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Abstract: Soft corals are common marine organisms that inhabit tropical and subtropical 

oceans. They are shown to be rich source of secondary metabolites with biological 

activities. In this work, soft corals from two geographical locations were investigated using
 

1
H-NMR spectroscopy coupled with multivariate statistical analysis at the metabolic level. 

A partial least-squares discriminant analysis showed clear separation among extracts of 

soft corals grown in Sanya Bay and Weizhou Island. The specific markers that contributed 

to discrimination between soft corals in two origins belonged to terpenes, sterols and  

N-containing compounds. The satisfied precision of classification obtained indicates this 

approach using combined 
1
H-NMR and chemometrics is effective to discriminate soft 
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corals collected in different geographical locations. The results revealed that metabolites of 

soft corals evidently depended on living environmental condition, which would provide 

valuable information for further relevant coastal marine environment evaluation. 

Keywords: soft coral; NMR spectroscopy; chemometrics; spatial variation 

 

1. Introduction 

Soft corals refer to the marine colonial organisms in the class Octocorallia that inhabit tropical and 

subtropical area including South China Sea [1]. As scientists’ concerns about the compounds with 

interesting medical properties have increased, a number of bioactive secondary metabolites such as 

sesquiterpenes, diterpenes, sterols and alkaloids produced by soft corals have been found. In the area 

of drug research, these natural products were proved to possess diverse bioactivities such as  

anti-inflammation, anti-tumor and antioxidant activity [1]. They were potential candidates for novel 

medicinal drugs. 

Several studies have reported the spatial diversity of chemical composition in soft corals.  

Koh et al.’s research showed different individuals of same species contained different types of major 

cembranoids, and the result indicated the composition of cembranoids in the Sarcophyton genus is 

related with the location where individual samples collected [2] rather than morphological species. The 

investigation of metabolites from cultured and wild-type soft coral Klyxum simplex resulted in different 

diterpenoids. Simplexins A–I were isolated from the wild-type soft coral, and new eunicellin-base 

diterpenoids, klysimplexins and klysimplexin sulfoxides, were obtained from cultured K. simplex [3–5]. 

A report on the soft coral S. flexibilis showed the metabolites of this sample were abundant in steroids 

with a small amount of cembranoid diterpenes which were different with previous researches. The 

authors ascribed the variation to different chemical environment [6]. 

In this work, we tried to find whether obvious difference exist between soft corals from two 

geographical origins in the case of various species. Metabolite fingerprinting, coupled with 

multivariate data analysis, has been applied to give the overview of the metabolic state of biological 

samples and reveal the changes in measured metabolites due to external perturbations. Environmental 

metabolomics is one of these applications to study the organism—environment interactions [7]. A 

wide range of biological systems such as microbes [8,9], plants [10,11], animals [12–16] and other 

complex biosystems have been investigated to understand the metabololic responses of organisms to 

environmental stress [17,18]. 
1
H-NMR spectroscopy has been considered to be one of the powerful 

tools in metabolomic research. The information related to plenty of metabolites could be obtained fast 

and simultaneously with good reproducibility [19]. Due to the great advantages in information 

acquisition, NMR-based metabolomics has been used increasingly in marine environment studies. In 

studies of a marine mussel species, Mytilus galloprovincialis, Fasulo et al. successfully applied  

NMR-based metabolomics to assess the metabolic responses of mussels to environment pollution [12]. 

Healthy California red abalone (Haliotis rufescens) and the WS-RLP-infected ones could be well 

characterized by using the NMR-based metabolomics approach, even in periods of environmentally 

stress [20]. Impact of environment pollution on caged mussels was investigated using 
1
H-NMR 
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spectroscopy and pattern recognition analysis by transplanting mussels to the contaminated field site. 

Significant changes of metabolites revealed that metabolomic is an effective tool in assessing 

environmental influences [13]. 

In the present work, we investigated the natural variation in metabolites of soft corals from two 

collection sites in the South China Sea. The metabolic fingerprint and statistical analysis were used to 

find the metabolites that contribute to the differences between the two groups. In particular, the 

modeling results from methanol crude extracts and segmented samples were compared. The possible 

environmental factors for this discrimination were discussed. 

2. Results and Discussion 

2.1. Spectral Analysis 

The representative NMR spectra of methanol crude extract, ethyl acetate extract and Fr.1~Fr.5 from 

Sinularia capillosa collected in Sanya Bay were shown in Figure 1. Figure 1A can be divided into three 

spectral regions characterized by specific compound resonances. The aliphatic region (0.5–3.0 ppm) is 

the dominant part (mainly containing fatty acids, terpenes and steroids signals) showing strong signal 

overlap for all samples. The carbohydrate region (3.0–6.0 ppm) also appears very crowded mainly due 

to glucoside signals. In contrast, peaks in aromatic region (6.0–10.0 ppm) is sparse with low intensity.  

In our previous studies, ethyl acetate extraction is a suitable method to remove the majority of 

primary metabolites such as fatty acids and sugars. Bioactive compounds such as terpenes were mainly 

in ethyl acetate extract [21]. The problem of signal overlap still existed in the spectra of ethyl acetate 

extract. A further fractionation was applied as a pre-treatment method to simplify the spectra and 

facilitate assignment [22]. The assignment was accomplished on the NMR spectra of five fractions  

by comparison to pure compounds. In Table 1, molecular structures of seven assigned metabolites  

were listed. 

Unlike other literature reports of genus Sinularia, the systematically chemical analysis result 

showed the major constituents of terpenes were not the common cembrenes but a number of 

sesquiterpenoids with various skeleton types. The chemical diversity of the terpenes is depending on 

collection locations, which has been already observed for other soft corals, Cladiella krempfi [23] and 

Sinularia flexibilis [24,25].  

Figure 1. (A) The representative 
1
H-NMR spectra of methanol crude extract from 

Sinularia capillosa; (B) 
1
H-NMR spectra of ethyl acetate extract; (C) Five fractions of 

ethyl acetate extract.  

 

(A) 
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Figure 1. Cont. 

 

 

To provide a comprehensive interpretation of the metabolites differences in soft corals according to 

two different geographic origins, statistical analysis was applied to 
1
H-NMR spectral data sets.  

2.2. Statistical Analysis 

Initially, crude extracts data and fractions data were subjected to PCA respectively and the outliers 

lying outside of 95% confidence limits on PC scores were removed to ensure the data reliability. PCA 

analysis did not well group samples between different geographical locations. 

Subsequently, statistical analysis PLS-DA was performed on 
1
H-NMR spectra of methanol crude 

extracts. A classification model was established for discrimination between geographic origins. The 

optimal number of latent variables (LVs) determined by cross-validation (CV) was six. These latent 

variables adequately captured 91.6% of total variance with R
2
Y = 94.0% and Q

2
 = 32.7%. In addition, 

a permutation test was applied to check the validity of PLS-DA model. The result showed that it is 

quite likely to obtain lower goodness of fit (R
2
) and predictive ability (Q

2
) when the observations are 

permuted at random. 

The PLS-DA scores plot of first three LVs was shown in Figure 2. A satisfied separation among 

methanol crude extracts was obtained based on origins. This result reveals the metabolites difference 

of soft coral origins is significant in spite of different species.  

  

(B) 

(C) 
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Table 1. 
1
H chemical shifts (ppm) and coupling constants (Hz) of Sinularia capillosa 

metabolites identified on the basis of 1D and 2D experiments of pure compounds isolated 

from ethyl acetate extract. 

Metabolite  Structure 

1
H Chemical Shifts (ppm) and 

Coupling Constants (Hz)
 

∆9(15)-africanene [26] 

 

0.23 (dd, J = 4.0, 5.0) 

D-aromadendrane-4β,10α-diol [27,28] 

  

0.34 (t, J = 10.5) 

(+)-aromadendrane-4α,10β-diol [27,28] 

 

0.01 (t, J = 9.5) 

Alismoxide [29] 

 

5.46 (s) 

dendronpholide O [21] 

 

6.24 (s), 5.76 (s) 

4(15)-eudesmene-1β,6α-diol [30,31] 

 

4.85 (s), 4.72 (s) 

Germacra-4(15),5,10(14)-trien-1α-ol [32] 

 

5.82 (d, J = 16.2), 4.96 (s), 3.85 (m) 

The VIP (Variable Importance in the Projection) scores were calculated to investigate the highly 

influential variables of the given PLS model. Since the average of all X variables scores equals to one, 

these variables with largest scores (VIP > 1) were simply selected as the most affecting ones [33]. It 

was evident that significant contribution to group separation was concentrated in carbohydrate region 

as shown in Figure 2B. The OPLS-DA model was established to exclude variations that are not 

correlated to Y matrices. Figure 2D is a coefficient plot showing biomarkers with high contributions to 

differentiation. Some glucosides Signals, such as the resonances at δH 3.13, 3.17, 3.21 and 3.93, were 
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evident higher in Weizhou Island group compared with Sanya Bay group. The concentration of lipid 

(identified by its characteristic resonance at δH 1.28) was lager in soft corals from Sanya Bay. 

Figure 2. Partial least squares discriminant analysis (PLS-DA) and OPLS-DA results of 
1
H-NMR data of methanol crude extracts from Weizhou Island (red asterisk) and Sanya 

Bay (blue circle). (A) PLS-DA scores plot and (B) corresponding VIP plot; (C) OPLS-DA 

scores plot; (D) OPLS-DA loading plot. 

  

(A) (B) 

  

(C) (D) 

However, since the signal intensity in aromatic region was too low to be effective in the selected 

calculation model under the existence of large amount of primary metabolite signals, the previous 

PLS-DA analysis based on methanol crude extracts did not show us the variation of these minor 

second metabolites which we are concerned about between different groups. In order to decipher the 

intensity variation of weak peaks of second metabolites between Sanya Bay and Weizhou Island 

samples, PLS-DA was applied to NMR data obtained from all segmented samples. Calculated results 

for PLS-DA models were listed in Table 2. It was shown that the PLS-DA model created on  

Fr.1 showed better robustness and predictability than that on methanol crude extracts. However,  

the PLS-DA model created on Fr.2~Fr.4 showed poor predictive ability according to the value of 

cross-validated Q
2
. From the results, it might be assumed that less information related to classification 

was contained in these segmented spectra. Permutation tests were performed on all models. The results 

indicated better predictive power of Fr.1 and Fr.5 model compared to methanol extract model.  

The clear separation observed in Figure 3A, E proved further fractionation using gradient solvents 

mixture an effective method in metabolomic characterization of soft coral samples. 

 

B 
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Figure 3. PLS-DA and OPLS-DA results of 
1
H-NMR data of Fr.1 and Fr.5 from Weizhou 

Island (red asterisk) and Sanya Bay (blue circle). (A) PLS-DA scores plot for Fr.1;  

(B) PLS-DA VIP plot showing the major variations for Fr.1; (C) OPLS-DA scores plot for 

Fr.1; (D) OPLS-DA loading plot for Fr.1; (E) PLS-DA scores plot for Fr.5; (F) PLS-DA 

VIP plot for Fr.5; (G) OPLS-DA scores plot for Fr.5; (H) OPLS-DA loading plot for Fr.5. 

  

(A) (B) 

  

(C) (D) 

  

(E) (F) 

  

(G) (H) 
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Table 2. Component vector values and cross-validated Q
2
 of leave-one-out test for  

PLS-DA models.  

PLS-DA Model Data R
2
X R

2
Y Cross-validated Q

2
 

1H-NMR data of methanol extract  0.916 0.940 0.327 
1H-NMR data of ethyl acetate extract Fr.1  0.977 0.971 0.610 
1H-NMR data of ethyl acetate extract Fr.2 0.747 0.505 0.207 
1H-NMR data of ethyl acetate extract Fr.3 0.968 0.790 0.176 
1H-NMR data of ethyl acetate extract Fr.4 0.846 0.845 0.175 
1H-NMR data of ethyl acetate extract Fr.5 0.815 0.573 0.371 

The maker signals of fraction models were also determined by the rank of chemical shift values in 

VIP selection method. Combined with the corresponding VIP values, the major variation were 

concentrated in aliphatic region and carbohydrate region for Fr.1 and Fr.5. In order to figure out the 

major cause of the variation, the literatures were researched about chemical constituents of soft corals 

obtained from Sanya Bay and Weizhou Island of South China sea. Sterols and steroidal glycosides 

were generally regarded as two main types of metabolites isolated from soft coral in Weizhou Island. 

However, terpenes and sterols can be obtained from most soft corals in Sanya Bay. It was shown that 

the possibility of finding terpenes in Sanya Bay was higher than in Weizhou Island.  

The typical cases reported covers eleven samples from three common soft coral genus (Sinularia sp., 

Sarcophyton sp. and Dendronephthya sp.). Among them, six (Sinularia sp., n = 3; Sarcophyton sp., n = 2; 

Dendronephthya sp., n = 1) were from Sanya Bay and five (Sinularia sp., n = 3; Sarcophyton sp., n = 1; 

Dendronephthya sp., n = 1) from Weizhou Island. It is worth noting that although Sinularia sp. have 

been found to be a rich source of terpenes especially cembrenes [34–37], no individuals from Weizhou 

Island were found containing terpenes as major constituents of secondary metabolites [38–40]. This 

situation was also observed in Sarcophyton sp. The soft coral of Sanya Bay provides a series of 

cembranoids and tetraterpenoids which were not found in sample from Weizhou Island [41–43]. 

Studies on chemical examination of the genus Dendronephthya resulted in the polyhydroxysteroids as 

main metabolites. Lin et al. reported an isolation of 18 new cembrane-type diterpenes, 11-episinulariolide 

and sandensolide from Dendronephthya sp. collected in Sanya Bay [21].  

To further demonstrate the differences between two groups, OPLS-DA was employed to give an 

improved discrimination and help identifying potential significant metabolites. Before statistical 

analysis, lipid signal (large peak of -(CH2)n- in 1.24–1.32 ppm region) was removed from raw data of 

Fr.1 and Fr.5 to reveal the contribution of other biomarkers. The OPLS-DA models demonstrated 

better separation between different sample groups. From the loading plots, increased signal intensity at 

the region of 1.0–2.25 ppm in soft corals from Sanya Bay was in accordance with our investigation 

since signals of terpenes were concentrated in this area. In addition to this region, resonances intensity 

at δH 2.81, 2.85, 5.34 and 5.38 were higher in samples from Weizhou Island. The resonances at  

5.34 and 5.38 ppm may due to allylic protons of common ∆5-Sterols [44]. 

Therefore, the significant difference was possibly due to increased levels of sterols and steroidal 

glycosides, along with decreased levels of terpenes in Weizhou Island samples compared with those in 

Sanya Bay samples. Sterols and sterol glucosides serve as the precursor for synthesis of steroidal 

hormones [44] and the significant constituent for maintenance of cell function. Therefore, changes of 
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concentration level could provide information to assess status of soft corals. Based on our 

investigation, Sanya area represents environmental stress of overfishing (and destructive fishing), high 

level of terpenes could be presumed as an metabolic response to this anthropogenic disturbance. 

3. Experimental Section 

3.1. General Site Description 

20 soft coral samples were collected in the area of Sanya Bay (South China sea, China, 18°13′ N, 

109°23′ E) and Weizhou Island (South China sea, China, 21°02′ N, 109°09′ E) at the depth of 10 m in 

the summer season (Figure 4). The physico-chemical parameters of both sites were presented in  

Table 3. The Sanya Coral Reef National Marine Nature Reserve was established in 1990 and possesses 

a high diversity of marine habitats in 20th century [45]. The mean value of water temperature is 

29.2 °C during the rainy season [46]. Both of the sampling sites are far from coastline and the salinity 

remains stable around 32 PSU. The level of heavy metals in sediment conforms to National Seawater 

Quality Standards for China according to The Marine Environment Bulletin of Hainan province 

published by the government of Hainan Province in each year. According to the investigation of the 

biodiversity on coastal areas in South China Sea in 2006, the average coral cover was 15.87% in Sanya 

Bay. The low density and size of fishes in this area indicated the coral reef ecosystems were under 

severe anthropogenic stress like overfishing (and destructive fishing) [47]. As a threat to Scleractinian 

corals, outbreaks of Acanthaster planci and Drupella sp. have been found in adjacent area especially in 

Yalong Bay during the past few years.  

Figure 4. Location map of the studied area. 
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Table 3. Physico-chemical parameters of Sanya Bay and Weizhou Island environment. 

Sampling Area Sanya Bay Weizhou Island 

Temperature(°C)  29.2 [46] 29.6 [48] 

Salinity (‰) 33.3 [46] 32.9 [49] 

Dissolved oxygen (mg/L) 6.72 [50] 7.31 [48] 

pH 8.14 [51] 8.19 [49] 

Dissolved Inorganic Nitrogen (mg/L) 0.036 [50] 0.05 [52] 

Dissolved Inorganic Phosphate(mg/L) 0.007 [50] 0.0039 [53] 

Long-term (from 2005 to 2010) investigation showed the water-related environmental quality of 

Weizhou Island is well-kept. The concentration of metals in seawater around Weizhou Island was 

studied in 2011. The results indicate the ecological environment of this region was not polluted  

(Cu 3.57, Pb 0.35, Zn 6.97, Cr 1.44, Hg 0.017, As 0.44, Cd 0.014 μg/L of water sample) [49]. 

Although the coral reefs are also faced the problem of anthropogenic stress, the results of reef check in 

continuous years showed the status of coral reefs is healthy. 

3.2. Biological Material 

Soft coral samples were frozen immediately after collection. Among them, 12 samples were 

collected from Sanya Bay in Hainan province and 8 samples were collected from Weizhou Island in 

Guangxi province, respectively. The specimens were identified by Lee P. Van Ofwengen (National 

Museum of National History Naturalis, The Netherlands) (see Supplementary Table S1 for details), 

and voucher specimens were deposited at the same museum and also at State Key Laboratory of 

Natural and Biomimetic Drugs of Peking University, Beijing, China.  

3.3. Extraction and Isolation 

Methanol extracts: the soft coral samples were homogenized in 95% (v/v) ethanol under room 

temperature for four times and the concentrated extracts were desalted by dissolving in methanol, then 

sedimented by 12 h. After filtration, the solutions were concentrated in vacuo using a rotary evaporator 

at 40 °C to give dark brown residuals.  

Ethyl acetate extracts: for each sample, a portion of residuals were redissolved in water and treated 

with ethyl acetate to obtain the fractions by using two-phase extraction method. This simple 

fractionation step divided the constituents of methanol crude extract into two parts according to 

different chemical polarity. The bioactive compounds like terpenes were proved mainly in ethyl 

acetate extract by applying thin layer chromatography (TLC) and 
1
H-NMR analysis.  

Segmented samples: each of ethyl acetate residues was further chromatographed on a flash column 

(silica gel), gradient eluting with equal volume of petroleum ether-acetone (from 40:1 to acetone) to 

give five fractions, which were labeled as Fr.1, 2, …, 5 respectively. 

Among these samples, the ethyl acetate extract of soft coral Sinularia capilosa was subjected to 

repeated silica gel column, and purified by preparative HPLC to yield pure compounds by Dawei Chen 

(Peking University, Beijing, China). 
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3.4. 
1
H-NMR Data Acquisition and Multivariate Analysis 

About 10 mg of soft coral samples were dissolved into 500 μL of methanol (d4) containing internal 

standard as NMR samples. The deuterated solvent methanol (d4) was used to prepare all samples 

including methanol extracts, ethyl acetate extracts and five fractions for NMR analysis. All spectra 

were acquired on Bruker DRX 500 spectrometer operating at 500.13 MHz proton frequency using  

a 5 mm dual probe at 298 K. Solvent suppression was achieved by applying a presaturation scheme 

with 1D-NOESY presaturation. 256 transients were recorded, as 32 k data points with a spectral width 

of 8012.82 Hz and a relaxation delay of 5.0 s. A line broadening function of 0.3 Hz was applied to  

the FID prior to Fourier transformation. Some secondary metabolites of the representative sample  

were identified by comparing to the literature and pure compounds isolated from the soft coral 

Sinularia capillosa. 

All NMR spectra were phased and baseline corrected with MestReNova software (version 8.1.2; 

Mestrelab Research SL, Santiago de Compostela, Spain). The solvent region of δ 3.25–3.37 ppm 

(methanol) and δ 5.12–4.52 ppm (water) were excluded from the spectra, and the residual spectral 

regions were divided into 0.04-ppm bins over the range of δ 0.4–10 ppm. The data were normalized to 

the total spectral region and exported in ASCII format containing 222 variables. The data files were 

imported into MATLAB (R2010a; Mathworks, Inc., Natick, MA, USA). Principal component analysis 

(PCA) was applied to give a overview of the data distribution. Supervised partial least squares 

discriminant analysis (PLS-DA and OPLS-DA) models were constructed in order to discriminate  

soft corals according to their geographic distribution. The PCA and PLS (OPLS) methods were 

performed by applying PLS Toolbox (Eigenvector Research, Inc., Manson, WA, USA). All the models 

were cross-validated using a leave-one-out method. The vadility was checked by performing 

permutation test. The optimal number of latent variables was selected by cross-validation and the 

performance of PLS model was evaluated by R
2
 (captured variance, ―ability to fit the data‖) and Q

2
 

(cross-validated coefficient, ―ability to predict‖). The VIP (variable importance in the projection) 

scores were calculated in order to explain the importance of each variable in a given PLS model. The 

interesting metabolites were identified by employing loading plots from OPLS models. 

4. Conclusions 

Due to high variability in the composition of secondary metabolites, no systematic studies on 

patterns of spatial variation in soft corals have been reported. The present work investigated the 

feasibility of applying 
1
H-NMR fingerprints in combination with supervised partial least squares 

discriminant analysis to give the variation of soft coral metabolites from different sites. Moreover, by 

employing further fractionation of ethyl acetate extracts, the PLS-DA and OPLS-DA models showed 

better prediction abilities. The results obtained on segmented samples shown that the important 

compounds related to group separation were mostly second metabolites such as terpenes, sterols and 

glucosides. These metabolites variation could be considered as the response of biosystem to different 

environment. Since coral reefs are highly sensitive ecosystems, they have been suggested as potential 

indicators of marine environment [54]. Based on our investigation, the anthropogenic activities near 

Sanya Bay were considered as the main factor that contributes to the status of coral reefs from Sanya 
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area. As part of this ecosystem, soft corals also faced the problem and the metabolic changes of soft 

corals could be predicted as a response to environmental stress. Metabolomics may provide valuable 

information to reveal environment-depended complex acting mechanism of soft corals. 
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