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Abstract

Purpose: Magnetic resonance imaging (MRI) is the primary modality for targeting

brain tumors in radiotherapy treatment planning (RTP). MRI is not directly used for

dose calculation since image voxel intensities of MRI are not associated with EDs of

tissues as those of computed tomography (CT). The purpose of the present study is

to develop and evaluate a tissue segmentation‐based method to generate a syn-

thetic‐CT (sCT) by mapping EDs to corresponding tissues using only T1‐weighted

MR images for MR‐only RTP.

Methods: Air regions were contoured in several slices. Then, air, bone, brain, cere-

brospinal fluid (CSF), and other soft tissues were automatically segmented with an

in‐house algorithm based on edge detection and anatomical information and relative

intensity distribution. The intensities of voxels in each segmented tissue were

mapped into their CT number range to generate a sCT. Twenty‐five stereotactic

radiosurgery and stereotactic ablative radiotherapy patients’ T1‐weighted MRI and

coregistered CT images from two centers were retrospectively evaluated. The CT

was used as ground truth. Distances between bone contours of the external skull of

sCT and CT were measured. The mean error (ME) and mean absolute error (MAE)

of electron density represented by standardized CT number was calculated in HU.

Results: The average distance between the contour of the external skull in sCT and

the contour in coregistered CT is 1.0 ± 0.2 mm (mean ± 1SD). The ME and MAE

differences for air, soft tissue and whole body voxels within external body contours

are −4 HU/24 HU, 2 HU/26 HU, and −2 HU/125 HU, respectively.

Conclusions: A MR‐sCT generation technique was developed based on tissue seg-

mentation and voxel‐based tissue ED mapping. The generated sCT is comparable to

real CT in terms of anatomical position of tissues and similarity to the ED assign-

ment. This method provides a feasible method to generate sCT for MR‐only radio-

therapy treatment planning.
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P A C S

87.53.Tf – Treatment Planning, 87.61.‐c – MRI, 87.57.N – image analysis, 87.57.nm –
Segmentation, 87.57.uq – Dosimetry, 87.57.Q – CT, 87.57.nt – Edge Enhancement
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1 | INTRODUCTION

Magnetic resonance imaging (MRI) is the modality of choice for

defining brain tumor volume in precision radiotherapy techniques

such as stereotactic radiosurgery (SRS) and stereotactic ablative

radiotherapy (SABR) because MRI provides high soft‐tissue contrast,

functional information, and high resolution, which is superior to what

can be provided by a planning CT. However, MRI alone is not suffi-

cient in radiotherapy treatment planning (RTP) due to its lack of

electron density (ED) information in its image voxel intensity values

for radiation dose calculation. Conventionally, the radiation dose has

to be calculated using CT images which are registered with MR

images. This image registration process will introduce errors in

defined tumor volumes.1 Although these errors are usually small due

to the rigid structure of the skull, image registration errors can be

significant in some cases when MR and CT scans have differences in

positions or setup.2 This may lead to geometrical miss of target vol-

umes as the target volumes are usually small and increase in dose to

nearby critical organs. This, in turn, would compromise the effective-

ness of treatment and the patient’s quality of life. MR‐only treatment

planning will eliminate image registration error, minimize patient

setup error, and reduce unnecessary radiation to patients from multi-

ple CT scans.

One of the major benefits of MR‐only RTP is improved workflow

and reduced burden on the patient in terms of multiple visits/scans.

Also, MR‐only RTP is what will be needed in the future for new

technologies such as the MR‐Linac.
One solution to the problem is to derive ED information from

MR images to generate synthetic CT (sCT) images. It is not a trivial

problem since, in commonly used MR images, air and cortical bone

have no difference in MR image voxel intensity values. Some tissues

have a similar or overlapping MR intensities and very different EDs,

for example, bone, eye, cerebrospinal fluid (CSF), brain, trabecular

bone, muscle and fat tissues. The MR image voxel intensity values

are not as standardized as those of CT and change with scanning

parameters, MR scanner manufacturer, magnetic field strengths, and

patients. It poses a big challenge to separate tissues based on the

absolute voxel intensity values of MR images. Many postscan MR

voxel intensity standardization algorithms such as those based on tis-

sue segmentation were developed.3 In literature, atlas‐based deform-

able image registration, MR bone imaging‐based tissue classification

or segmentation, and machine learning‐based convolutional neural

network (CNN) are the main approaches used to generate MR‐based
sCT.3–16

Atlas‐based approaches usually applied deformable registration

algorithms to a pair of population based coregistered MR/CT images

from one or multiple atlases to match a new patient’s MR images.

The voxels of the patient’s MR images were assigned ED values by

warping electron densities from the deformed CT images.3,5,6 How-

ever, the uncertainty of image registration increases with the varia-

tion of a patient’s anatomy and pathology with respect to the

atlases. Some patients were excluded from these studies due to sig-

nificant anatomic or pathologic variations. The deformable registra-

tion error can be as much as 3 mm reported by a study evaluating

some deformable registration methods.4

Several approaches utilized a specialized MR sequence such as

ultra‐short echo time (UTE) to differentiate air and bone.7–11 These

sequences typically have a low signal to noise ratio and tissue con-

trast, bone, and other soft tissues such as fat and muscle cannot be

clearly differentiated. Therefore, typical bone scan sequences in

these studies included multiple UTE, T1, and T2 sequences. Some

postscan image processing methods were developed to process mul-

tiple MR image series obtained from the bone scan sequences to

classify image voxels as bone, air, and other soft tissues. Then, either

bulk or voxel‐based ED assignment was used to generate sCTs.9–13

It is a costly approach. Errors due to MR artifacts such as chemical

shift and motion in any of these MR sequences can be inherited by

the generated sCT.

Deep learning‐based CNN techniques used a trained convolu-

tional kernel to predict the ED of each voxel of a patient’s MR

images to generate sCT.15,16 The kernel consists of many layers of

small image filters associated with many parameters trained using

coregistered MR and CT image datasets. These methods used only

one set of T1‐weighted MR images and did not need deformable

registration. High‐resolution MR images were required since small

sizes of filters were used in the kernel to avoid blurring. Therefore,

these methods require computers with high computing power such

as one with GPUs and large random access memory (RAM) for train-

ing kernels and generating sCTs. Large number of high‐quality train-

ing data are essential for this approach as any error introduced into

kernel can produce inherited errors into generated sCTs.

In our previous study,17 a semiautomated method was developed

which can segment cortical bone from T1‐weighted MR and gener-

ate “CT‐like” MR for radiation treatment image verification by identi-

fying air region (sinuses and air way) through several slices of

manual contours. The generated MR‐based digitally reconstructed

radiographs (DRR) have been verified for geometric accuracy of

segmented bone.
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However, to generate sCT for dose calculation, electron densities

of soft tissues have to be accurately assigned, especially for those

soft tissues such as brain that may have MR intensities overlapping

with those of trabecular bone and fat. Contrast enhanced T1‐
weighted MR images clinically used have high contrast (high inten-

sity value) where a tumor is located resulting in contrast‐related arti-

facts. Cerebrospinal fluid usually has low MR intensity values which

may partially overlap with those of bones.

In MR neuroimaging, methods have been developed that can

automatically segment brain tissues using conventional MR

sequences such as T1‐weighted images.18,19 These methods can seg-

ment brain tissue without using atlas and deformable registration.

Moreover, these methods are not very sensitive to MR voxel inten-

sity variation due to anatomical variation or scan parameters since

the methods do not rely on the thresholding of standardized voxel

intensity values of MR images obtained from a set of training data.

The MR voxel intensity range of brain for an individual patient was

found by searching representative voxels of brain tissue with certain

anatomic or textural properties in the patient’s MR images.

In this study, a voxel‐ based ED assignment method has been

developed by segmenting tissues: air, brain, CSF, cortical bone, tra-

becular bone, eyes, muscles and fat from a patient’s MR images. A

sCT was generated by assigning voxel‐based electron density values

to corresponding types of tissue’s voxels.

2 | MATERIALS AND METHODS

2.A | Tissue segmentation

This process was used to separate tissues with similar intensities in

T1‐weighted MR images and a large difference in electron density

such as cortical bone, trabecular bone, brain, CSF, eyes, muscle and

fat. Tissues were automatically segmented by utilizing information

such as high soft‐tissue contrast, edge detection, anatomical location,

shapes, and statistical features of the tissue such as mean (μ), stan-

dard deviation (σ), and uniformity (Fig. 1).

The uniformity of a tissue Utissue within a defined window such

as 1 cm × 1 cm is calculated as

Utissue ¼ μðpiÞ=σðpiÞ (1)

where voxel pi ∈ voxels within the sample window of a tissue.

2.A.1 | Air mask generation

As described in our previous study,17 separating air from cortical

bone was achieved by manually contouring air regions enclosing

sinuses and airway in less than 12 slices. The entire air regions in

the head then were obtained by interpolating these contoured slices

to slices in between. This is the only manual step in this process.

Afterward, an in‐house algorithm developed with IDL8.7 (ITT Visual

Information Solutions) calculated the statistic mean (μAir) and stan-

dard deviation (σAir) of MR intensity values of the air, then gener-

ated an air mask by subtracting soft tissues enclosed in the air

regions. Subsequently, it will generate other tissue segmentation as

follows.

2.A.2 | Automated brain and CSF segmentation

Determination of statistical intensity range of brain

First, search a voxel with the largest intensity uniformity calculated

using eq. (1) within a defined 1cm x 1cm window centered on the

voxel in the middle coronal slice. The mean intensity of voxels within

the window centered on the voxel is the reference intensity of brain

(wmIntensity). The statistic brain tissue intensity range is from

0:53�wmIntensity;1:35�wmIntensity½ �.15

Edge detection

MR images were processed by thresholding using intensity range

found in Section “Determination of statistical intensity range of

brain” to separate the skull from brain tissue. To enhance edge

detection, all voxel intensities out of this range were set to 0. Then,

Canny edge detection algorithm20 was applied to each slice in axial

and sagittal directions. The largest external contours of these edges

within the skull for each slice were identified for brain segmentation.

The broken edges were enhanced by searching the external path of

the edges and closing any gaps more than one voxel distance

between two closest voxels of the edge by adding missing voxels

into the edges along the shortest path between these edge voxels.

All the edge voxels were set to maximum intensity values to prevent

leakage when using region growing algorithm.

Initial brain segmentation

Firstly, brain mainly consisting of white matter with high uniformity

was segmented by applying region growing algorithm from the refer-

ence voxel of white matter in three dimensions with intensity range

0:7�wmIntensity; x007E;1:2�wmIntensity½ �.

Determine statistical intensity range of CSF

Cerebrospinal fluid reference voxels were searched within an initial

segmented brain in a window size of 5 mm × 5 mm × 5 mm with a

maximum uniformity and intensity less than 0.53 times of wmInten-

sity. The mean (μCSF) and standard deviation (σCSF) of the voxels

within the window were calculated.

Skull Mask

Due to surgery on the skull, segmented brain volume may spread

into the spongy bone of the skull or soft tissue outside of the skull

with a region growing algorithm.

Reference voxels of the skull were obtained by thresholding with

an intensity range 0; μAIR þ 3� σAIR½ � from a region within 1 cm from

external body contour. A skull mask was generated by region grow-

ing algorithm from the skull reference voxels with a range

0; μCSF þ 2� σCSF½ � in regions external to the segmented brain and

CSF, and the edges of the brain identified in Section “Edge detec-

tion”. All the soft tissues voxels external to the skull relative to that

brainin distance were added into the skull mask.
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CSF segmentation

CSF voxels were segmented using region growing algorithm starting

from CSF reference voxels which were found in Section “Determine

statistical intensity range of CSF,” in brain, around brain, and spinal

cord with a range from μCSF � 2� σCSF; μCSF þ 2� σCSF½ � constrained
by the skull mask.

Final brain segmentation

In this final step, the brain voxels (e.g., gray matter) within groves

among initial segmented brain in Section “Initial brain segmentation”

were segmented when these voxels were connected with the seg-

mented brain tissue with intensity range found in Section “Determi-

nation of statistical intensity range of brain” and did not fall within

the skull mask.

2.A.3 | Automated eye segmentation

Eyes have well‐defined boundaries in T1‐ weighted MR images and

their MR intensities are lower than those of brain. Left and right

eyes are located at the anterior hemisphere relative to the brain and

are symmetrical to the middle line of brain. Therefore, the eye seg-

mentation was designed using these intensity and anatomical

information. First, a brain slice with the maximum anterior posterior

width was identified. In an image box which is 5 cm superior and

7 cm inferior to that brain slice at the anterior hemisphere of the

head, connected regions with voxel intensity values less than 0.7

times of typical brain intensity wmIntensity were separated. From

these regions, any region which was connected to the cross sagittal

midline of brain, or had a too small volume (less than half of a typical

eye size: 4 cm in diameter), or too large volume (more than two

times of a typical eye’s size) or not a spherical shape (defined as

when the maximum difference of diameters in three dimensions was

more than 1 cm), were excluded from eye regions. Regions which

were satisfied all above criteria were identified as left or right eye.

2.A.4 | Automated bone segmentation

As described in our previous study,17 bone mask was obtained by

using region growing algorithm with similar intensity ranges as that

of air. Bone segmentation in this study mainly focused on trabecular

bone because the volume of trabecular bone can be quite large for

some patients due to aging and pathological effect. Furthermore, the

range of intensities of trabecular bone in T1‐weighted MR images

overlaps with brain tissue and fat. Trabecular bone volumes enclosed

F I G . 1 . Systematic of tissue segmentation‐based electron density mapping method
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in cortical bone mask were first separated as reference trabecular

bone voxels. Mean (μtrabecular) and standard deviation (σtrabecular) of

the MR intensities were calculated from the trabecular bone voxels.

Trabecular bones such as those in spinal bone may not be entirely

enclosed by a cortical bone mask due to “thinness” of cortical bone,

thickness of image slices, and partial volume effect. These trabecular

bone volumes were recovered by locally searching voxels in a small

neighborhood window near cortical bone voxels with intensities fall-

ing within the interval μspongy � 2� σspongy; μspongy þ 2� σspongy
� �

.

2.A.5 | Other soft tissue segmentation

Other soft tissues, excluding brain, CSF, bone, and air cavities mainly

consist of fat and muscle. Fat usually has high intensity value in T1‐
weighted MR images, but relatively low electron density compared to

that of muscle. The minimum (minsoft), mean (μsoft), and standard devia-

tion (σsoft) of soft tissues were calculated excluding bone and air. To

cope with intensity variation due to the nonuniform magnetic field

across the volume, μsoft and σsoft were calculated for each axial slice by

including all soft tissue voxels from two adjacent slices to the slice.

Muscle intensity was assumed to fall within the an intensity range

minsoft; μsoft½ �. Fat was segmented with an intensity range

μsoft; μsoft þ 2� σsoft½ �. Contrast artifacts were obtained by threshold-

ing voxels with an intensity range larger than μsoft þ 2� σsoft.

2.B | Generation of synthetic‐CT

Synthetic‐CT was generated by substituting the MR intensity value

of each voxel of a tissue with a corresponding CT number in Houns-

field unit (HU), which has a standardized relationship of electron

density of a tissue relatively to that of water.21 Intensities of all vox-

els in air mask and external contour outside of a patient’s body were

mapped into a single CT number —1000 HU. MR intensity of each

voxel of segmented bone and other soft tissues were mapped to a

CT number within the corresponding statistical CT number range of

the tissue as shown in Table 1.

2.C | Validation materials

To validate the accuracy of the generated sCT images in the head,

images sets from 25 patients with brain tumor undergoing SRS or

SABR were selected. This study received local Research Ethics Board

approval from two institutes. Twenty patients undergoing SRS and

five patients undergoing SABR had both MR and CT scans for plan-

ning. For MR scans, the patients were not immobilized in treatment

position, but positioned with the head in a comfortable position from

the top of the head, inferiorly to the base of the skull. The MR scans

were acquired using two 1.5 T Signa HDxt MR scanners (GE Health-

care, Waukesha, WI, USA) from two institutes with intravenous

Gadovist contrast (Bayer Healthcare, Monheim, Germany). In 20 SRS

cases, 116 axial slices with a thickness of 1.5mm were acquired. The

scan sequence was a 3D T1 FSPGR, with repetition/echo time

8.548/ 4.2 ms, number of averages 1, frequency flip angle 20,

acquisition matrix 270 × 270, and voxel size 0.43 mm × 0.43 mm ×

1.5 mm3. In five SABR cases, 62–68 axial slices with a thickness of

2.5 mm were acquired, The scan sequence was a 2D T1 FSPSE with

repetition/echo time 566.7/13.3 ms, number of average 2, frequency

flip angle 90, acquisition matrix 480 × 240, and voxel size

0.47 × 0.47 mm × 2.5 mm3, The geometrical distortion of MR

images was corrected using the vendor’s algorithm. CT‐simulation

images of 20 SRS were acquired using a 16‐slice Philips Brilliance CT

scanner (Philips Medical Systems, Cleveland, OH, USA) with voxel

size 1 × 1 × 1 mm3 and a stereotactic frame fixated to the skull or

an Aktina fixation system for noninvasive cranial LINAC‐based SRS.

CT images of five SABR were acquired using a GE lightspeed CT

scanner (GE Medical Systems) with voxel size

0.74 × 0.74 × 2.5 mm3 with the patient immobilized in a thermal

plastic mask.MR image data was registered with CT images in the

Pinnacle3 treatment planning system v9.8 (Philips Medical Systems,

Cleveland, OH, USA) using a 6 degrees of freedom, rigid‐body,
mutual information algorithm. Small manual adjustments were made

to match the outermost edges of the skull. MR and CT images of

these patients were selected because the uncertainty of cranial MR

and CT image registration has been quantified to be within 2 mm for

various registration algorithms by a multi‐institutional benchmark

test.2 The geometric distance difference between T1‐Weighted MR

and CT images was measured to be less than 0.5% in the Radionics

SRS xKnife planning system (Integra Life Sciences, Plainsboro, NJ,

USA) and ERGO ++ (Elekta) radiosurgery planning system for the

SRS cases.

TAB L E 1 Description of mapping of tissue type from T1‐Weighted
MR intensity range to CT

Tissue type

MR
intensity
range

Voxel ED mapping
transform CT (HU)

Air All

intensities

Bulk assignment −1000

Cortical bone μcbone
± 2σcbone

Inverse linear [700,1100]

Trabecular bone μsbone
± 2σsbone

Inverse linear [500,700]

Brain μbrain
± 2σbrain

Linear [40,75]

CSF All

intensities

Bulk assignment 45

Muscle Minsoft tissue,

μsoft tissue

+ σsoft tissue

Inverse linear [20,80]

Fat μsoft tissue

+ σsoft tissue,

μsoft tissue

+ 2σsoft tissue

Inverse linear [−70, −20]

Contrast >μsoft tissue

+ 2σsoft tissue

Bulk assignment 0

CSF, cerebrospinal fluid; CT, computed tomography; MR, magnetic reso-

nance.
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2.D | Evaluation methods

The generated sCT was compared with coregistered CT to evaluate

its geometric similarity and accuracy of ED assignment by using the

following criteria:

2.D.1 | Distances between bone contours of sCT
and CT

On three axial, coronal, and sagittal slices with the largest width of

external bone contours, for each voxel on the external bone con-

tours of sCT, automatically searching for a voxel on the external

bone contour of CT with a shortest distance. The shortest distance

is regarded as one measurement of distance between voxels on

bone contours of sCT and CT as shown in Fig. 3. The average of the

shortest distances of all voxels on the evaluated external bone con-

tours are recorded as the average distance difference of bone con-

tours between sCT and CT.

2.D.2 | Dice similarity coefficient of bone and brain

The bone volumes were generated using a thresholding 200 HU

respectively for both CT and sCT. The brain segmentation was evalu-

atedusing manual segmentation by a radiation oncologist for five

patients in MR images. The Dice Similarity Coefficient (DSC) is calcu-

lated as.

DSCTissue ¼ 2� TissueCT ∩Tissuesctð Þ
TissueCT þ Tissuesct

(2)

The mean error (ME) of electron density represented by stan-

dardized CT number — HU and the mean absolute error (MAE) of

electron density error for a given segmented tissue voxels (N) was

calculated using following equations.

MEtissue ¼ 1
Ntissue

� �
∑
N

i¼1
ðCTi � sCTiÞ (3)

MAEtissue ¼ 1
NTissue

� �
∑
N

i¼1
jCTi � sCTij (4)

The volumes of soft tissues came from MR tissue segmentations

of sCTs within the external body contours of corresponding CTs. The

external contours were obtained with a thresholding of — 400 HU.

Due to significant differences in air cavities because of different

patient setups between MR and CT scans, the air volume considered

only air voxels within the overlap of sCT and CT (less than −800 HU).

ME and MAE of whole body voxels were calculated from the voxels

within the overlap of external head contours of sCT and CT. The HU

differences were calculated in corresponding voxels in sCT and CT.

3 | RESULTS

Figure 2 shows the sCT and CT in three views. sCT is visually similar

to the CT. The main differences appear close to the edges of brain

and CSF. The soft‐tissue contrast was preserved in sCT. Brain, CSF,

brain ventricle, and brain stem can be clearly seen.

Figure 3 shows the difference of the external contour of the

skull in axial, coronal, and sagittal slices within the largest width of

the skull. The averaged (and ±1SD) distances of maximum external

(a) (e)

(b) (f)

(c) (g)

(d) (h)

F I G . 2 . Synthetic‐CT (a–d) and corresponded CT (e–h) in three
views and different axial level of one patient. Red arrows indicate
mastoid sinuses
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contour of skull between sCT and CT are 0.6 ± 0. 3 mm,

1.3 ± 0.1 mm, 1.2 ± 0.2 mm in axial, coronal, and sagittal slices,

respectively. The averaged distance in three views is 1.0 ± 0.1 mm.

Figure 4 shows a HU difference map between sCT and CT. Large

difference of soft tissue appears at part of the external contour of

patient near the table top due to different shape of table tops

(curved and flat) used in acquiring MR and CT scans. Significant dif-

ferences can also be seen at mastoid sinuses which consist of small

air bubbles separated by thin lamina bones.

The dice similarity coefficients for bone and brain (including CSF)

are 0.72 (σ = 0.04) and 0.86(σ = 0.02), respectively. The ME and

MAE for difference in soft tissues are shown in Table 2.

Figure 5 shows sCTs generated three patients. Our method can

consistently generate sCT for cases with significant pathological vari-

ation such as holes on the skull and tumors enhanced by contrast.

The average contouring time for air region was 10 min using

contouring tools in Pinnacle3 treatment planning system and the

average time for automated tissue segmentation and electron den-

sity mapping was about 2 min using an in‐house program, on a stan-

dard PC (CPU 2.6 GHZ, 8.0 GB RAM).

4 | DISCUSSIONS

In this work, we developed an electron density assignment method

to generate sCT with one set of clinically used T1‐weighted MR

images based on automated tissue segmentation techniques. The

new method not only utilized information of boundaries among tis-

sues through edge detection, it also used other information such as

high tissue contrast, anatomical information (location, shape, and

size), and tissue texture to differentiate tissues with similar intensi-

ties and assigned them corresponding voxel‐based electron densities.

The geometrical accuracy of generated sCT was evaluated by

calculating average distances between external contours of the skulls

of sCT and CT. The average difference was about1 mm. The largest

difference was in the longitudinal direction. This may be due to the

slice thickness of MR images which was 2.5 mm or 1.5 mm and was

thicker than that 1.0 mm of CT. Different scan position was another

factor. As shown in Fig. 3, the mismatching of skull contours of sCT

and CT was mainly due to small differences in the positional angles

between the neck and the base of the skull between MR and CT

scans which cannot be corrected with rigid image registration.

As shown in Fig. 4, large ED errors were present in mastoid

sinuses which are complex structures consisting of small air bubbles

with thin bony separators. They were not always distinguishable

from surrounding skull bone. Large ED assignment errors in these

regions were also observed in other atlas, UTE, and CNN‐based
techniques.12,14–16 Due to the small volume of mastoid sinuses and

the average effect of mixture of bone and air components, the

impact of the ED errors on the overall accuracy of sCT is minimal.

Errors also occurred near oral cavities because of different patient

setup and at the neck where it is close to the edges of field of view

(FOV) because of MR artifacts.

In our method, voxel‐based ED mapping was performed by

assigning statistical ranges of CT numbers to voxels of individual tis-

sues to minimize ED errors for each type of tissue so that the errors

of overall ED assignment was minimized. Studies show that sCT gen-

erated using bulk ED assignment or voxel‐based ED assignment all

achieved high overall dosimetric accuracy (<5%) compared with CT

as ground truth.22–27 The large dosimetric errors were found where

targets and OARs were located near air cavities or bones when bulk

ED assignment was used.10,26 The ED of cortical bone can be as

high as 2000 HU, and so the ED errors can be more than 1000 HU

when 800 HU was used for bulk ED assignment of bone. Therefore,

this method used voxel‐based approach to map EDs for cortical

bone and trabecular bone. It achieved the average MAE of bone

244 HU which is significantly better than 422 HU reported in Ref.

[9]. which used UTE sequence and bulk density assignment. It is

worse than 130 HU of a study7 using multiple atlases. However, the

large errors appear at regions which have large image registration

errors such as near the oral cavities, base of skull near the neck due

to different scan, and patient setups between MR and CT scans. The

DSC of bone is 0.72 with is comparable with 0.73 in a study14 which

utilized Zero TE (ZTE) sequence imaging.

F I G . 3 . Differences of skull segmentation of synthetic‐computed tomography (sCT) and CT in Axial, Sagittal, and Coronal views. Red arrow
indicated the distance between largest external contours of sCT and CT. Black is external skull edge (−1) from sCT and white (1) is external
skull edge from CT. Gray is when the edges are overlapped (0).
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Whole‐body MAE of our method is on average 126 HU which is

better than 147 HU reported by a UTE study10 and is comparable to

123 HU from a ZTE study.14 Studies based on CNN and multiple

atlas deformable registration in general reported lower whole‐body
MAEs than the other methods. Hans et al. reported 85HU using a

deep CNN method.15 Dinkla et al. and Farjarm et al.7,16 reported 67

and 64 HU using CNN and multiple atlases techniques, respectively.

However, it is difficult to compare different methods just based on

whole‐body MAEs. The results of these CNN and multiple atlas

methods7,16 were achieved through cross validation using strictly

selected “good” training data. The MR images were acquired in the

clinical MR treatment protocol which has the same setup as that of

CT, high resolution, thin slice thickness, identical MR sequence, and

similar field of view. Cases with streaking artifacts on the CT and

with noticeable image registration errors in air regions were

excluded. Our study did not have specific exclusion criteria for vali-

dation data. We include all patient data acquired within a period of

time as long as the field of view (FOV) includes the whole skull.

Some patients even have streak dental artifacts on the CT.

One main advantage of our method compared to other methods

is that it is robust with respect to patient‐related variations due to

differences in anatomy, pathological conditions, and aging process.

We have tested our method on a variety of patient cases in this

study with different anatomies, including postsurgical patients and

with contrast enhanced tumors as shown in Fig. 5. The results show

that our method is robust to patient‐related anatomical and patho-

logical variation. Both deep learning‐based CNN and multiple atlas‐

based deformable registration methods have limitation on nonstan-

dard cases with large anatomic and pathologic variation from training

data or atlases. Some studies pointed out that these methods are

not robust to patient‐related variation and suggested that increasing

training data to include a variety of anatomy and pathological condi-

tions may get around the issue but at the expense of processing

time, dramatically increasing the required computing resources. Fur-

thermore, using a large amount of training data can considerably

increase the complexity of the trained kernel which poses a risk of

skewing the kernel and making it prone to errors.

Another main advantage of our method compared to other meth-

ods is that it is robust to tissue intensity variation due to differences in

scan protocols, scan parameters, and/or scanner type. Our method uti-

lized prior knowledge of each type of tissues such as its location, rela-

tive position, tissue contrast, edges, shape and size to automatically

search for the representative tissue voxels within each type of tissue

region to learn the intensity variation of different tissues for each indi-

vidual patient. Therefore, our method is not susceptible to scan‐re-
lated intensity variation acquired with heterogeneous scan protocols

and parameters, and mitigates the impact of MR intensity variation

due to nonuniformity of magnetic field and other image artifacts. We

have tested the robustness of our method using validation MR images

from two cancer programs which were acquired with different MR

scan protocols, scan parameters, and scanners. Other atlas and deep

learning‐based methods reduce the impact of MR scan‐related varia-

tion by strictly using same scan protocol, scan parameters, and high

resolution to acquire and/or select “good” training data. The approach

(a) (b) (c)

F I G . 4 . ED difference map between computed tomography (CT) and magnetic resonance. (a) CT slice, (b) synthetic‐CT slice, and (c) ED
difference map between (a) and (b). Red arrows indicate mastoid sinuses

TAB L E 2 The electron density error for tissues and DSC of bone and brain

Electron density
error (CT/sCT) HU Air Brain Bone Muscle FAT

Soft tissue
(−100 to 200) HU

Whole‐body
(external body contour)

MAE Avg. ±1SD Range 21 ± 2 (19–24) 8 ± 7 244 ± 18 (219–277) 23 ± 1 47 ± 5 26 ± 2 (22–30) 125 ± 9 (110–144)

ME Avg. ±1SD −4 ± 3 1 ± 2 −34 ± 42 −5 ± 6 12 ± 16 2 ± 5 2 ± 15

DSC – 0.86 ± 0.02 0.72 ± 0.04 – – – –

CT, computed tomography; sCT, synthetic‐CT; DSC, dice similarity coefficients; MAE, mean absolute error; ME, mean error.

18 | YU ET AL.



produced good results with the training data. But it limits the feasibil-

ity to apply these methods to other programs with heterogeneous

data acquired using different MR scan protocols, scan parameters,

and/or MR scanners.

Finally, the feasibility of our method is due to its simplicity to

implement compared to multiple atlas‐based and deep learning‐based
methods. Our method can be easily integrated into existing MR‐Sim
programs using their existing MR scan parameters, MR scanners, and

computing resources without significant costs. Our method can be

easily validated using existing MR data without the need to gather a

large amount of homogeneous training data which is only feasible

for a few large programs. On the contrary, other methods need a

high‐resolution scan protocol in 3D which will dramatically increase

scanning time. The tremendous computing complexity of these

methods requires computers with GPUs for training and generating

sCTs. This would put a great burden to existing treatment planning

and information record and verification system and would be associ-

ated with significant costs.

One limitation of this method is that it needs manual contouring

nasal cavities and airway regions. It took on average of about

10 min in this study. However, our approach is less time consuming

than other methods in running time considering the long time from

2 to 12 h for multiple atlas image registration [6.9], and long training

time of the kernel for CNN approach which can take days15,16 and

additional MR scan time for UTE approach. Although some studies

can reduce the processing time to a few minutes by using GPUs and

large RAM,15,16 our method is still comparable in terms of cost of

effective and simplicity of implementation. The manual contouring

time can be further reduced by improving our air segmentation algo-

rithm so that the manual contouring can be reduced to just drawing

an air sample box in sinuses or potentially be eliminated with an

automating air segmentation step.

The study did not evaluate DSC of air segmentation since it is

difficult to compare with those of CT for our dataset. Significant dif-

ferences of nasal cavities and airway between registered MR and CT

images were noticed in our dataset as the MR and CT scans were

taken in different position, setup, and different time. Unlike for the

rigid skull, the volume and position of nasal canal and airway can be

significantly varied with scan position and setup.

The novelty of our approach is that our method generated a sCT

directly from one set of clinical T1 MR images. It does not require

multiple atlas‐based deformable image registration. Therefore, it

F I G . 5 . Magnetic resonance slices (upper row) and corresponding synthetic‐CT slices (lower row) for three patients. Left most images show a
patient who has undergone surgery and leaky cerebrospinal fluid (left case) and enhanced tumors (red arrows)

YU ET AL. | 19



eliminates image registration error. The method does not require

slow training with a large number of training data as CNN

approaches. The method does not need special MR scans for bone.

Therefore, it does not increase any cost by utilizing T1‐weighted MR

images from current SRS or SABR protocols which have high geo-

metric precision and a good quality control. It fits well with the

newly developed MR guided radiotherapy (MRGRT) treatment

devices such as Elekta MR‐Linc and ViewRay MRIdian. Our method

can be extended to automatically generate contours of organs of risk

in the head which is an advantage for MR‐only RTP. The work flow

with our method is quite simple to implement and more economic

than the current approaches.

In future work, sCTs generated by this method will be evaluated

dosimetrically using SRS and SABR patient data from multiple cen-

ters. T1‐weighted MR images of these patients are acquired using

different parameters, scanners, and protocols. The feasibility of using

sCT to substitute CT for patient setup verification by registering

with cone beam CT will be evaluated.

5 | CONCLUSION

A new MR electron density mapping technique was developed based

on tissue segmentation information from only one set of clinical T1‐
weighted images with contrast. The generated synthetic‐CT is com-

parable to that of CT in terms of anatomical position of tissues and

similarity of ED assignment. This method is a practical method for

MR‐only radiotherapy. It applies to a variety of patient anatomy and

is robust to MR intensity variation.
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