metabolism and iron acquisition, and survival upon chlorine
stress, respectively12–15. Furthermore, the redox-regulated
chaperone Hsp33 is activated by oxidative unfolding mediated
by HOCl. The activated state of Hsp33 protects cellular proteins
from HOCl-induced aggregation by direct protein–protein
interaction under conditions that prevent ATP-dependent
chaperones from working properly16.

In this study, we describe a novel mechanism, which confers
protection of E. coli against HOCl stress-mediated protein
aggregation. This mechanism is dependent on RidA, a member
of the functionally highly diverse YjgF/YER057c/UK114 protein
family. Although highly conserved across kingdoms, members
from this protein family display very different functions. They
are, for instance, involved in translation inhibition (rat),
activation of calpain protease (cow), adenine-mediated repression
of purine biosynthesis (Bacillus subtilis) and mitochondrial
maintenance (Saccharomyces cerevisiae)17–20. The Salmonella
enterica homologue RidA has recently been described as an

enamine/imine deaminase, playing a crucial role in the synthesis
of branched-chain amino acids21.

Here, we show that E. coli RidA acts additionally as redox-
regulated chaperone that is activated on exposure to HOCl stress.
Although many proteins are inactivated on reaction with HOCl
and precipitate, RidA turns into a potent chaperone, preventing
highly abundant cellular proteins from HOCl-induced aggrega-
tion. Surprisingly, unlike in the other known redox-regulated
chaperone Hsp33, where activation involves reversible disulfide
bond formation22, activation of RidA’s chaperone activity is
mediated by N-chlorination, a modification that has previously
been thought to be deleterious to protein function. We also
observe activation of chaperone function via N-chlorination in
the Drosophila melanogaster RidA homologue DUK114, as well as
in a few unrelated proteins, indicating that this is a novel post-
translational modification that induces affinity for aggregation-
sensitive folding intermediates. In addition to reduction by
glutathione, thioredoxin is capable of reducing N-chlorinated
RidA, a hitherto unknown function of this well-characterized
thiol-disulfide oxidoreductase.

Results
HOCl-treated RidA inhibits threonine dehydratase activity.
Salmonella enterica RidA has previously been reported to act as
deaminase of reactive enamine/imine intermediates, stimulating
IlvA-mediated degradation of threonine to 2-ketobutyrate21. We
recently discovered that modification of a single cysteine residue
in RidA by peroxynitrite treatment inhibits this stimulatory
function23. We tested the effect of several other nitrosative and
oxidative stressors on RidA’s enamine/imine deaminase activity.
Intriguingly, when treated with the physiological disinfectant
sodium hypochlorite (HOCl), RidA not only lost its stimulatory
effect in the threonine deaminase assay, but inhibited the overall
rate of the reaction to levels below the ones observed in the
absence of RidA (Fig. 1a). These results could no longer be
explained by a simple inhibition of RidA alone but suggested that
the threonine dehydratase IlvA is directly inhibited by HOCl-
treated RidA (RidAHOCl), potentially through a tight direct
protein–protein interaction of the two proteins. We, therefore,
hypothesized that RidA, once treated with HOCl, might be a
chaperone that effectively binds other proteins.

RidA is a chaperone activated by HOCl. To test RidAHOCl for
chaperone activity, we performed aggregation assays using che-
mically denatured citrate synthase and untreated and HOCl-
treated RidA. RidA was incubated with a 10-fold molar excess of
HOCl, a concentration that is sufficient to fully activate the well-
described HOCl-activated chaperone Hsp33 (ref. 16).
Aggregation of chemically denatured citrate synthase was
prevented by RidAHOCl in a dose-dependent manner (Fig. 2a,b).
Other oxidants including H2O2 or diamide did not activate
RidA’s chaperone activity, suggesting that the activation was
indeed HOCl-specific (Fig. 1b). A fivefold excess of RidAHOCl was
sufficient to completely inhibit citrate synthase aggregation,
suggesting that HOCl is a potent activator of RidA chaperone
activity (Fig. 2b). These concentration ratios are similar to other
chaperones, such as Hsp33. Analysis of the activation kinetics
revealed that a 10:1 molar ratio of HOCl over RidA was sufficient
for full chaperone activity within the first 5 s of incubation
(Fig. 2c,d). The addition of ATP did not enhance chaperone
activity, consistent with a holdase function of HOCl-treated RidA
(Fig. 3j).

To determine the impact of HOCl treatment of RidA on its
oligomeric state of RidA, we performed analytical gel filtration
(Fig. 1c,d). For this purpose, untreated RidA and RidAHOCl were
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loaded on a Superdex 75 10/300 GL column to monitor the
molecular weight of the protein complex. While untreated RidA
eluted as a trimer as reported previously23 (Fig. 1c), treatment of
RidA with HOCl partially coincides with the formation of higher
molecular weight oligomers (Fig. 1d). This points towards a
tendency of RidA to homo-oligomerize when treated with HOCl.
Oligomerization thus may be a requirement for binding of
unfolding proteins under these conditions.

RidA is activated by monochloramine. Within the phagosome,
most of the produced HOCl readily reacts with free ammonia or
amino acids resulting in the formation of chloramines such as
monochloramine or N-chlorotaurine1. In fact, HOCl-derived
chloramines are discussed to be the major contributors for the
antimicrobial activity of HOCl24,25. Thus, we investigated
whether monochloramine (NH2Cl; MCA) is also capable of
activating the chaperone function of RidA. Indeed,
monochloramine-treated RidA (RidAMCA) also prevented citrate
synthase aggregation (Fig. 2e,f). RidA activation was maximal
with a 10:1 molar ratio of MCA over RidA (Fig. 2g). In contrast to
HOCl, however, RidA activation by MCA proceeded at much
lower rates and required at least 20 min incubation to achieve full
chaperone activity (Fig. 2h). This finding may be explained by the
lower absolute rate constants of the reaction of chloramines with
biomolecules when compared with HOCl26,27.

Unfolded IlvA is a direct substrate of RidA. To assess whether
RidAHOCl is capable of also interacting with IlvA, we established
aggregation assays substituting citrate synthase with IlvA. We
found that chemically denatured IlvA readily aggregates upon
dilution into assay buffer (Fig. 2i). RidAHOCl prevented aggrega-
tion of IlvA in a concentration-dependent manner (Fig. 2i,j). In
contrast, incubation of IlvA with a 10-fold molar excess of

untreated RidA had no effect on IlvA’s aggregation behaviour
(Fig. 2i). IlvA thus is a bacterial protein suitable to be used as a
substrate in chaperone assays.

RidA activation is reversible by reduction. To test whether the
activation of RidA’s chaperone activity is a reversible process, we
tested chaperone activity of RidAMCA after treatment with the
thiol-based reductant dithiothreitol (DTT). Indeed, DTT-reduced
RidAHOCl and RidAMCA were no longer able to prevent citrate
synthase aggregation (Fig. 3a–c). To analyse if the reduced
RidAMCA can be activated again, we did another series of citrate
synthase aggregation assays (Fig. 3b,c). RidA activity could be
recovered by subsequent treatment with MCA (Fig. 3b,c). This
demonstrates that modification by MCA followed by reduction
with DTT does not compromise integrity and functionality of the
protein. RidA thus is a novel redox-regulated protein activated by
HOCl and chloramines.

We also performed thermal aggregation assays at 43 �C using
citrate synthase to analyse whether reduction of activated RidA
results in substrate release (Fig. 3d). Citrate synthase did
aggregate significantly slower in the presence of RidAHOCl.
However, when DTT was added to the reaction mixture after
250 s, citrate synthase started to aggregate, indicating that
reduction of RidAHOCl is accompanied by the release of its
substrate.

RidA activation is reversible by thioredoxin and glutathione. In
bacteria, the reductive redox state of cytosolic proteins is main-
tained by thioredoxins and glutaredoxins28,29. Both proteins have
been shown to reduce disulfide-containing substrate proteins by
direct thiol-disulfide exchange reactions. The disulfide bond,
which is subsequently formed in thioredoxin and glutaredoxin is
then reduced by the NADPH-dependent thioredoxin reductase or
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Figure 1 | HOCl-treated RidA inhibits IlvA. (a) Untreated RidA (RidA-UT) accelerates a-ketobutyrate generation from threonine catalysed by threonine

deaminase IlvA. In the presence of RidA treated with a 10-fold excess of HOCl for 5 min at 37 �C, product formation is clearly decreased below levels of

product formation in the absence of RidA indicating inhibition of IlvA. A representative measurement is shown. (b) RidA was incubated with a 10-fold molar

excess of diamide, peroxynitrite (ONOO�) or HOCl, or a 5-fold molar excess of H2O2 or H2O2/CuCl2 for 10 min at 30 �C. Oxidants were removed before

analysis of chaperone activity. Relative chaperone activities were calculated by normalizing the change of absorption to HOCl-treated RidA. Diamide, H2O2

and peroxynitrite (ONOO�) do not induce chaperone activity of RidA. The oligomeric state of RidA without prior treatment (c) or after treatment with a

10-fold excess of HOCl for 5 min at 37 �C (d) was analysed. HOCl was removed with the help of Micro Bio-Spin Chromatography Columns before gel

filtration using a Superdex 75 10/300 GL column.
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Figure 2 | RidA is chaperone activated by HOCl and monochloramine. (a) HOCl-treated RidA inhibits aggregation of chemically denatured citrate

synthase in a concentration-dependent manner as measured by light scattering at 360 nm. Ratios of RidAHOCl over citrate synthase are indicated in b.

(b) Inhibition of light scattering is linear at ratios of RidA over citrate synthase between 0.5 to 5 and reaches a maximum at higher ratios. (c) Activation

depends on the ratio of HOCl over RidA. Activation reaches a maximal value at a 10-fold excess of HOCl. (d) Activation of RidA by HOCl occurs already

within mixing time. (e,f) Chaperone activity of RidA is activated by monochloramine. (g) Activation by monochloramine requires similar ratios of

monochloramine over RidA as shown for HOCl-dependent activation. (h) Activation of RidA by monochloramine is significantly slower when compared

with activation by HOCl. (i,j) HOCl-treated RidA inhibits IlvA aggregation by direct binding. (k,l) Activation of the cysteine-free variant RidA-C107S

by MCA occurs in a similar time range as shown for WT-RidA. Calculation of relative activities is represented as mean of three independent measurements

in b or two independent measurements in c,d,f,g,h,j,l. A representative measurement is shown for a,e,i,k.
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glutathione, respectively28. In E. coli, the thioredoxin system is
composed of thioredoxin A (TrxA) and thioredoxin reductase
(TrxB).

To test whether E. coli TrxA is involved in the inactivation of
RidA, we reconstituted the complete thioredoxin system
comprising TrxA, TrxB and NADPH in vitro. Activity of TrxA
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was monitored by the consumption of NADPH (measured at
340 nm). In the absence of RidAHOCl, we did not observe any
significant decrease in absorption (Fig. 3e). In contrast, however,
addition of 50mM of RidAHOCl to the reaction mixture resulted in
the significant consumption of NADPH. Moreover, thioredoxin-
dependent reduction of RidA caused a loss of chaperone activity
as observed in citrate synthase aggregation assays (Fig. 3f,g). The
overall velocity of thioredoxin-dependent reduction of RidAHOCl

observed could be substantially different from a reduction
velocity in vivo, as the amount of NADPH used in our
experimental setup limits the reduction rates. To further elaborate
if reduction by other thiol-based reducing systems present in the
cell may occur, we incubated RidAHOCl with excess glutathione
(Fig. 3h). While oxidized glutathione (GSSG) did not have any
impact on RidAHOCl activity, the addition of reduced glutathione
(GSH) blocked its holdase function.

Loss of free amino groups by HOCl treatment. On the basis of
our previous observation that RidA is oxidized at its single
cysteine residue (C107) upon peroxynitrite treatment23, we
assumed that HOCl-dependent activation of RidA is also
mediated by modification of C107. Strikingly, however, we
found that the cysteine-free variant RidA-C107S was still as active
as the wild-type protein after HOCl treatment, and that activation
of the treated mutant variant was reversible by DTT as well
(Fig. 3i). This result strongly points towards a novel mechanism
of functional activation by HOCl, independent of cysteine.

Apart from the oxidation of cysteine thiols, HOCl is also
known to react with a number of other amino acid side chains,
including methionine, histidine, lysine, arginine, tryptophan and
tyrosine4. Reaction of HOCl with side chain amines of lysine, for
instance, results in N-chlorination to mono- and dichloramines.
To analyse whether HOCl-mediated activation of RidA involves
the chlorination of side chain amines, RidAHOCl was treated with
ascorbic acid. In contrast to DTT, ascorbic acid does not
significantly reduce cysteine oxidation products but readily reacts
with chloramines allowing the discrimination of these
modifications30,31. As shown in Fig. 3a, incubation of RidAHOCl

with ascorbic acid caused a complete loss of chaperone activity
supporting the idea that RidA is a chaperone activated by
N-chlorination.

N-chlorination of lysine and arginine side chains inevitably
decreases the total amount of detectable amino groups. RidA
possesses 14 potential N-chlorination targets: five arginine
residues, eight lysine residues and one terminal amino group.
We monitored the accessibility of these potential targets upon
HOCl or monochloramine treatment using fluorescamine32. The
amino group content of RidA decreased to o40% within seconds
of HOCl treatment and was not further reduced upon longer
treatment (Fig. 4a). Monochloramine treatment led to a much
slower loss of amino groups but reached the same final percentage
(Fig. 4b). Disappearance of amino groups, therefore, appeared to
parallel the appearance of RidA’s chaperone function (compare
Fig. 2d,h). The observed 60% reduction of amino group content
corresponds to approximately eight residues that no longer
contain a free amino group. DTT treatment leads to a full
recovery of accessible amino groups, which coincides with the
inactivation of RidA (compare Fig. 4c and Fig. 3a).

HOCl treatment increases hydrophobicity of RidA. The above-
described loss of positive charges prompted us to conclude that
binding of substrate proteins may be enabled by an increase in
hydrophobicity. We thus used the uncharged hydrophobic dye
Nile red to directly monitor the polarity of RidA33. The
fluorescent signal of 0.2 mM Nile red was compared after
mixing with either 50 mM RidA or 50 mM RidAHOCl (Fig. 4d).
We observed both a wavelength shift from 613 to 600 nm and an
increase in absolute fluorescence for RidAHOCl when compared
with untreated RidA (Fig. 4d). The RidA and RidAHOCl

concentrations leading to half-saturation of the proteins with
the dye were determined (Fig. 4e,f). This concentration was
significantly higher for untreated RidA (121.1 mM; Fig. 4e) when
compared with RidAHOCl (30.7mM; Fig. 4f). These results indicate
that RidAHOCl has an increased hydrophobicity when compared
with untreated RidA, which most likely enables binding of
unfolding substrates to RidAHOCl.
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RidA is N-chlorinated by HOCl and monochloramine. To
identify the exact type of modification that activates RidA, we
performed mass spectrometry of full-length RidA (Fig. 5a). After

HOCl treatment, the peak at 13,480 Da corresponding to
unmodified RidA fully vanished. Instead, a number of peaks
corresponding to the addition of multiple (up to seven) chlorines
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Figure 5 | RidA activation is mediated by N-chlorination. (a) Full-length untreated, HOCl-treated and MCA-treated RidA was analysed in an OrbiTrap
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appeared. In addition to chlorine adducts, we also observed the
irreversible addition of up to five oxygen atoms to methionine
and cysteine residues. These oxidation products seemed less
prominent after monochloramine treatment of RidA. To exclude
the oxidizing effects of chlorinating agents on cysteine, we used
the cysteine-free RidA variant C107S for the analysis of a time-
resolved monochloramine treatment (Fig. 5b). The chlorination
of RidA-C107S observed in this experiment paralleled the acti-
vation of chaperone activity (compare Fig. 2k,l and Fig. 5b). The
number of chlorines added to RidA-C107S consecutively
increased with incubation time until B20 min, when the max-
imum number of added chlorine atoms was observed. Reduction
with DTT resulted in the complete removal of chlorine residues,
while oxygen, presumably added to methionine, remained
(Fig. 5b).

A ridA mutant is sensitive towards HOCl in vivo. To address
the question whether RidA protects cells against the consequences
of HOCl-induced damage, we compared the growth of wild-type,
ridA deletion mutant and a RidA overexpression strain in the
absence and presence of HOCl (Figs 6 and 7). In the absence of
HOCl, all the three strains showed a comparable growth beha-
viour (Fig. 6a). However, in the presence of medium HOCl
concentrations (1–2 mM), the ridA mutant displayed a sig-
nificantly prolonged lag phase when compared with the wild type
(Figs 6b and 7b,d) and a DhslO mutant (deficient in the known
HOCl-activated chaperone Hsp33; Fig. 6c). Overexpression of
RidA in the ridA mutant resulted in an intermediate phenotype,
indicating that plasmid-encoded RidA partially restores the
growth phenotype of the ridA mutant. HOCl concentrations
42 mM led to a complete growth arrest, while concentrations
o1 mM did not influence growth of either strain (Fig. 7). Our
results indicate that RidA has a role in protecting E. coli cells
against the consequences of HOCl-mediated stress and thus
might be an integral component of the bacterial defense strategies
against the mammalian immune system.

Mass spectrometry identifies cytosolic clients of RidA. To
identify cytosolic RidA substrate proteins, we co-purified proteins
from cell lysates bound to His-tagged RidAHOCl by Ni2þ -NTA
chromatography and elution by de-chlorination (Fig. 8a–d). For
this purpose, His-tagged RidA was added to E. coli MG1655-
DridA cell lysates. HOCl was added in a 10-fold excess over the
final RidAHis concentration. Controls were left untreated. After
loading the mixture onto Ni2þ -NTA chromatography columns
and extensive washing, DTT-containing buffer was used to reduce
RidA and thereby elute bound substrate proteins (Fig. 8b,d).

No significant elution was observed in the HOCl-free controls
(Fig. 8a,b), as well as the DTT-free control (Fig. 8c).

Substrate proteins were identified by mass spectrometry after
tryptic digest (Supplementary Tables 2,3). A total of 143 proteins
were identified, 18 of which eluted exclusively in samples with
DTT (Supplementary Table 3). The abundance of proteins was
much higher in samples after DTT elution, except for the protein
FklB. Sixty-five of the identified proteins belong to the most
abundant proteins in E. coli MG1655 measured after growth in
minimal medium34. Identified proteins from Supplementary
Tables 2 and 3 were categorized according to their biological
function using the program Cytoscape (Fig. 8e). This analysis
confirmed that the majority of proteins binding to RidAHOCl were
high abundant proteins associated with the primary metabolism
of E. coli. It is, therefore, most likely that RidA acts as an
unspecific chaperone that binds any unfolding protein in its
direct vicinity at the onset of chlorine stress. However, we also
identified proteins that are not included in the dataset from Lu
et al. and may therefore be of lower abundance, such as
thioredoxin 1 (TrxA), uracil phosphoribosyltransferase Upp and
iron sulfur cluster assembly scaffold protein IscU34. Whether
such proteins are preferentially bound by N-chlorinated RidA
remains subject to further studies.

Discussion
RidA from E. coli belongs to the YjgF/YER057c/UK114 family of
proteins with members in all domains of life. Although highly
conserved, different functions have been assigned to members of
this family in different species. In Enterobacteriaceae, RidA is an
enamine/imine deaminase21. We recently reported that RidA is
important to overcome nitrosative stress in E. coli23. Treatment of
cells with peroxynitrite led to oxidation of the single cysteine
residue of RidA. In this oxidized state, RidA was no longer able to
accelerate the release of ammonia from an enamine/imine
intermediate generated by threonine dehydratase IlvA. We then
tested the influence of various other oxidative stressors on RidA’s
enamine/imine deaminase function in vitro. To our surprise,
HOCl treatment of RidA did not result in its inactivation but
instead RidA bound tightly to IlvA, leading to the inhibition of
IlvA’s dehydratase activity.

In the present study, we show that this inhibition is the result
of a chaperone function of HOCl-activated RidA. Activation of
RidA’s chaperone function by HOCl occurs rapidly within sample
mixing time, similar to previous reports on Hsp33, another
bleach-activated chaperone16. Activation was maximal at a
10-fold molar excess of HOCl over RidA. However, in contrast
to the activation of other redox-regulated chaperones, such as
Hsp33 or 2-cys peroxiredoxins, which involve cysteine
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oxidation35, activation of RidA is cysteine-independent. A
cysteine-free RidA variant can still be fully activated by bleach.
Activation of chaperone function coincides with a decrease in
amino group content, an increase in hydrophobicity and the
appearance of multiply chlorinated RidA species as shown by
mass spectrometry (Fig. 5). We suspect that N-chlorination most
likely occurs at the e-amino groups of lysine and/or the
guanidinium groups of arginine as well as the protein amino
(N) terminus. The formation of chloramines has previously been
regarded as a damaging amino acid modification, which could
result in protein inactivation, unfolding, aggregation and even
fragmentation due to halogen transfer and formation of cross-
links3,36–40. However, we could show that chloramines of RidA

are fully removed by treatment with DTT and ascorbic acid. This
restoration is accompanied by the inactivation of RidA’s
chaperone function. A new cycle of activation is possible after
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reduction, demonstrating that the reaction of RidA with HOCl
and chloramines is fully reversible and does not alter the
structural integrity of the protein.

In vivo, the lack of RidA makes E. coli more susceptible to
chlorine stress. A knockout mutant in a BL21 strain background
shows a significant growth deficiency in the presence of 2 mM
HOCl. Expression of RidA from a plasmid could partially restore
this phenotype. A full rescue is probably not achieved due to gene
dosage effects and an overall increased stress level due to protein
overexpression. In this specific assay, the BL21-DhslO strain
(Hsp33 deficient) behaved wild-type-like and was less sensitive
towards HOCl as compared with the BL21-DridA mutant. This
was surprising, as a DhslO strain has been shown before to be
hypersensitive towards HOCl16. However, these experiments have
been performed in the already chlorine-sensitive E. coli MC4100.
Various attempts to construct a DridA strain in the MC4100
strain, as well as in a DhslO background, (DhslO–DridA double
mutant) failed, indicating that the lack of ridA in these strains
might be lethal.

Purification of RidAHOCl substrate proteins from E. coli cell
lysates after HOCl treatment revealed that highly abundant
cytosolic proteins, such as ribosomal subunit proteins, are bound
by RidAHOCl. A pathway analysis assigned the majority of these
proteins to the primary metabolism. This finding, although
performed in cell lysates, points towards an unspecific binding
mechanism of N-chlorinated RidA in vivo. The identification of

numerous cysteine-free proteins, such as the trigger factor,
demonstrates that binding of N-chlorinated RidA does not
depend on cysteine disulfide bond formation.

Looking for an in vivo mechanism of inactivation of RidA’s
chaperone function, we found that catalytic quantities of a
reconstituted E. coli thioredoxin system could inactivate
RidAHOCl NADPH-dependently in vitro. Rates observed in our
assay were 10- to 20-fold lower than rates observed in a classic
thioredoxin activity assay, which uses insulin as substrate but
substantially higher than rates obtained with oxidized glutathione
as substrate41. We assume that this inactivation occurs when the
cell is no longer exposed to HOCl and once again enough
reduction equivalents are available to the Trx system. The exact
mechanism of the thioredoxin-dependent reduction has to be
investigated in future experiments. It might be that chlorines
from the amino groups in RidA are transferred to the thiol group
of the attacking cysteine in TrxA’s active site. This would result in
the formation of a sulfenyl chloride intermediate. The sulfenyl
chloride would then be reduced by the resolving cysteine of
TrxA’s active site and Hþ and Cl� will be released. The disulfide
bond formed in this reaction may then become reduced NADPH-
dependently by thioredoxin reductase TrxB. To our knowledge,
the reduction of chloramines by thioredoxin has not been
reported to date and is a new function of this ubiquitous reducing
system. However, we also observed glutathione-based inactivation
of RidAHOCl. As glutathione concentrations are in the millimolar
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range in the bacterial cytoplasm42, it may be assumed that
inactivation by glutathione is a major mechanism of inactivation
in vivo.

We asked whether the observed chaperone activity is a shared
characteristic of the whole YjgF/YER057c/UK114 family of
proteins. We therefore analysed the Drosophila melanogaster
RidA homologue DUK114. This protein has previously been
shown to act as a chaperone, albeit no prior HOCl treatment was
reported43. In our hands, untreated DUK114, heterologously
expressed and purified from E. coli, could not inhibit citrate
synthase aggregation (Fig. 9). However, treatment with HOCl
induced holdase activity in DUK114, comparable to RidA. These
seemingly contradictory findings might be explained by a
different purification protocol used in our study, which
included DTT during the preparation of the protein. DTT
reduces the modifications that might have been introduced
in vivo. However, DUK114HOCl remained active after DTT
treatment and still inhibited citrate synthase aggregation,
indicating distinct mechanisms of activation and deactivation of
YjgF/YER057c/UK114 family members.

We also found that a number of other proteins, including
b-lactoglobulin, a-amylase and bovine serum albumin (BSA)
showed HOCl-dependent holdase activity (Fig. 9). Chaperone
activity of BSA has been reported before and we show that this
activity is further increased by HOCl treatment44. Similarly,
chaperone activity of human a2-macroglobulin has been shown
to be largely increased by HOCl treatment45. Like BSA,
a2-macroglobulin is a circulating blood plasma protein,
indicating that a set of chaperones might be responsible for the
protection of host proteins upon infection and inflammation.

Other proteins such as RNaseA and porcine pancreas lipase did
not respond to HOCl treatment (Fig. 9), while lysozyme was
highly prone to precipitation during treatment as has been
reported before46. N-chlorination by HOCl has been investigated
in more detail for various proteins including low-density
lipoprotein, lysozyme and insulin38,47,48. The extent of N-
chlorination differed significantly depending on parameters
such as surface accessibility, presence of thiol-containing amino
acids, the presence of histidine, and the overall tertiary structure
of the protein48. Recently, the BSA homologue human serum
albumin was shown to inhibit the major high-density lipoprotein
receptor SR-BI49. Interestingly, this inhibition depends on N-
chlorination of lysine residues and is irreversible. Moreover,
HOCl-modified human serum albumin was shown to bind and
inhibit proteins from West Nile virus and HIV50,51. These
findings suggest a critical role of HOCl-modified plasma proteins
during infection and inflammatory processes.

We compared the predicted physicochemical properties of
these proteins (protein localization, number of specific amino
acids, predicted hydrophobicity and isoelectric point) to identify
possible characteristics that are favourable for turning a protein
into a HOCl-mediated holdase (Supplementary Table 4). How-
ever, on the basis of these properties, a clear commonality
between the HOCl-mediated holdase proteins could not be
established.

In bacteria, together with other proteins, such as Hsp33, which
is activated by disulfide bond formation and the novel HOCl-
responsive transcription factors HypT, which is activated by
methionine oxidation12,13, and NemR and RclR, which are
activated by cysteine oxidation14,15, N-chlorinated RidA may
protect cells during host invasion from the deleterious effect of
the strong physiological oxidant hypochlorous acid.

N-chlorination of proteins constitutes a novel activity-
modulating post-translational switch that reversibly turns RidA
into a holdase. N-chlorinated RidA binds a wide spectrum of
proteins and can prevent protein aggregation of model substrates,

such as citrate synthase or IlvA. Removal of the chloramine
modifications, which can be performed NADPH-dependently by
catalytic amounts of the thioredoxin system, leads to substrate
release by RidA. Foldases can then refold these proteins (Fig. 10).

Methods
Preparation of chlorinating agents. Concentration of NaOCl (Sigma-Aldrich,
St. Louis, USA) was measured with a JASCO V-650 spectrophotometer (JASCO,
Tokyo, Japan) at 292 nm using the extinction coefficient e292¼ 350 M� 1 cm� 1.
Monochloramine and N-chlorotaurine were prepared freshly by mixing 200 mM
NH4Cl or 200 mM taurine, respectively, solved in 0.1 M KOH with 200 mM
NaOCl. Concentrations of products were measured at 242 and 251 nm using
extinction coefficients e242¼ 429 M� 1 cm� 1 for monochloramine and e251¼ 397
M� 1 cm� 1 for N-chlorotaurine.

Protein purification. Overexpression and purification of RidA, RidA mutant and
IlvA was performed as previously described using strains and plasmids listed in
Supplementary Table 1 (refs. 23,52). Protein concentrations were determined using
a JASCO V-650 spectrophotometer. Extinction coefficients used were
e280¼ 2,980 M� 1 cm� 1 for the monomer of RidA, e280¼ 4,470 M� 1 cm� 1 for
DUK114, and e280¼ 31,860 M� 1 cm� 1 for IlvA.

Oxidation and reduction of proteins. Oxidation and reduction was performed by
incubation of 700 mM of the respective protein with varying ratios of HOCl,
monochloramine, DTT or ascorbic acid for incubation times indicated at 30 and
37 �C, respectively. Removal of stressors was carried out with Micro Bio-Spin
Chromatography Columns according to the manufacturer’s instructions (Bio-Rad,
München, Germany).

Aggregation assays with citrate synthase and IlvA. To monitor aggregation,
12 mM citrate synthase or IlvA were chemically denatured in 4.5 M GdnCl, 40 mM
HEPES, pH 7.5 at room temperature overnight. Aggregation was induced by the
addition of 0.15 mM citrate synthase or 0.3 mM IlvA to 1,600ml 40 mM HEPES, pH
7.5. Increase of light scattering was monitored with a JASCO FP-8500 fluorescence
spectrometer equipped with a Peltier thermo-holder ‘EHC-813’ at 30 �C for 240 s
under continuous stirring. Measurement parameters were set to 360 nm (Ex/Em),
2.5 nm slit width (Ex/Em) and medium sensitivity. The activity of chaperones was
determined by the addition of varying amounts of untreated or treated proteins
before the addition of citrate synthase or IlvA. Calculation of relative chaperone
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activities was performed by the determination of initial and final absorbance of
individual samples and correlation to maximal inhibition of light scattering. For
thermal aggregation assays, 10 mM of untreated or HOCl-treated RidA were added
to 1,600ml of prewarmed 40 mM HEPES, pH 7.5. Measurement parameters were
set to 360 nm (Ex/Em), 2.5 nm slit width (Ex/Em) and medium sensitivity. Mea-
surements were performed at 43 �C for 1,200 s under continuous stirring. After
60 s, citrate synthase was added to a final concentration of 0.3 mM. To monitor
citrate synthase aggregation upon release by RidAHOCl, 5 mM DTT was added to
the cuvette after 250 s of measurement.

To measure the influence of ATP on chaperone activity, a twofold or eightfold
excess of RidA over citrate synthase was used. ATP was added in a 10-fold excess
over RidA.

Thioredoxin- and glutathione-based inactivation of RidAHOCl. Reduction of
RidA by thioredoxin was followed spectrometrically at the absorption maximum of
NADPH using a JASCO V-650 spectrophotometer equipped with the temperature-
controlled cell holder PSC-718. An amount of 50 mM RidA were mixed with 5 mM
TrxA (Sigma-Aldrich, St Louis, USA) and 100 mM NADPH (Sigma-Aldrich, St.
Louis, USA) in 50 mM Tris-buffer, pH 7.5. After 30 s of stirring, 80 nM TrxB were
added. Consumption of NADPH was measured at 340 nm for 2 h.

Reduction by glutathione was carried out by incubating RidAHOCl with a 1-fold
or 10-fold molar excess of glutathione (GSH or GSSG) for 30 min at 37 �C before
the measurement of chaperone holdase activity.

Detection of accessible amino groups—fluorescamine assay. The detection of
protein amino groups was carried out as previously described32. Briefly, 3 mg ml� 1

of fluorescamine (Sigma-Aldrich, St Louis, USA) were dissolved in acetone. One
millilitre of 100 mg ml� 1 RidA solutions in phosphate-buffered saline were mixed
with 334 ml of fluorescamine solution. Emission of fluorescamine was measured
from 400 to 600 nm with the excitation set to 388 nm. Relative amino group
content was calculated by setting the fluorescence of fully reduced RidA to 100%.

Nile red hydrophobicity assays of RidA and RidAHOCl. Nile red (Sigma-Aldrich,
St. Louis, USA) was dissolved in DMSO to 0.25 mM. Varying concentrations of
RidA and RidAHOCl (1–200 mM) were mixed in 40 mM HEPES-KOH, pH 7.4 with
0.2 mM Nile red. The fluorescence was monitored using a JASCO FP-8500 fluor-
escence spectrometer equipped with a Peltier thermo-holder ‘EHC-813’. Mea-
surement parameters were set to 550 nm excitation, 570–700 nm emission with
5 nm slit width (Ex/Em) and medium sensitivity. RidA and RidAHOCl concentra-
tions resulting in half-saturation were calculated from these data using Igor Pro
Version 6.34A (Wave Metrics, Lake Oswego, USA) and Excel for Mac 2011 version
14.3.9 (Microsoft, Redmond, USA). Data were fitted with Igor Pro using the
‘Sigmoid’ fit function. To obtain the negative inverse of the half-saturation, the
reverse protein concentration was plotted against the reverse fluorescence intensity
and the ‘Trendline’ linear regression function of Excel was used.

Mass spectrometry of full-length RidA. RidA treated with HOCl and MCA,
and/or the reductant DTT was adjusted for pipette tip-based purification to 0.1%
TFA. Purification was performed using OMIX C18 Tips (Varian, Walnut Creek,
USA) according to the manufacturer’s instructions. Elution of RidA was performed
with 100 ml 0.1% FA, 70% acetonitrile. RidA was then directly injected into an
Orbitrap Elite mass spectrometer (Thermo Scientific, Waltham, USA) using an API
Source with a static nanospray probe and a 1 mm picoTip emitter from EconoTips
(NewObjective, Woburn, USA). Measurements were performed with a source
voltage of 1.2 kV and a capillary temperature of 275 �C. Spectra were deconvoluted
and further analysed using Xcalibur software (Thermo Scientific, Waltham, USA).

Threonine deaminase assay. Analysis of a-ketobutyrate generation was per-
formed as described previously21,23. Briefly, RidA was treated with HOCl and/or
DTT as described in the main body of the manuscript. After the removal of
reagents, 1.8 mM RidA were mixed with 0.9 mM IlvA in 1� reaction buffer (50 mM
MES, 50 mM HEPES, 50 mM TAPS pH 7.5). The reaction was started by the
addition of 10 mM threonine. a-Ketobutyrate generation was followed at 230 nm in
a JASCO V-650 spectrophotometer equipped with the temperature-controlled cell
holder PSC-718 (JASCO, Tokyo, Japan) using a 3.5 ml QS-macro-cuvette (10 mm)
with a magnetic stir bar at 20 �C.

Oxidation of RidA by different oxidants. Treatment of RidA with peroxynitrite,
H2O2, H2O2/Cu was performed using a 10-fold excess of the oxidants. After 10 min
of incubation at 30 �C, oxidants were removed using Micro Bio-Spin Chromato-
graphy Columns according to the manufacturer’s instructions (Bio-Rad, München,
Germany).

Analytical gel filtration. Analytical gel filtration was carried out as described
previously23. Briefly, untreated or HOCl-treated RidA was loaded to a Superdex 75
10/300 GL column connected to an ÄKTA purifier FPLC system, which was set to
a flow rate of 0.5 ml min� 1.

Chaperone assays with DUK114 and unrelated proteins. Bovine serum albumin
(from bovine serum), lipase (from porcine pancreas), ribonuclease A (from bovine
pancreas), lysozyme (from chicken egg white), a-amylase (from porcine pancreas)
and b-lactoglobulin were purchased from Fluka (Seelze, Germany) or Sigma-
Aldrich (St. Louis, USA). DUK114 (Drosophila melanogaster) was purified using
the same protocol as for RidA23. Proteins were dissolved in 0.1 M KH2PO4, pH 8.0,
1 mM EDTA and treated with a 10-fold excess of HOCl for 10 min at 30 �C. HOCl
was removed using Micro Bio-Spin Chromatography Columns according to the
manufacturer’s instructions (Bio-Rad, München, Germany).

Construction of E. coli deletion strains. E. coli BL21-DhslO was constructed by
P1 transduction of the corresponding gene knockouts from the Keio Collection
from the National BioResource Project (National Institute of Genomics, Japan)53.
P1 transduction was performed as described earlier54. The successful transduction
was verified by PCR using strain-specific primers and kanamycin-resistant cassette-
specific primers55 (Supplementary Table 1).

Cultivation of E. coli and stress treatment. E. coli strains BL21, CL048 (BL21-
DridA) and CL053 (BL21-pET11-a_ridA) were grown in LB medium at 37 �C to
OD600 of 0.3. Overexpression of RidA in CL053 was induced by the addition of
1 mM IPTG for 30 min. Cells were OD600-normalized and inoculated to
OD600¼ 0.1 into microtiter plates filled with serial 1:1 dilutions of HOCl-con-
taining LB starting with 32 mM NaOCl. Growth of strains at 37 �C was monitored
in an Infinite 200 PRO Microplate Reader (TECAN, Männedorf, Switzerland).

Purification of RidA substrate proteins. RidA substrate proteins were purified by
Ni-NTA chromatography. For this purpose, His-tagged RidA (RidAHis) was
overexpressed in E. coli BL21_DridA (strain AM01; Supplementary Table 1) and
purified by Ni2þ -NTA chromatography as previously described for IlvA21.
Purified RidAHis was added to E. coli MG1655_DridA cell lysates to a final
concentration of 1.4 mM. This mixture was either left untreated or was treated with
14 mM HOCl. Cell lysates were loaded onto pre-equilibrated Ni2þ -NTA
chromatography columns (Qiagen; 1 ml bed volume). After collecting the flow-
through, columns were washed with 20 ml washing buffer (50 mM NaH2PO4,
300 mM NaCl, 20 mM imidazole, pH 8.0). Elution of substrate proteins was
achieved by four additional washing steps with washing buffer containing 10 mM
DTT. After washing two times with DTT-free buffer, RidAHis was eluted with
elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole, pH 8.0).
Samples were analysed on non-reducing SDS gels. After pooling and concentrating
of washing fractions four to six, protein identification was performed by mass
spectrometry as described below.

Tryptic digestion and nanoUPLC. A volume of 25 ml of each sample containing
0.1% RapiGest (Waters, Eschborn, Germany) was subjected to tryptic digestion.
Cysteine reduction using 2.5 mM TCEP (Invitrogen, Carlsbad, USA) for 60 min
at 60 �C was followed by alkylation with 5 mM iodoacetamide (Sigma-Aldrich,
St Louis, USA) for 15 min at 25 �C in the dark and addition of trypsin to a final
concentration of 5 ng ml� 1 (Sequencing grade; Promega, Madison, USA). After
incubation with mild shaking at 37 �C for 5 h, 2 ml of concentrated TFA (Appli-
Chem, Darmstadt, Germany) was added to the sample and precipitated RapiGest
was removed by centrifugation. PhosB peptides as Hi3 quantification standard
(Waters) were added to a final concentration of 12.5 fmol ml� 1. Samples were
injected into a nanoAcquity UPLC system to be loaded on a trap column (C18,
pore size 100 Å, particle diameter 5 mm, inner diameter 180 mm, length 20 mm) and
were then eluted using a gradient (350 ml min� 1, linear gradient 0.5–5% in 2 min,
5–70% in 82 min) of acetonitrile with 0.1% formic acid (Biosolve, Valkenswaard,
Netherlands) from an analytical column at 40 �C (C18, pore size 130 Å, particle
diameter 1.7 mm, inner diameter 75 mm, length 150 mm).

Mass spectrometry. The nanoUPLC column was coupled online to a Synapt
G2-S HDMS ESI/ToF mass spectrometer (Waters). Spectra were recorded in
positive ionization mode and resolution mode over a mass range of 50–1,800 m/z
with 0.5 s per scan using the MSE technology and a trap collision energy ramp of
14–45 V. The following parameters were used for the NanoLockSpray source:
capillary voltage, 2.0 kV; sampling cone voltage, 30 V; source offset, 30 V; source
temperature, 100 �C; desolvation temperature, 150 �C; cone gas flow; 50 l h� 1;
nanoflow gas pressure, 0.5 bar; desolvation gas flow, 500 l h� 1. Leucine enkephalin
serving as lock mass analyte was fed through the lock spray channel (lock mass
capillary voltage, 3.0 kV). Analysis of the spectra was performed using MassLynx
V4.1 SCN813 (Waters).

Data analysis. Data were analysed using the ProteinLynx Global Server 2.5.2
(Waters) software. Mass spectra were processed using the following parameters:
chromatographic peak width, automatic; MS ToF resolution, automatic; lock mass
window, 0.25 Da; low energy threshold, 50 counts; elevated energy threshold, 15
counts; intensity threshold, 500 counts. A non-redundant version of the Escherichia
coli MG1655 database (NCBI accession NC_000913.3) containing 4,109 protein

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6804

12 NATURE COMMUNICATIONS | 5:5804 | DOI: 10.1038/ncomms6804 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


entries (including sequences of the PhosB standard, trypsin, keratin and RidA-
His6) was used for protein identification using the following parameters: peptide
tolerance, automatic; fragment tolerance, automatic; minimal fragment ion mat-
ches per peptide, 2; minimal fragment ion matches per protein, 2; minimal peptide
matches per protein, 1; maximum protein mass, 300 kDa; primary digest reagent,
trypsin; secondary digest reagent, none; missed cleavages, 2; fixed modifications,
carbamidomethyl C; variable modifications, deamidation N and Q, oxidation M,
oxidation C, sulfinic acid C, cysteic acid C; false positive rate, 4%; calibration
protein, PhosB standard. Only proteins identified with at least three peptides in at
least two of three replicates were considered for evaluation.

Gene ontology of RidA interaction partners. Proteins that were eluted after DTT
treatment were categorized according to biological functions. The EcoCyc GO
annotation of E.coli56 served as database using the program Cytoscape (version
2.8.2, ref. 57) with the BiNGO plugin (version 2.44, ref. 58) and allowed
categorization of 140 out of 144 proteins (except for FkbA, YifE, HupB, RhmD)
using the following settings: statistical test, hypergeometric test; multiple testing
correction, Benjamini & Hochberg FDR correction; reference set, whole
annotation.
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