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Physical and biochemical differences between tumor tissues and normal tissues

provide promising triggering factors that can be utilized to engineer stimuli-responsive

drug delivery platforms for cancer treatment. Rationally designed peptide-based

supramolecular architectures can perform structural conversion by responding to the

tumor microenvironment and achieve the controlled release of antitumor drugs. This

mini review summarizes recent approaches for designing internal trigger-responsive

drug delivery platforms using peptide-based materials. Peptide assemblies that exhibit

a stimuli-responsive structural conversion upon acidic pH, high temperature, high

oxidative potential, and the overexpressed proteins in tumor tissues are emphatically

introduced. We also discuss the challenges of current peptide-based supramolecular

delivery platforms against cancer.
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INTRODUCTION

The clinical efficacy and outcome of conventional molecular chemotherapeutics against tumors
are limited by several undesirable properties, including the poor solubility, the short half-life
in vivo, the weak penetration capability, and the low specificity (Tang et al., 2014; Liu
et al., 2016; Wang et al., 2017, 2018; Luo et al., 2019). To overcome these drawbacks
of conventional cancer chemotherapeutics, various nanoparticle-based drug delivery systems
(DDSs) have been developed (Versluis et al., 2016; Gerbelli et al., 2019; Xiao et al., 2019b).
Ingeniously designed DDSs can improve the bioavailability of drugs and/or minimize the
adverse effects of drugs on normal tissues (Liu et al., 2016; Wang et al., 2017). Currently,
there are a diverse range of nanoscale carriers to meet different practical requirements,
including inorganic nanoparticles (e.g., silica nanoparticles, quantum dots, gold nanoparticles,
carbon-based, and magnetic iron oxide–based nanostructures), synthetic organic nanoparticles
(e.g., polymer-based nanostructures and dendrimers), and bio-original nanomaterials (e.g.,
lipid-based nanoparticles, peptide assemblies, protein cages, exosomes, and DNA origami) (Li
et al., 2017). Among these, peptide-based supramolecular nanostructures are an important
type of carriers for drug delivery because of the following reasons: (i) the unique biochemical
functionality encoded by peptide sequences enables an active targeting (i.e., peptides are
targeted to receptors that are overexpressed on cancer cells) or cell membrane–penetrating
processes (Wei et al., 2013; Kebebe et al., 2018); (ii) the structure of peptide assembly can be
programmatically modulated by intrinsic or/and external stimuli to achieve a controllable release of
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the payload into the target region (Wei et al., 2013; Raza
et al., 2019); (iii) peptides are biocompatible compared to
the synthetic organic compounds; (iv) solid-phase synthesis
benefits peptide synthesis with the simplicity of operation;
(v) the reactive terminus or/and side chains of peptides can
be used as a reactive site to conjugate chemotherapeutics
(Wyatt et al., 2017; An et al., 2019).

The distinct physical and biochemical characteristics of
tumors differing from normal tissues provide promising targets
for engineering stimuli–response peptide-assembled DDSs (Ji
et al., 2013; Raza et al., 2019; Xiao et al., 2019a; Lian
and Ji, 2020). Several hallmarks can be utilized as the
triggers to construct stimuli–response DDSs: (i) Acidosis.
The overproduction of lactic acid generated by the enhanced
glycolysis in tumor cells leads to a slightly acidic tumor
microenvironment, i.e., pH 6.5 to 6.8, which is lower than
the pH of normal tissues around 7.4 (Romero-Garcia et al.,
2011; Ji et al., 2013). (ii) High local temperature. The
intrinsic pyrogenic substances secreted by tumor cells induce
distinct hyperthermia in the temperature range of 37 to 42◦C
(Danhier et al., 2010). Typical pyrogenic substances include,
inflammatory cytokines, serotonin, catecholamine, and so on.
(iii) Redox imbalance. The activation of oncogenes in tumor
cells alters the expression and assembly of mitochondrial
electron transport chain enzymes and causes a hyperactive
reactive oxygen species (ROS) production (Purohit et al.,
2019). (iv) Overexpression of certain enzymes such as, the
fibroblast-activation protein-α (FAP-α) expressed by cancer-
associated fibroblasts (CAFs) (Kalluri and Zeisberg, 2006;
Tlsty and Coussens, 2006; Erez et al., 2010; Ji et al.,
2013) and matrix metalloproteinases (MMPs) secreted by
tumor-associated inflammatory cells in the extracellular matrix
(Lu et al., 2012; Ji et al., 2013).

We review recent approaches to the development of
stimuli–response self-assembled peptide-based materials
that exhibit promising therapeutic effects to deliver drugs
to tumor vasculature or tumor cells. The pH, temperature,
redox potential, and overexpressed proteins accumulated
in tumor cells or tumor microenvironment serve as stimuli
to trigger the switch of peptide assemblies. Such sensitive
structural conversion of the peptide-assembled delivery
systems executes controlling drug release and the intracellular
uptake/penetration.

pH-RESPONSIVE PLATFORMS

Peptides that spontaneously undergo morphological transitions
in response to the slightly acidic microenvironments of tumor
tissues have the potential to amplify the accumulation of agents
used in drug delivery and medical imaging. One method of
designing this pH-responsive peptide is using the acidic pH of
the solution to toggle the ionic side chains between their charged
and neutral states and lead to a structural change driven by the
change in charge attractions or repulsions. For example, the pH
(low) insertion peptides (pHLIP) derived from the C-helix of a
membrane protein bacteriorhodopsin are applied for targeting

acidic tissues. The deprotonated side chains of aspartic acid and
glutamic acid interspersed throughout the hydrophobic middle
region and the C-terminal are negatively charged at physiological
pH (pH 7.4), which contributes to an equilibrium between the
solvated state and the membrane-attached state of the pHLIP
(Reshetnyak et al., 2007). In the acidic environment (pH <6.8),
the side chains of aspartic acid and glutamic acid are protonated;
the hydrophobicity of pHLIP is increased because the hydration
free energy of carboxylic acid (propionic acid, −27 kJ/mol) is
less than that of carboxylate (propionate, −331 kJ/mol). The
protonated pHLIP inserts into the cell membrane and forms a
transmembrane helix. In the membrane-inserted state, pHLIP
is oriented with the C-terminus located in the cytosol and the
N-terminus exposed to the extracellular space (Wyatt et al.,
2018). Cargo molecules can be covalently conjugated with the
N-terminus (e.g., fluorescent or radioactive labels) or/and the C-
terminus (e.g., translocating cargos) (a cleavable linker is usually
needed when conjugating the cargo to the C-terminus). Thus,
pHLIP and its derivatives exhibit a wide range of promising
applications including intracellular delivery of therapeutic agents
(An et al., 2010; Yao et al., 2013; Burns et al., 2015) and
fluorescence-guided surgery and imaging (Reshetnyak et al.,
2011; Adochite et al., 2014; Tapmeier et al., 2015; Golijanin
et al., 2016), as well as diagnostic nuclear imaging (Macholl
et al., 2012; Demoin et al., 2016) (Figure 1A). One of the most
attractive applications of pHLIP is its ability to facilitate the
translocation of cyclic toxins, such as, amanitin, phalloidin, and
phallacidin from Amanita phalloides, across the lipid bilayer to
reach the cytoplasmic targets (An et al., 2010; Wijesinghe et al.,
2011). The extracellular delivery of polar cargos expands the
drug pipeline and benefits the clinical trial of drug candidates
that exhibit promising activity but are too polar by normal
drug criteria. Besides pHLIP, the design strategy that the weak
acidity of solution switches the charge state of peptides has been
implemented to create a series of pH-responsive DDSs, such as,
pH-sensitive polyhistidine (PolyHis) (Zhao et al., 2012, 2016)
and collagens (Xu et al., 2016; Yang et al., 2017; Yao et al.,
2019).

Another strategy to construct pH-responsive peptide DDSs
is to introduce an acid-active protecting group into the
charged side chains of a peptide. When the peptide is
encountering acidic media, the protecting group is removed
by acid and converts peptide structure. For example, the
positively charged lysine side chains within a cell-penetrating
peptide, transactivator of transcription (TAT), can be amidized
to be neutral succinyl amides (aTAT) (Jin et al., 2013). At
physiological pH, the amidized modification of lysine side chains
efficiently reduces the non-specific interactions between aTAT
and cell membranes. The aTAT-functionalized PEG-PCLmicelles
(where PEG presents polyethylene glycol, and PCL presents
poly ε-caprolactone) loaded with doxorubicin showed a long
circulation time in the blood compartment. Once the micelles
extravasated from the bloodstream into an acidic environment
(tumor tissues or endosomes/lysosomes), the succinyl amides
in the aTAT were quickly hydrolyzed (Helmlinger et al.,
1997), leading to a fast intracellular uptake/penetration of
the nanoparticles.
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FIGURE 1 | Schematic representations of peptide in response to the acidic pH (A), high temperature (B), the high oxidative potential (C), and the overexpressed

protein MMP-2 (D).

TEMPERATURE-RESPONSIVE
PLATFORMS

Hydrophobic interactions, which are encoded by amino acid
composition and the non-polar domain size, determine the
tertiary and quaternary structure stability and guide the
temperature-dependence of peptide assembly (Li and Walker,
2012; Davis et al., 2013). Specifically, the temperature dependence
of hydrophobic hydration energy is positive when the size
of the non-polar solute is smaller than 1 nm. In contrast,

the temperature dependence is negative when the size of the
non-polar solute is larger than 1 nm (Li and Walker, 2012;
Davis et al., 2013). This analysis provides a theoretical basis
for understanding the temperature-triggered assembly structural
transition. For example, elastin-like polypeptide (ELP) is a
set of commonly used thermally active biopolymers consisting
of repeats of VPGXG (where X can be any amino acid
except proline) (Urry, 1992). The hydrodynamic diameter of
each non-polar patch within an ELP is smaller than 1 nm.
Thus, ELPs display a facilitated hydrophobic aggregation upon
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heating; i.e., a phase transition occurs from clear solution to
insoluble aggregate as the temperature increases from below
their transition temperature (Tt) to above their Tt (Urry,
1992; Urry and Pattanaik, 1997; Li et al., 2001). Herein, the
Tt of the polypeptide is a function of residue composition,
residue arrangement, biopolymer persistence length, molecular
concentration, and coexisted molecules (Meyer and Chilkoti,
2002, 2004). Usually, the Tt of the polypeptide is designed to be
in the temperature range of hyperthermia (ca. 38–42◦C).

By using ELP as a skeleton, thermally triggered peptide
delivery systems were usually designed as a diblock copolymer
consisting of an amphiphilic ELP domain and a hydrophilic
domain to covalently tether chemotherapeutic compound
(Dreher et al., 2008; McDaniel et al., 2013). In normal tissues,
where the physiological temperature is 37◦C, chimeric peptides
stay in a freely monomeric state. In tumor regions, where the
local temperature is >37◦C exceeding Tt, the amphiphilic ELP
domains assemble to a micelle, and the hydrophilic domains act
as linkers to expose the affinity targeting moieties on the outside
surface of the micelle (Figure 1B). This feature leads to chimeric
peptide–drug complex aggregation and accumulation in tumor
tissues by hyperthermia.

REDOX-RESPONSIVE PLATFORMS

Excess production of ROS by tumor cells results in pathological
stress to cells and tissues, including essential protein damage,
lipid peroxidation, DNA strand breakage, and so on (Darley-
Usmar and Halliwell, 1996). In terms of protein structure, the
thiol groups of cysteine (Cys, C) side chains are attractive
oxidative targets for chemical modification by ROS, such as,
hydrogen peroxide (H2O2). The fluctuation in the non-covalent
interactions associated with the oxidization of cysteine can lead
to the emergence of changed protein tertiary and quaternary
structures. This observation motivates researchers to design
redox-stimulated peptide assemblies by using cysteine or cysteine
derivative as a ROS sensor. In their systems, a change in
the intermolecular interactions encoded by cysteine, which
results from the presence of ROS, is amplified into a range of
structural outputs. For instance, cholesterol-decorated peptide
PEG-PCys-Chol adopted an antiparallel β-sheet conformation
and assembled into micelles in solution (where PEG presents
polyethylene glycol, PCys presents polyC, and Chol presents
cholesterol) (Liu et al., 2018). After treatment with 10%
H2O2 in the presence of 5% acetic, the side chains of polyC
were oxidized. The oxidation of PEG-PCYs-Chol (PEG-PCys-
Chol-O2) adopted a helical conformation and displayed a
micelle-to-vesicle structural transformation (Figure 1C). The
oxidized PEG-PCys-Chol-O2 vesicle exhibited a strong potency
to deliver a model chemotherapeutic agent doxorubicin (DOX)
into HeLa tumor cells. In contrast, HeLa cells were inert
to the reductive PEG-PCys-Chol/DOX micelle. The high
internalization efficiency of PEG-PCys-Chol-O2/DOX is due
to the cholesterol-bearing α-helical structure that facilitates
cell membrane penetration (Kulkarni et al., 2012; Yin et al.,
2013; Sevimli et al., 2015). Collectively, this effort demonstrates

a strategy of triggering a controllable release of cargos by
hyperactive ROS in tumor tissues.

OVEREXPRESSED PROTEIN-RESPONSIVE
PLATFORMS

Overexpressed proteins within tumor tissues provide specific
binding targets for recruiting drug/delivery systems to improve
the bioavailability of drugs (Kalluri and Zeisberg, 2006;
Tlsty and Coussens, 2006; Erez et al., 2010; Sagnella et al.,
2014). Biocatalysis-dependent delivery systems that target these
characteristic proteins were delicately designed. The system
usually contains two functional moieties: a sensor moiety that
acts as an enzyme substrate and a cohesion moiety that drives
peptide to assembly. Thus, the process of biocatalysis-dependent
recognition involves an enzyme-mediated change with peptide
assembly structures.

For example, FAP-α is selectively overexpressed by CAFs,
the predominant cell type in the tumor stroma. Several stimuli-
responsive nanostructures for drug delivery and release have
been constructed inspired by the catalytic function of FAP-α.
Ji et al. (2016b) designed a biocatalytic amphiphilic peptide
Ac-ATK(C18)DATGPAK(C18)TA-NH2 (where C18 represents an
octadecanoic acid chain) that exhibited morphological changes
mediated by FAP-α. The moiety of -GPAX- is a specific cleavage
substrate of FAP-α, and the moieties of -ATK(C18)- and -
(C18)TA- provide hydrophobic attractions for peptide assembly
(Ji et al., 2016b). In water environment, hydrophobic drug
Dox coassembled with Ac-ATK(C18)DATGPAK(C18)TA-NH2

to form spherical nanoparticles. When interacting with CAFs,
nanoparticles disassembled rapidly under FAP-α’s cleavage and
efficiently released DOX specifically at the tumor sites. Thus, the
peptide assemblies could enhance the drug perfusion in solid
tumor treatment.

Similarly, the diverse chemokines, cytokines, and matrix-
degrading enzymes secreted by tumor-associated inflammatory
cells, such as, MMPs, are also promising targets for the
design of an enzyme-active peptide-based delivery system. Ji
et al. (2016a) developed an MMP-2–sensitive peptide linker
CSSSGPLG-IAGQSSS to tether (i) a gemcitabine/RGD (tumor
cell–binding peptide) loaded liposome and (ii) a pirfenidone-
loaded β-cyclodextrin (β-CD) (Figure 1D). This peptide–β-CD–
liposome supramolecular architecture was cleaved into two active
units when they reached the tumor tissues to exert a synergy
effect against pancreatic tumor: (i) The gemcitabine/RGD-loaded
liposome unit targeted and directly killed pancreatic tumor
cells. (ii) The β-CD–pirfenidone unit was maintained in the
tumor stroma to down-regulate the fibrosis and decrease the
stromal barrier.

CONCLUSION AND CHALLENGES

In summary, we present a brief overview of the strategies
available to the rational design of peptide-assembled agent
delivery nanoplatforms. The architectures of peptide-basedDDSs
are precisely engineered to achieve active drug transportations
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and release upon tumor microenvironment stimuli, including
pH, temperature, redox potential, and tumor-associated
overexpressed proteins. Despite the promising activity, there still
exist challenges that limit the application of stimuli-responsive
peptide-based nanomaterials in tumor treatment.

(i) High interstitial fluid pressure in most solid tumors
impedes the penetration of compounds and delivery systems
(Heldin et al., 2004). The reasons for increased interstitial
fluid pressure probably involve blood-vessel leakiness, lymph-
vessel abnormalities, interstitial fibrosis, and a contraction of
the interstitial space mediated by stromal fibroblasts. High-
molecular-weight compounds, such as, peptide assemblies, are
transported in the interstitiummainly via convection rather than
via diffusion (Heldin et al., 2004; An et al., 2019). Thus, a high
interstitial fluid pressure induces a reduction of transcapillary
transport and weakens the streaming of therapeutic drugs and
delivery platforms from the circulation system through the
interstitial space. Some of the cytokine antagonists, such as,
vascular endothelial cell growth factor antagonist and platelet-
derived growth factor (PDGF) antagonist, can be applied to
lower tumor interstitial fluid pressure and facilitate the cellular
uptake of drugs. However, it is still a challenge to reduce the
interstitial fluid pressure of tumors without affecting normal
tissues (Heldin et al., 2004). In addition, drugs or drug-loaded
supramolecules that self-assemble in situ and exhibit high
retention efficiency in the specific tumor tissues also provide
a promising solution for overcoming the high interstitial fluid
pressure obstacle to adequate drug delivery (Gao et al., 2013; An
et al., 2019), but these studies are still in the preliminary stage
of exploration.

(ii) Advanced methodologies and technologies are required
to track the fate of stimuli-responsive peptide-based DDSs in
vivo (Kreyling et al., 2015; Chen et al., 2017). Recent in vivo
studies with a few numbers of nanosystems indicate that the
surface chemistry, the corona of adsorbed proteins, and integrity
of assembly nanostructures can be dramatically degraded by
enzymes and immune cells and consequently change the
pharmacokinetics, biodistribution, and immunological effects
of drug carriers (Kreyling et al., 2015; Chen et al., 2017).
It is important to investigate whether the stimuli response

of peptide-based DDSs in vitro can be manifested in vivo.
However, such measurement is challenging because of the lack
of a feasible analytical instrument or methodology to reveal the
structural transitions of peptide-based DDSs in vivo. Inspired
by other nanomedicine research (Shan et al., 2018, 2019),
some potential strategies are expected to solve this thorny
problem, including high performance liquid chromatography
measurement of plasma level of the loaded drugs, detection of
specific overexpressing proteins/micromoles in the blood, and
development of harmless tracer/probe. This research direction
needs more efforts in the future.

(iii) The clinical evaluation of the stimuli-responsive peptide
DDSs is absent because of the expensive and lengthy regulatory
process (Jang et al., 2016). The behaviors of DDSs in human
bodies might deviate from that in animal models as they
possess different inherited characteristics (Jang et al., 2016).
Innovative preclinical testing platforms, such as, patient-derived
organoids, are needed to accurately evaluate the efficacy and
safety of stimuli-responsive peptide-based DDSs before clinical
trials (Tiriac et al., 2018; Saito et al., 2019).

Efforts to address the aforementioned challenges
will substantially promote the medical application of
stimuli–response peptide-assembled nanomaterials as a
chemotherapeutics delivery platform and finally benefit cancer
treatment in the clinic.
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